
AndroSAT: Security Analysis Tool for Android Applications

Saurabh Oberoi∗, Weilong Song†, Amr M. Youssef‡
Concordia Institute for Information Systems Engineering

Concordia University
Montreal, Quebec

Abstract—With about 1.5 million Android device activations per
day and billions of application installation from Google Play,
Android is becoming one of the most widely used operating
systems for smartphones and tablets. In this paper, we present
AndroSAT, a Security Analysis Tool for Android applications.
The developed framework allows us to efficiently experiment
with different security aspects of Android Apps through the
integration of (i) a static analysis module that scans Android Apps
for malicious patterns. The static analysis process involves several
steps such as n-gram analysis of dex files, de-compilation of the
App, pattern search, and analysis of the AndroidManifest file;
(ii) a dynamic analysis sandbox that executes Android Apps in a
controlled virtual environment, which logs low-level interactions
with the operating system. The effectiveness of the developed
framework is confirmed by testing it on popular Apps collected
from F-Droid, and malware samples obtained from a third
party and the Android Malware Genome Project dataset. As
a case study, we show how the analysis reports obtained from
AndroSAT can be used for studying the frequency of use of
different Android permissions and dynamic operations, detection
of Android malware, and for generating cyber intelligence about
domain names involved in mobile malware activities.

Keywords–Android Security; Static Analysis; Dynamic Analysis.

I. INTRODUCTION

According to a recent report from Juniper Networks [1],
smartphone sales have increased by 50% year-on-year. In the
third quarter of 2013, more than 250 million smartphones were
sold worldwide. This rapid increase of smartphone usage has
moved the focus of many attackers and malware writers from
desktop computers to smartphones. Today, mobile malware is
far more widespread, and far more dangerous, especially in
Bring Your Own Device (BYOD) arrangements where mobile
devices, which are often owned by users who act as defacto
administrators, are being used for critical business and are also
being integrated into enterprises, government organizations and
military networks [2][3].

Android, being one of the utmost market share holders,
not only for smartphones and tablets, but also in other fields
such as automotive integration, wearables, smart TVs and
video gaming systems, is likely to be facing the highest threat
from malware writers. As an open-source platform, Android is
arguably more vulnerable to malicious attacks than many other
platforms. According to the report from Juniper Networks [1],
mobile malware grew 614% for a total of 276,250 malicious
Apps from March 2012 to March 2013. Another recent report
from Kaspersky [4] shows that 99% of all mobile-malware in
the wild is attacking the Android platform. Kaspersky also
mentioned that mobile malware is no longer an act of an
individual hacker; some rogue companies are investing time
and money to perform malicious acts such as stealing credit
card details and launching phishing attacks, to gain profit.
According to the Kaspersky report, the number of unique

banking trojans raised from 67 to 1321 from the start to the end
of 2013. Thousands of users were convinced to pay millions
of dollars due to the gradual dissemination of infected Apps.
In extreme cases, an application with malicious intent can do
more than just sending premium text messages–they can turn
a phone into a spying tool. These spying tools can track the
current location of a smartphone, make phone calls, send and
receive text messages and send stolen private information to
remote servers without raising any alarm.

In this paper, we present a Security Analysis Tool for
Android applications, named AndroSAT. The developed frame-
work allows us to experiment with different security aspects
of Android Apps. In particular, AndroSAT comprises of:

• A static analysis module that scans Android Apps
for malicious patterns (e.g., potentially malicious API
calls and URLs). This process involves several steps
such as n-gram analysis of dex files, de-compilation
of the App, pattern search, and extracting security
relevant information from the AndroidManifest files.

• A dynamic analysis sandbox that executes Android
Apps in a controlled virtual environment, which logs
low-level interactions with the operating system.

• Analysis tools and Add-ons for investigating the out-
put of the static and dynamic analysis modules.

In order to demonstrate the effectiveness of our framework,
we tested it on popular Apps collected from F-Droid [5],
which is a Free and Open Source Software (FOSS) repository
for Android applications, and a malware dataset obtained
from a third party as well as from the Android Malware
Genome Project. The reports produced by our analysis were
used to perform three case studies that aim to investigate the
frequency of use of different Android permissions and dynamic
operations, detection of malicious Apps and generating cyber
intelligence about domain names involved in mobile malware
activities. The results obtained by the first case study can be
utilized to narrow down the list of features that can be used to
determine malicious patterns. In the classification experiment,
using the features extracted from our analysis reports, we ap-
plied feature space reduction, and then performed classification
on the resultant dataset. As will be explained in Section V, the
obtained classification results are very promising. Finally, in
our cyber-intelligence gathering experiment, we used the IP
addresses recorded during the static and dynamic analysis of
malware Apps to produce a graphical representation of the
geographical locations of possible malicious servers (and their
ISPs) that communicate with malicious Apps. These three
experiments show the versatility as well as the wide variety
of possible usages for the information obtained by AndroSAT.

The rest of the paper is organized as follows. In the next
section, we discuss some related work. A brief review of

124Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies



Android and its security model is provided in Section III.
Section IV details the design of our framework and explains
the static and dynamic analysis modules. Our experimental
results are presented in Section V. Finally, our conclusion is
given in Section VI.

II. RELATED WORK

Due to sudden increase in the number of Android malware,
researchers too have moved their focus and resources towards
securing the Android platform from this rising threat. Blasing
et al. [6] developed a system named AASandbox that utilizes a
loadable kernel module to monitor system and library calls for
the purpose of analyzing Android applications. Wu et al. [7]
developed a system named DroidMat that extracts the informa-
tion from an AndroidManifest and, based on the collected in-
formation, it drills down to trace the application programming
interface(API) calls related to the used permissions. It then
uses different clustering techniques to identify the intentions
of the Android malware. Reina et al. [8] developed a system
named CopperDroid, which performs the dynamic analysis of
an Android application based upon the invoked system calls.
They claimed that their system can detect the behavior of an
application whether it was initiated through Java, Java Native
Interface or native code execution. Burguera et al. [9] focused
on identifying system calls made by Android applications and
developed a tool named Crowdroid to extract the system calls
and then categorize these system calls into either malicious or
benign by using K-means clustering. DroidRanger, a system
proposed in [10], consists of a permission-based behavioral
footprinting scheme that detects new samples of known An-
droid malware families and a heuristics-based filtering scheme
that identifies certain inherent behaviors of unknown malicious
families.

Spreitzenbarth et al. [11] developed a system named
Mobile-Sandbox, which is designed to perform integrated
analysis and some specific techniques to log calls to non-Java
APIs. Alazab et al. [12] used DroidBox, a dynamic analysis
tool that generates logs, behavior graph and treemap graphs
to explain the behavior of an Android App. They collected
33 malicious applications grouped into different families and
scanned them with different antivirus. They combined the
graphs of the applications within the same family to verify
if the graphs eventually reflect the family and then compared
it with results from different antivirus companies. Another
dynamic analysis tool named TaintDroid is presented in [13],
which is capable of simultaneously tracking multiple sources
of sensitive data accessed by Android application. In the work
reported in [14][15], n-gram features are extracted from benign
and malware executables in Windows PE format. The extracted
features are then used to generate model with classifiers
supported by WEKA.

Compared to other related work, one key feature in our sys-
tem, AndroSAT, is that the developed sandbox allows not only
for observing and recording of relevant activities performed
by the apps (e.g., data sent or received over the network, data
read from or written to files, and sent text messages) but also
manipulating, as well as instrumenting the Android emulator.
These modifications were made to the Android emulator in
order to evade simple detection techniques used by malware
writers.

III. ANDROID OVERVIEW

Android is an emerging platform with about 19 different
versions till date [16]. Table I shows different Android versions
with their corresponding release date. As shown in Figure 1,
the Android framework is built over Linux kernel [17] that
controls and governs all the hardware drivers such as audio,
camera and display drivers. It contains open-source libraries
such as SQLite, which is used for database purposes, and
SSL library that is essential to use the Secure Sockets Layer
protocol. The Android architecture contains Dalvik Virtual
Machine (DVM), which works similar to the Java Virtual
Machine (JVM). However, DVM executes .dex files whereas
JVM executes .class files.

TABLE I. ANDROID VERSION HISTORY

Android Version OS Name Release Date
1.0 Alpha 09/2008
1.1 Beta 02/2009
1.5 Cupcake 04/2009
1.6 Donut 09/2009

2.0-2.1 Eclair 10/2009
2.2 Froyo 05/2010

2.3.x Gingerbread 12/2011
3.1-3.2 Honeycomb 02/2011

4.0.3-4.0.4 Ice Cream Sandwich 10/2011
4.1.x-4.3 Jelly Bean 08/2012

4.4 KitKat 09/2013

Figure 1. Android architecture [17]

Every application runs in its own Dalvik virtual environment
or sandbox in order to avoid possible interference between
applications and every virtual environment running an applica-
tion is assigned a unique User-ID (UID). The application layer
consists of the software applications with which users interact.
This layer communicates with the application framework to
perform different activities. This application framework con-
sists of different managers, which are used by an Android
application. For example, if an application needs access to an

125Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies



Figure 2. Overview of AndroSAT

incoming/outgoing phone call, it needs to access Telephony-
Manager. Similarly, if an application needs to pop-up some
notifications, it should interact with NotificationManager.

An Android application, also known as an APK pack-
age, consists of AndroidManifest.xml, res, META-INF, assets
and classes.dex files. The AndroidManifest.xml file contains
information about supported versions, required-permissions,
services-used, receivers-used, and features-used [17]. META-
INF contains the certificate of the application developer,
resource directory (res) contains the graphics used by an
applications such as background, icon and layout [17]. Assets
directory contains the files used by an Android application,
such as SQLite database and images. The classes.dex file is
an executable file in a format that is optimized for resource
constrained systems.

IV. SYSTEM OVERVIEW

In this section, we provide an overview of AndroSAT. A
local web-server is setup where we can upload the Android
applications into our Droid-Repository (MySQL database of
Android applications to be analyzed) through a PHP webpage
(DroidShelf). As depicted in Figure 2, AndroSAT includes two
main modules, namely a static analysis module and a dynamic
analysis module, which are used together to produce analysis
reports in both XML and pdf formats. The produced XML
reports can then processed using several add-ons and analysis
tools.

A. Static Analysis
Static analysis techniques aim to analyze Android Apps

without executing them. The objective of these techniques is to
understand an application and predict what kind of operations
and functionalities might be performed by it without executing
it. Different forms of static analysis have proved to be very

Figure 3. Overview of the static analysis module

useful in detecting malicious Apps. As shown in Figure 2 and
Figure 3, the process of static analysis involves several steps
such as extracting n-gram statistics of .dex files, disassembling
the application, performing pattern search for malicious API
calls and URLs, and extracting relevant information (such
as used permissions, activities, intents and actions, services,
and receivers) from the AndroidManifest file. In order to
perform the static analysis process, the analyzed application
is first fetched from the Droid-Repository. Then, data from
AndroidManifest file is extracted from the APK package using
the Android Asset Packaging Tool (AAPT). AAPT is used for
compiling the resource files during the process of Android App

126Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies



development, and is included in the Android SDK package
[18]. After the n-gram statistics is evaluated from the .dex file,
the application is fed to the disassembler, which disassembles
the application APK package to obtain the SMALI and Java
code of the application. The disassembly process is performed
using APKTool [19] and Apk2java [20], which are open source
reverse engineering tools. Once the source code is obtained
from the Android application undergoing analysis, we search
for malicious functions/API calls, URLs and IP addresses. In
what follows we provide some further details on the n-gram
analysis process and the different features extracted from both
AndroidManifest and source code.

1) N-gram Analysis: Different forms of n-gram analysis
have been previously used for malware detection in the Win-
dows and Linux/Unix environments. Different from Portable
Executables (PE) but similar to MSI packages in Windows,
Android OS has Android application package file (APK)
as the file format used to install application software. The
APK file can be looked at as a zip compression package
containing all of the application bytecode including classes.dex
file, compiled code libraries, application resource (such as
images, and configuration files), and an XML file, called
AndroidManifest. The classes.dex file holds all of application
bytecode and implementing any modification in the application
behavior will lead to a change in this file. The process of n-
gram analysis is performed by extracting application bytecode
files (i.e., classes.dex), calculating byte n-gram, and then
performing a dimensionality reduction step for these calculated
n-gram features. The byte n-grams are generated from the
overlapping substrings collected using a sliding window where
a window of fixed size slides one byte every time. The n-
gram feature extraction captures the frequency of substrings
of length n byte. Since the total number of extracted features
is very large, we apply feature reduction to select appropriate
features for malware detection. We chose Classwise Document
Frequency [14] as our feature selection criterion. AndroSAT
applies feature reduction on bigram and trigram sorted by
CDF value and top k features are selected. The obtained
feature vectors are saved in the analysis reports and can then be
used as inputs for classifier to generate models for malicious
Apps. Surprisingly, as will be shown in the experimental
results Section V, applying this simple analysis method to
.dex files even without any pre-processing or normalization for
the byte code yields very promising results and allows us to
differentiate between malicious and benign applications with
relatively very good accuracy.

2) Features extracted from the AndroidManifest file:
Throughout the analysis process, the following features are
extracted from the AndroidManifest file of analyzed applica-
tions:

• Requested Permissions: An Android application does
not need any permission unless it is trying to use
a private or system related resource/functionality of
the underlying Android device. There are numer-
ous permissions that developers can add into an
Android application to provide better experience to
users. Example of these permissions include CAM-
ERA, VIBRATE, WRITE EXTERNAL STORAGE,
RECEIVE SMS, and SEND SMS [5]. Permissions
requested by an application inform user about what
they can expect from the application and a smart

user can easily realize if an application is asking for
more than it should supposedly do. For example, an
application claiming to show weather reports should
raise suspicion if it requests a SEND SMS permission.

• Features Used: An Android application can use hard-
ware or software features. The features available (e.g.,
bluetooth, and camera) vary with different Android
devices. Therefore, many applications use feature as
a preference, i.e., they can still function even if the
feature is not granted. Features come with a required
attribute that helps a developer to specify whether the
application can work normally with or without using
the specific feature.

• Services-Used: Services-Used lists all the services
recorded in the application AndroidManifest file. In an
Android application, a service can be used to perform
operations that need to run at the background for a
long time and without any user interaction. The service
keeps on running even if the user switches to another
application. An attacker can make use of a service to
perform malevolent activities without raising an alarm.

• Receivers Used: In Android, events send out a broad-
cast to all the applications to notify their occurrence.
A broadcast is triggered once the event registered
with the corresponding broadcast receiver [21] occurs.
The main purpose of using a broadcast receiver is
to receive a notification once an event occur. For
example, if there is a new incoming message, a
broadcast about the new incoming message is sent out
and applications that use the corresponding receiver,
i.e., SMS RECEIVED receiver will get the incoming
message. Malicious applications can use the broadcast
receiver in numerous ways such as receive the incom-
ing messages and monitor the phone state.

• Intents and Actions: An intent or action specifies
the exact action performed by the broadcast receiver
used in an application. Some of the most widely
used broadcast receivers include SMS RECEIVED,
and BOOT COMPLETED.

• Activities Used: Activities-used is a list of all the
activities used in an Android application. In Android,
every screen that is a part of an application and with
which users can interact is known as an activity. An
application can have more than one activity.

3) Feature Extraction from Source Code: In this section,
we list the features extracted from the decompiled SMALI and
Java source code.

• getLastKnownLocation: This function is used to get
the last know location from a particular location
provider. Getting this information does not require
starting the location provider, which makes it more
dangerous and invisible. Even if this information is
stale, it is always useful in some contexts for malicious
App developers.

• sendTextMessage: This function is most widely used
by many malware developers to earn money or to
send bulk messages while hiding their identity. The
biggest advantage that attackers have when utilizing
this function is that it sends text messages in the
background and does not require any user intervention.

127Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies



• getDeviceId: This function is used to obtain the In-
ternational Mobile Station Equipment Identity (IMEI)
number of the Android device. Every device has its
own unique IMEI that can be used by the service
provider to allow the device to access the network
or block its access to the network. IMEIs of stolen
phones are blacklisted so that they never get access to
the network. An attacker with malevolent intentions
can use this unique code to make a clone and then
performs illegal activities or blacklists the IMEI so
that the user can never put it back onto the cellular
network.

All the features extracted by the static analysis module are then
fed to a parser module in order to remove redundant data. The
extracted relevant information is then saved in both XML and
PDF formats.

B. Dynamic Analysis
The main advantage of the static analysis described above

is that it can be performed relatively very efficiently without
the need to execute the Apps and hence avoid any risk associ-
ated with executing malicious Apps. On the other hand, some
malware writers use different obfuscation and cryptographic
techniques that make it almost impossible for static analysis
techniques to obtain useful information, which makes it essen-
tial to use dynamic analysis. Dynamic analysis is most widely
used to analyze the behavior and interactions of an application
with the operating system. Typically, dynamic analysis is
performed using a virtual machine controlled environment in
order to avoid any possible harm that can result from running
the malware on actual mobile devices. Furthermore, using the
virtual environment makes it easier to prepare a fresh image
and install the new application in question on it for analysis.

The main disadvantage of dynamic analysis, however, is
that the usefulness of the analysis is somewhat correlated to
the length of the analysis interval and some malicious activities
may not be invoked by the App during the, usually short,
analysis interval either because the conditions to trigger these
events do not happen during the dynamic analysis process or
because the malicious App is able to detect that it is being
monitored. Anti-debugging and virtual machine detection tech-
niques have long been used by Windows malware writers. To
make the virtual environment look like a genuine smartphone,
we made some changes to the Android emulator, e.g., we
modified IMEI, IMSI, SIM serial number, product, brand and
other information related to the phone hardware.

During dynamic analysis, the application is installed onto
the system and its activities or interactions are logged to
analyze its actions. We use a sandbox to execute the Android
application in question in a controlled virtual environment.
Figure 4 shows an overview of our dynamic analysis mod-
ule. The main part of this module is based on an open
source dynamic analysis tool for Android applications named
DroidBox [22]. However, as mentioned above, we performed
some modifications in order to improve the resistance of the
emulator against detection. AndroSAT launches the emulator
using DroidBox that uses its own modified image making it
possible to log the system and API level interactions of an
Android application with the emulator. Once the emulator is up
and running, the App is installed using Android Debug Bridge
(ADB) for further analysis. Immediately after the successful

Figure 4. Overview of the dynamic analysis module

installation of the application, the module starts DroidBox to
further analyze the APP for a configurable interval (the default
is two minutes). Meanwhile, it launches the main activity of the
installed application onto the emulator automatically, performs
random gestures on it and takes screen shots of the appli-
cation using the MonkeyRunner tool [23], while DroidBox
consistently logs any system or API level interactions of the
application with the operating system. The following features
are collected during our dynamic analysis:

• File Activities: File activities consist of information
regarding any file, which is read and/or written by the
application. This information includes timestamps for
these file activities, absolute path of accessed files and
the data, which was written to/read from these files.

• Crypto Activities: Crypto Activities consist of infor-
mation regarding any cryptographic techniques used
by the application. It includes information regarding
the type of operation (e.g., key generation, encryption,
and decryption) performed by the application, algo-
rithms used (e.g., AES, DES), key used and the data
involved.

• Network Activities: It unveils the connections opened
by the application, packets sent and received. It also
provides detailed information about all these activities
including the timestamp, source, destination and ports.

• Dex Class Initialized: In Android, an application can
initialize a dex file, which is not a part of its own
package. In the most malicious way, an application
can download a dex file to the Android device and
then executes it using the DexClassLoader. This way,
an application under analysis will come out clean,
which makes it almost impossible for any malware
analyzer or sandbox to detect the malicious activities

128Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies



performed by the application. DroidBox logs relevant
details whenever an application initializes any dex
class.

• Broadcast Receiver: As explained earlier, the use of
broadcast receiver helps improve the user experience
of an application. However, an attacker can use this
functionality to easily gain access to private/critical
data without raising an alarm in the users’ mind.
We log information regarding any broadcast receiver
used by the application and record the name of the
broadcast and the corresponding action.

• Started Services: Services play a very critical role
in Android applications. They are used to execute
the code in the background without raising an alarm.
Started services provide the information about any
service, which is started or initialized during the
runtime of the application.

• Bypassed permissions: Lists the permission names,
which are bypassed by the application. This aims to
detect scenarios where an application can perform the
task that needs a specific permission without explic-
itly using that permission. For example, an Android
application can direct the browser to open a webpage
without even using the Internet permission [24].

• Information Leakage: Information leakage can occur
through files, SMS and network. Leakage may occur
through a file if the application tries to write or read
any confidential information (e.g., IMEI, IMSI, and
phone number) of an Android device to or from a
file. Leakage occurs through SMS if the information
is sent through an SMS. Timestamp, phone number
to which the information is sent, information type,
and data involved are also logged. Leakage occurs
through network if the application sends critical data
over the Internet. Timestamp, destination, port used,
information type and data involved is recorded. De-
tailed information about the absolute path of the file,
timestamp, operation (read or write), information type
(IMEI, IMSI or phone number) and data are logged.

• Sent SMS: If an Android application tries to send
a text message, timestamp, phone number and the
contents of the text message are logged.

• Phone call: If an Android application tries to make a
phone call, timestamp and phone number are recorded.

Dynamic analysis module logs all these features into a text
file, which is then sent to the parser module to remove any
redundant data. The extracted relevant information is then
saved in XML and PDF formats.

V. EVALUATION

The reports generated by our framework contain use-
ful information regarding the analyzed Android applications,
which in turn can be used in many Android security related
applications. To confirm the effectiveness of our proposed
framework, we analyzed a total of 1932 Android applications,
out of which 970 are benign and 962 are malicious. We
collected the malicious samples from the Android Malware
Genome Project [25] and from another third party. The benign
samples were obtained from F-Droid [18], which is a Free
and Open Source Software (FOSS) repository for Android

applications. We also verified the applications collected from
F-Droid are benign using VirusTotal [26].

Results from the dynamic analysis show that 254 out of 962
(i.e., 26%) malicious applications and none of the 970 benign
applications lead to private data leakage through network.
Many malware writers use cryptographic techniques to hide
the malicious payload in order to make it impossible for a
signature based malware analyzer to understand the malicious
intentions of an application. Among the analyzed Apps 41
out of 962 malicious applications and 2 out of 970 benign
applications use cryptography at runtime. The experimental
results also suggest that an Android application with different
versions might have different package contents and hence
the checksum of the packages might differ. However, the
checksum of classes.dex file of some different versions came
out to be the same. This tells us that malware writers might
add junk data in the APK package to make an application look
different while the content of classes.dex file remains the same.

We incorporated the reports generated by our framework
and used them to perform three case studies, namely per-
forming frequency analysis for the different permissions and
operations used by Android Apps, cyber-intelligence and clas-
sification.

A. Frequency analysis of Android permissions and dynamic
operations

Figure 5(a) shows the top 15 permissions used by the
analyzed malicious applications and their frequency as com-
pared to the benign ones. It is interesting to find out that
some permissions are used by most of the malicious appli-
cations. As depicted in Figure 5(a) READ PHONE STATE
permission is used by ≈86% of the malicious Apps as
compared to ≈12.% of the benign Apps. This permission
is most widely used to obtain system specific data such as
IMEI, IMSI, phone number and SIM serial. Similarly, the
frequency of use of INTERNET, ACCESS WIFI STATE, AC-
CESS NETWORK STATE, READ SMS, and WRITE SMS
show noticeable differences. Figure 5(b) shows the top 15
permissions used by the analyzed benign applications and their
frequency as compared to the analyzed malicious applications.
In total, 962 malicious applications used 10,203 permissions,
which come to an average of 10.6 permissions per application.
On the other hand, 970 benign applications used 3,838 permis-
sions, which come to an average of around 3.95 permissions
per application. These results confirm that, on average, the
number of permissions requested by a benign application is
less than the number of permissions requested by a malicious
application.

Figure 5(c) shows the top 15 dynamic operations per-
formed by the analyzed malicious applications. As shown
in the figure, there are many operations that are domi-
nantly performed by the malicious applications. These in-
clude BroadcastReceiver(BOOT COMPLETED), OpenNet-
workConnection:80, and DataLeak Network. Applications
with malicious intents use BOOT COMPLETED broadcast
receiver to receive a notification whenever an Android device
boots up so that they can perform the intended malicious
activity or launch malicious services that keep running in the
background. Another deciding factor is data leakage through
network, which has a high occurrence in our malicious dataset,
i.e., 254 as compared to 0 in the analyzed benign ones. Figure

129Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies



Figure 5. Most frequently used permissions and dynamic operations for the analyzed Apps

5(d) shows the top 15 dynamic operations performed by the
benign applications in our dataset.

B. Cyber-intelligence
One of the main objectives of cyber-intelligence is to track

sources of online threats. In this work, we used the URLs and
IP addresses recorded during the static and dynamic analysis
of malware Apps to produce a graphical representation of the
geographical locations of possible malicious servers (and their
ISPs) that communicate with these malicious Apps. Figure 6
shows a sample output of this analysis (IP addresses are not
shown for privacy and liability concerns).

Figure 6. Geographical Presentation of the locations of suspected IPS

C. Malware detection
Throughout this experiment, we incorporated 134 static,

285 dynamic and 400 n-grams based features. We performed

our classification task on 1932 Android applications using
different combinations of these features, namely static analysis
features, dynamic analysis features, n-grams based features,
combination of static & dynamic features (S+D), combination
of static & n-grams based features (S+N) and combination of
dynamic & n-grams based features (D+N). We also combined
features from all three analysis techniques, i.e., static, dynamic
and n-grams (S+D+N) and performed feature space reduction
using classwise document frequency to obtain a feature-set
containing the top features for classification. We employed five
different algorithms supported by WEKA [27] for classification
with 10-fold cross-validation: SMO [28], IBK [28], J48 [28],
AdaBoost1(J48 as base classifier) [28], and RandomForest
[28]. Our experimental results show that AdaBoost1 and
RandomForest models achieve a better accuracy compared to
the other models. Figure 7 shows the results obtained for
the five different feature sets in terms of accuracy, precision,
and recall. From Figure 7(a), it is clear that n-gram features
using AdaBoost1, D+N features using AdaBoost1 and S+D+N
features using RandomForest provide the highest accuracy
≈98%. Figure 7(b) and Figure 7(c) shows the corresponding
precision and recall, respectively. The low accuracy obtained
when using dynamic analysis only can be explained by noting
that, throughout our dynamic analysis process, we do not
interact with the applications with carefully chosen gestures.
Consequently, there is no guarantee that we check complete
paths that can be traversed by the application or even a
good portion of it. Furthermore, the short dynamic analysis
interval might not be enough to trigger some of the bad events
performed by malicious Apps. On the other hand, it should not
be noted that the relatively high accuracy obtained with the
combined features should also be interpreted with care since
it might have resulted because of the limited variance in the

130Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies



characteristics of the analyzed samples.

Figure 7. The classification results

VI. CONCLUSION

The increasing popularity of the Android operating system
has led to sudden escalation in Android malware. In this work,
we developed a framework to analyze Android applications
using static and dynamic analysis techniques (AndroSAT). The
effectiveness of AndroSAT was tested by analyzing a dataset of
1932 applications. The information obtained from the produced
analysis reports proved to be very useful in many Android
security related applications. In particular, we used the data
in these reports to perform three case studies: analyzing the
frequency of use of different Android permissions and dynamic
operations for both malicious and benign Apps, producing
cyber-intelligence information, and maleware detection. The
implemented prototype can be further extended to allow for
more useful add-ons that can be used to provide further
investigation of the security of Android applications.

REFERENCES

[1] “Third Annual Mobile Threats Report,” 2013, URL:
http://www.juniper.net/us/en/local/pdf/additional-resources/3rd-jnpr-
mobile-threats-report-exec-summary.pdf [accessed: 2014-09-05].

[2] Q. Li and G. Clark, “Mobile security: a look ahead,” Security & Privacy,
IEEE, vol. 11, no. 1, 2013, pp. 78–81.

[3] C. Miller, “Mobile attacks and defense,” Security & Privacy, IEEE,
vol. 9, no. 4, 2011, pp. 68–70.

[4] “Kaspersky: forget lone hackers, mobile mal-
ware is serious business,” Feb. 2014, URL:
http://www.theguardian.com/technology/2014/feb/26/kaspersky-
android-malware-banking-trojans [accessed: 2014-09-05].

[5] “Android Permissions,” URL: http://developer.android.com/reference/an
droid/Manifest.permission.html [accessed: 2014-09-05].

[6] T. Blasing, L. Batyuk, A. D. Schmidt, S. A. Camtepe, and S. Albayrak,
“An android application sandbox system for suspicious software detec-
tion,” in Proceedings of the 5th international conference on Malicious
and unwanted software (MALWARE). IEEE, 2010, pp. 55–62.

[7] D. J. Wu, C. H. Mao, T. E. Wei, H. M. Lee, and K. P. Wu, “Droidmat:
Android malware detection through manifest and api calls tracing,”
in Proceedings of the Seventh Asia Joint Conference on Information
Security (Asia JCIS). IEEE, 2012, pp. 62–69.

[8] A. Reina, A. Fattori, and L. Cavallaro, “A system call-centric analysis
and stimulation technique to automatically reconstruct android malware
behaviors,” EuroSec, Apr. 2013.

[9] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior-
based malware detection system for android,” in Proceedings of the 1st
ACM workshop on Security and privacy in smartphones and mobile
devices. ACM, 2011, pp. 15–26.

[10] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my
market: Detecting malicious apps in official and alternative android
markets.” in NDSS, 2012.

[11] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J. Hoffmann,
“Mobile-sandbox: having a deeper look into android applications,”
in Proceedings of the 28th Annual ACM Symposium on Applied
Computing. ACM, 2013, pp. 1808–1815.

[12] M. Alazab, V. Monsamy, L. Batten, P. Lantz, and R. Tian, “Analysis of
malicious and benign android applications,” in Proceedings of the 32nd
International Conference on Distributed Computing Systems Workshops
(ICDCSW). IEEE, 2012, pp. 608–616.

[13] W. Enck, P. Gilbert, B. G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: an information flow tracking system for
real-time privacy monitoring on smartphones,” Communications of the
ACM, vol. 57, no. 3, 2014, pp. 99–106.

[14] S. Jain and Y. K. Meena, “Byte level n–gram analysis for malware
detection,” in Computer Networks and Intelligent Computing. Springer,
2011, pp. 51–59.

[15] D. K. S. Reddy and A. K. Pujari, “N-gram analysis for computer virus
detection,” Journal in Computer Virology, vol. 2, no. 3, 2006, pp. 231–
239.

[16] “Android version history,” URL: http://en.wikipedia.org/wiki/Android v
ersion history [accessed: 2014-09-05].

[17] S. Brahler, “Analysis of the android architecture,” Karlsruhe institute
for technology, 2010.

[18] “The Android Asset Packaging Tool,” URL:
http://developer.android.com/tools/building/index.html [accessed:
2014-09-05].

[19] “Android APKTool: A tool for reverse engineering Android apk files,”
URL: https://code.google.com/p/android-apktool/ [accessed: 2014-09-
05].

[20] “Apk2java: Batch file to automate apk decompilation process,” URL:
http://code.google.com/p/apk2java/ [accessed: 2014-09-05].

[21] “Android Broadcast Receiver,” URL:
http://developer.android.com/reference/android/content/BroadcastReceiv
er.html [accessed: 2014-09-05].

[22] “DroidBox: Android Application Sandbox,” URL:
https://code.google.com/p/droidbox/ [accessed: 2014-09-05].

[23] “MonkeyRunner,” URL: http://developer.android.com/tools/
help/monkeyrunner concepts.html [accessed: 2014-09-05].

[24] A. Lineberry, D. L. Richardson, and T. Wyatt, “These aren’t the
Permissions you’re Looking for,” in DEFCON 18, Las Vegas, NV, 2010.

[25] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in Proceedings of the 2012 IEEE Symposium on
Security and Privacy (SP). IEEE, 2012, pp. 95–109.

[26] “VirusTotal,” URL: https://www.virustotal.com/ [accessed: 2014-09-
05].

[27] “WEKA,” URL: http://www.cs.waikato.ac.nz/ml/weka/ [accessed:
2014-09-05].

[28] I. H. Witten and E. Frank, Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, 2005.

131Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies


