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Abstract—This paper presents an automated formal approach
for  enforcing  security  policies  on  a  choreography  of  Web
Services.  We  take  as  input  a  formal  description  of  a
choreography  of  web  services  and  a  security  property
represented by a process, then we define some rewriting rules
and  rewrite  the  two  processes  in  order  to  make  them
synchronize  on  each  communication  action.  This  approach
produces  as  output  a  secure  version  of  the  concerned  web
service which behaves like the original one but does not violate
the security property.

Keywords-Web  Service  Composition  Security;
Instrumentation;  Choreography;  Formal  Verification;  End-
Point Calculus.

I.  INTRODUCTION

Web  Services  (WS)  are  distributed  and  modular
applications that communicate by message passing in order
to complete specific activities. Composition of WS consists
in combining different WS to provide value-added services.
WS composition rules deal with how different services are
composed into a coherent global service. In particular, they
specify  the  order  in  which  services  are  invoked,  and  the
conditions under which a certain service may or may not be
invoked.  Among  the  approaches  investigated  in  service
composition, we distinguish orchestration and choreography.
The orchestration  composes available  services  and  adds a
central coordinator (the orchestrater) which is responsible for
invoking and composing the single sub-activities. However
the second one, referred to as WS choreography, does not
assume the exploitation of a central coordinator but rather
defines complex tasks via the definition of the conversation
that  should  be  undertaken  by  each  participant.  Several
proposals exist for orchestration and choreography languages
such as Business Process Execution Language (BPEL) [1]
for  orchestration  and  Web  Service  Choreography
Description  Language  (WS-CDL)  [2]  for  choreography.
Since the orchestration technique uses a central coordinator
that  composes  the  available  services,  it  seems  trivial  to
enforce security policies. So the technique that will be used
in this paper for composing WS is the choreography. One of
the  main  challenges for  researchers  in  this  domain  is  the
formalization  of  these  composition  languages.  Although,
several contributions have been developed in the last decade
that formalize WS-CDL such as the Global Calculus (GC)
and the End-Point Calculus (EPC) proposed by Carbone et
al. [3], the Choreography Language proposed by N. Busi et
al.  [4], The Choreography Description Language proposed

by H. Yang et al. [12] and timed automata proposed by G.
Diaz et al. [5]. The formal specification language used in this
paper is the End-Point Calculus that has been introduced by
Carbone et al. [3]. One of the reasons behind this choice is
that the end-point calculus is a modified version of the pi-
calculus, so its syntax is more familiar and its expressivity is
stronger.

The need of secure WS composition has led to a great
interest from researchers in the last decade. In this paper, we
propose an automated formal approach for the enforcement
of security policies on choreographed services. We take as
input a formal description of the behavior of a participant in
a choreography and a security property. We define rewriting
rules  for  adding  some  special  actions  to  processes  and
security  properties  in  order  to  ensure synchronization and
consequently  control  the  evolution  of  the  behavior  of  a
participant.

This  paper  is  structured  as  follows:  in  Section  II, we
introduce the choreography specification language used in
this  topic.  In Section III  we  present  the  security  property
specification  language.  Section  IV  deals  with  the
enforcement approach. The proof of this approach is given in
Section V. Related work is in Section VI and conclusion and
future work are in Section VII.

II. CHOREOGRAPHY SPECIFICATION LANGUAGE

Carbone et al. [3] have proposed a formal language for
specifying a choreography of WS. This language is the GC.
It describes behaviors of WS from a global viewpoint. GC is
distilled  from  WS-CDL.  Carbone  et  al.  [3]  have  also
proposed  a  second  formal  language:  the  EPC,  which
specifies behaviors of WS from a local viewpoint. Finally, a
projection under some assumptions from GC to EPC have
been proposed by Carbone et al. [3], which is called the End-
Point Projection (EPP). The language adapted in this paper
for formally specifying processes and security properties is
EPC.

A. Syntax of the End-Point Calculus

EPC  describes  the  behavior  of  each  participant  in  the
choreography from its end-point view. EPC is a variant of
the  pi-calculus  augmented  with  the notion of  participants
and their local states. We present hereafter the syntax and
formal semantics of EPC where  P,Q range over processes,
ch range  over  service  channels,  s range  over  session
channels,  opi range  over  operator  names,  x range  over
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variables,  e range over expressions and  X range over term
variables.

P : :=!ch( s̃). P∣ch(ν s̃). P∣ s▹Σi opi(xi). Pi

∣ s◃op(e) .P ∣ x :=e.P∣ P⊕Q∣ P∣Q
∣ if e then P else Q∣(ν s)P

∣ rec X.P∣0
• ! ch( s̃). P and  ch(ν s̃). P  represent  session

initiation.  ! ch( s̃). P  is  used  for  input  and
ch(ν s̃). P  for output.  ! ch( s̃). P  says that

the service channel ch, which is available to public,
is  ready  to  receive  an  unbounded  number  of
invocations,  offering  a  communication  via  its
freshly  generated  session  channels  s∈s̃.

ch(ν s̃). P  is an invocation of a service located
at  the  service  channel  ch and  an  initiation  of  a
communication  session  that  will  occur  through
session channels s∈s̃.  After a session has been
initiated  between  two  participants  and  freshly
generated  session  channels  have  been  shared
between  them,  they  can  communicate  via  these
channels using the communication constructs.

• s▹Σi opi(xi). Pi  is an offer of one of operators
opi  and a reception of an expression e through

the  session channel  s that  will  be  evaluated  and
stored in the local variable x. A participant having
this behavior will  receive an invocation of one of
its operator names opi  and an expression e. The
value of e is saved in its local variable x. 
For  instance,  a  seller  service  receives  a
confirmation  or  a  cancellation  for  a  purchase  :

s▹confirmPurchase(x1). P
+s▹cancelPurchase(x2).0

• s◃op(e) .P  sends the expression e and invokes
operator op through the session channel  s.  Indeed,
a  buyer  service  requests   a  quote  of  a  chosen
product  from  a  seller  through  the  channel  s:

s◃quoteRequest(eproduct). P  
In  addition,  operator  names  op1,op2,...  are
invoked  by  a  message  sender  or  offered  by  a
message  receiver.  Operator  names  in  in-session
communications  are  analogous  to  methods  in
objects [3].

• x :=e.P  is the assignment operator. It is a local
operation. It assigns the result of the evaluation of 
the expression e to the variable x. For example, the 
buyer assigns to its variable x the value of the 
quote received from the seller : xquote:=equote.P

• if e then P elseQ  is  a  choice  based  on  the
evaluation  of  the  boolean  expression  e.  For
example, the buyer accepts the quote if it is under
1000    

if equote<1000 then s◃accept(equote). P
elses◃reject(equote) .0

• P⊕Q is the non deterministic choice. When the
choice of the buyer is arbitrary, it would be written
as: s◃accept(equote). P⊕s◃reject(equote) .0

• P∣Q is  the  parallel  composition  of  processes.
For  example,  a  seller  that  offers  his  service  to
buyers should have his service running in parallel
for  new  requesters  ! chseller(s) .P∣P '∣P ' '∣...
where P',P'',... are processes dealing with different
buyers.

• (ν s)P expresses  the  fact  that  the  session
channel  s is  local  to  P. It  is  used  to  restrict  a
session  channel  to  be  used  between  only  two
participants that communicate through it.

• rec X.P is  the  recursion  operator  used  to
express  repetitive  behaviors.  For  example,  a
participant  having  the  following  behavior  will
always  request  quotes  until  he  receives  an

acceptation rec X.s◃quoteRequest(e) .
s▹accept.P⊕s▹ reject.X

.

• Finally, 0  is the inaction.
Processes are located within  participants.  Participants and
their  composition  are  called  Networks  (written  N,M,...),
whose grammar is given by:

N : :=A[P]σ∣ N∣M ∣ (ν s)N ∣ǫ .
For more details about the syntax of EPC, the reader can
refer to [3].

B. Semantics of the End-Point Calculus

In order to minimize the number of reduction rules, we
define ≡ as the least congruence generated from:

P∣0≡P
P∣Q≡Q∣P

(P∣Q)∣R≡P∣(Q∣R)
P⊕P≡P

P⊕Q≡Q⊕P
(P⊕Q)⊕R≡P⊕(Q⊕R)

(ν s)0≡0
(ν s1)(ν s2)P≡(ν s2)(ν s1)P

((ν s)P)∣Q≡(ν s)(P∣Q) (s∉ fn(Q))

A[P]σ≡A[Q]σ (P≡Q)
A[(ν s)P]σ≡(ν s)(A[P ]σ)

M∣ǫ≡M
M∣N≡N∣M

(M ∣N)∣L≡M ∣(N∣L)
(ν s)ǫ≡ǫ

(ν s1)(ν s2)M ≡(ν s2)(ν s1)M
((ν s)M )∣N≡(ν s)(M∣N ) (s∉ fn(N ))

The operational semantics of EPC are given in Figure 1.
• Init shows how two participants initiate a session by

sharing  new  freshly  generated  session  channels
s̃.   These  session  channels  are  restricted  to

participants  A and  B using  the  binding  operator
ν .
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• Comm  explains  how  a  communication  is
established  between  two  participants:  when  B
invokes the operator  opj , which is offered by
A, and sends the expression  e j , which will  be
evaluated to value  v at  A, then  A receives it  and
assigns v to its local variable x j .

• Assign  is  a  local  operation.  Assignment  rule
evaluates an expression e and assigns the result of
this evaluation to variable x in A, then A behaves as
P.

• IfThenElse evaluates the boolean expression e and
following the result  of  this  evaluation,  it  behaves
either as P1  or P2.

• Par  shows  the  behavior  of  two  concurrent
processes. 

• Sum shows the alternative choice behavior.
• Rec says  that  if  the process  P, within  which  we

replace  each  occurrence  of  X by  rec X.P ,
behaves as P' then rec X.P will behave as P'.

• Res restricts the use of session channels  s̃  to
the process P in A.

Finally, the following rule says we take the reductions up to
the structural rule:

M ≡M ' M ' →N ' N '≡N
M → N

Struct� NW

C. Example
We consider  a  simplified  version  of  a  travel  reservation
system. The scenario consists of three participants: a traveler,
a travel agent and an airline reservation system. The traveler
is planning for taking a trip. Once the traveler selects a trip,
he submits his choice to the travel agent. The travel agent
checks  for  seats  availability  within  the  airline  reservation
system and sends back either a trip cancel or a validation.
The traveler wants to reserve tickets for this trip by sending
payment  details  to the travel  agent.  The travel  agent  now
must verify one more time availability of seats. If the seats
are still available then the airline reservation system accepts
the payment details and sends back to the travel agent tickets
of the trip. The travel agent responds to the traveler either by
tickets of the trip or by canceling the reservation.
The behavior of the traveler is given in EPC by:

chTA(νs).s▹ack.s◃orderTrip(e1) .
s▹cancel.0⊕s▹available(x1) .s◃book(e2).

s▹cancelBook.0⊕s▹ tickets( x2).0
The traveler starts by opening a session with the travel agent
through the public service channel  chTA  and initiates a
communication channel s through which the communication
between the traveler and the travel agent will occur. Then,
the traveler receives through s an acknowledgment message

s▹ack .  After  that,  the  traveler  sends  an  order  trip
s◃orderTrip(e1)  with expression e1  which contains

details  about  the  chosen trip.  At  this  point,  there are two
scenarios:  the  traveler  either  receives  a  cancel  request

s▹cancel  when  there  are  no  available  seats,  or  an
available message s▹available(x1)  containing details of
the  trip.  In  this  case,  the  traveler  may  book  the  flight

s◃book(e2) .  Finally,  traveler  receives  tickets message
s▹ tickets(x2) if  the  transaction has  succeed,  otherwise

he will receive a cancelBook message .

The behavior of the travel agent is given by: 
! chTA(s) .s◃ack.s▹orderTrip(x1).

chA(ν s'). s '▹ack.s '◃checkSeat(e1).
s '▹noSeats.s◃cancel.0⊕

s'▹ seatsOK(x2) .s◃available(e2).s▹book(x3) .
s '◃ reserve(e3) .

s '▹ reserved( x4). s◃ tickets(e4) .0⊕
s '▹notReserved(x5). s◃cancelBook.0

The  travel  agent  offers  his  service  through  chTA  by
providing a communication channel s. Once his service is
invoked, he sends an acknowledgment message, receives an
order trip, then contacts the airline service through its public
service  channel  chA .  The communication between  the
airline service and the travel agent occurs through the session
channel  s' .  The travel agent looks for available seats

s'◃checkSeat(e1) . If there are no available seats then he
receives  noSeats message  s'▹noSeats  and he sends a
cancel message s◃cancel  to the traveler. Otherwise he
receives a seatsOK message s'▹ seatsOK(x2)  and sends
an  available message  s◃available(e2)  to the traveler.
After that, the travel agent receives a book message from the
traveler s▹book(x3)  and proceeds to  flight  reservation

s '◃ reserve(e3) . Depending  on  seats  availability,  he
receives either a confirmation message s'▹reserved(x4)
or  a  notReserved message s'▹notReserved(x5) .  In  the
first  case,  he  sends ticketss◃ tickets(e4) to  the  traveler
elsewhere he sends a book cancellation s◃cancelBook.
The behavior of the airline is given by:

! chA(s '). s '◃ack.s '▹checkSeat(x1).
if available( x1) thens '◃ seatsOk(e1).
s'▹ reserve(x2). if available(x2) then

s '◃ reserved(e2) .0 else
s '◃notReserved(e3) .0

elses'◃noSeats.0
The airline  service  offers  his  service  through  the  service
channel  chA . Once his service is invoked, he sends an
acknowledgment  message.  Then,  he  receives  a  checkSeat
request. Subject to availability, he responds with a seatsOK
or noSeats message. In the first case, he may receive a seat's
booking request s'▹ reserve(x2) . At this stage, the airline
service  checks  another  time  seats  availability  before
finalizing  the  process  by  either  sending  a  reserved

s'◃ reserved(e2) or s'◃notReserved(e3)
as notReserved message.

III. SECURITY POLICY SPECIFICATION LANGUAGE

In this Section, we introduce the Security Policy Calculus
(SPC),  a  formalism  used  for  describing  security  policies.
SPC is considered as a subset of EPC in the sense that it uses
only some operators of EPC. Indeed the operators that are
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used  in  SPC  are  communication  actions,  recursion,
indeterministic choice and no action. Security policies will
be represented by processes that will monitor the execution
of an another process from EPC.

A. Syntax

The syntax of SPC is given by:
φ : := s◃⊕opi .φi ∣ s▹Σopi .φi ∣φ1⊕φ2 ∣ rec X .φ ∣0

• The  construct  s◃⊕opi .φi  expresses  the  fact
that  invoking  one  of  operatorsopi through
session channel s is permitted by φ .

• Next  we  have s▹Σopi .φi ,  which  allows
reception of operators opi  through s.

• The  indeterministic  branching  is  given  by
φ1⊕φ2 .

• For  representing  repeated  behaviors,  we  use  the
recursion operator and

• finally, 0 denotes the lack of actions.

For  describing  security  properties,  we  need  usually to
express  the  prohibition  of  executing  some  actions.  In  our
case,  when  we  want  for  example  to  interdict  sending
operation op1  through  s we  would  write  this  security
property: φ=s◃⊕

i≠1
opi .0 ,  which says that we can invoke

anyone of  the  operators  opi unless op1 .  If  we  want
this  behavior  to  be  repeatedly  verified  we  would  write
φ=rec X.s◃⊕

i≠1
opi . X .  The semantics are the same as

for EPC since SPC is a subset of EPC.

Usually,  we  use  temporal  logics  for  describing  security
properties but when using the security  policy calculus we
also reach our goal of expressing any security property that
we  want  to enforce  on the behavior  of  a  WS.  Since  this
approach introduces a dynamic  verification of WS, so the

security  properties  that  we  verify  in  this  paper  are safety
properties and liveness properties without infinite behavior.
The  reason  behind  this  choice  is  that  some  liveness
properties can only be verified statically.

B. Shortcuts

For shortness, we will denote by ϕs  and ϕs  the
portions of a security  property that respectively allows all
input (output) interactions through s. So ϕs=s▹Σ opi (xi)
and ϕs=s◃⊕opi (ei ) .

C. Example

In the airline reservation system, it is assumed the travel
agent wants to be sure that his service does not send tickets
before  the  reception of  payment  details.  The travel agent
receives  payment  details  within  the  book  message

s▹book( x3)  and sends tickets within the tickets message
s◃ tickets(e4) .  So  we  want  to  ensure  that
s◃ tickets(e4) does  not  occur  before  s▹book( x3) .

The security property will be written as follows:

rec X.s◃ ⊕
opi≠ tickets

opi(ei). X⊕s▹ Σ
opi≠book

opi(xi). X

⊕ϕs ' . X⊕ϕs ' . X⊕s▹book(x).
(rec Y.ϕs.Y⊕ϕs .Y⊕ϕs ' .Y⊕ϕs ' .Y)

The security property is written using a recursion. The idea is
to put after each action different from  book and  tickets the
recursion variable X. Thus, the property will remain invariant
when  executing  these  actions.  It  will  evolve  only  by
executing the book message. In this recursion, one of these 4
blocks will be executed:

• s◃ ⊕
opi≠tickets

opi(ei). X :  it  prohibits  invoking

tickets operator through s, which is shared between
the  traveler  and  the  travel  agent.  Any  message
different from tickets can be sent.

Figure 1
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• s▹ Σ
opi≠book

opi (xi) . X :  this  block  prohibits  the

reception of  book operator invocation through the
session  channel  s.  Any  message  different  from
book can be received.

• ϕs' . X  and ϕs' . X : all actions are permitted
between the travel agent and the airline reservation
service. The channel  s' is a session channel shared
between the travel agent and the airline reservation
system.

• s▹book(x).rec Y.ϕs.Y⊕ϕs.Y⊕ϕs' .Y⊕ϕs' .Y
this  block  intercepts  the  invocation  of  the  book
operator within the travel agent and then we take
off the control on  tickets operator by allowing all
actions between the traveler and the traveler agent
through  s and  the  travel  agent  and  the  airline
reservation system through s' to be executed.

IV. ENFORCEMENT APPROACH

In  this  Section,  we  will  introduce  our  enforcement
approach using rewriting techniques. This approach consists
in adding some special actions to processes representing the
behavior of a WS and a security property in order to make
them synchronize on each interaction that will occur.

A. Communication Actions of EPC

Communication  actions  are  used  in  this  context  to
designate interactions of EPC. Interactions of EPC are given
by these two constructs: s◃op(e)  and s▹Σopi(xi).
They are distinguished by three criteria:

• session channel (s),
• operator name (opi ),

• and direction ( s◃  or s▹ ).
Indeed,  each interaction  in EPC occurs through  a session
channel that have been freshly generated and shared between
two participants. Within each interaction an operator is either
invoked  or  offered  depending  on  the  direction  of  the
interaction. For instance,  s◃op1(e)  is an invocation of
the  operator  op1  through  the  session  channel  s,

s'▹op2(x)  is  a  reception  of  an  invocation  of  the
operator  op2  on  the  session  channel  s'.
The goal  of  this  approach is  to  monitor  the  execution of
interactions  inside  a  choreography.  This  goal  will  be
achieved  by  controlling  the  execution  of  communication
actions of EPC.

B. Synchronization Actions

Synchronization actions are special actions that we add to
the  process  and  to  the  security  property  enforced  on this
process  in  order  to  ensure  the  interception  of  each
communication  action  by  the  monitor.  The  idea  of  using
synchronization actions to intercept actions is inspired from
[6].  So,  given  a  communication  action  s◃op(e)
(respectively  s▹Σopi(xi) ),  the  corresponding
synchronization  action  is  s◃op(e)  (respectively

s▹Σopi(xi) ).

C. Rewriting Processes

In order to achieve  our goal  that  consists  on enforcing a
security  property on the  behavior  of  a participant  A in  a
choreography,  we  need  to  rewrite  its  process  by  adding
synchronization  actions.  Informally,  we  will  add  before
each  communication  action  its  corresponding
synchronization action. Formal rules for rewriting a process
P of EPC are:

〈 ! ch(s̃) .P〉 := ! ch( s̃).〈P〉
〈ch(ν s̃) .P〉 := ch(ν s̃). 〈P〉
〈x :=e.P〉 := x :=e.〈P〉
〈P⊕Q〉 := 〈P〉⊕〈Q 〉
〈P∣Q〉 := 〈P〉∣〈Q〉

〈if e then P else Q〉 := if e then〈P〉 else〈Q 〉
〈 rec X.P〉 := rec X.〈P〉

〈s◃op(e). P〉 := s◃op(e). s◃op(e) . 〈P〉
〈s▹op(x). P〉 := s▹op(x) .s▹op(x).〈P〉

D. Rewriting Security Properties

Rewriting  the  security  property  consists  on  replacing
each  communication  action  by  its  synchronization  action.
Formal rules for rewriting security properties are:

〈s◃⊕opi .φi 〉 := s◃⊕opi . 〈φi 〉
〈s▹Σ opi .φi 〉 := s▹Σ opi .〈φ i〉

〈φ1⊕φ2〉 := 〈φ1〉⊕〈φ2〉
〈 rec X .φ〉 := rec X .〈φ 〉

E. Restriction Operator

In order to make the rewritten security property φ and
the  rewritten  process  P  synchronize, we  will  define  an
operator of EPC that we call the restriction operator and we
denote by  P∖φ . The role of this operator is to let the
process evolve normally when no communication actions is
willing to occur. Before a communication action will occur

P∖φ will intercept its synchronization action and verify
if  the  security  property  can  evolve  by  executing  this
synchronization action.  If  it  is the case then  P and  φ
execute this synchronization action.  Else  P will  block and
will  not execute any other actions. An another role of this
enforcement operator is that it  hides synchronizations of  P
and φ for the rest of the choreography. Thus, executions
of synchronization actions in EPC will be marked by τ
as silent actions. Thus our restriction operator does not affect
the evolution of P when no synchronization action is willing
to occur. P∖φ must ensure the synchronization of P and
φ  on only synchronization actions.

F. Normal Form of a Process

Every  process  representing  the  local  behavior  of  a
participant  in  a WS can be written as an internal  sum of
processes, which we call the normal form of a process:

P=⊕
i∈I

ai .Pi where ai  range over atomic actions, I is

a finite  subset  of  natural  numbers,  and  Pi  range over
processes.

Atomic  actions  of  EPC  are:  session  initiation  request
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( ch(ν s̃) ),  session  initiation  offer  ( ! ch( s̃) ),
communication input ( s▹op(x) ), communication output
( s◃op(e) ), assignment ( x :=e ) and synchronization
actions ( s▹op(x) , s◃op(e) ).

G. Simulation

We say that a process P can execute an action a and becomes
P' and we write P→

a
P' if, when we write P in its normal

form  ( P=⊕
i∈I

ai .Pi ),  there  exists  j∈ I  such  that

a j=a  and  P j≡P '  where ≡ is  the  structural
equality defined in the semantics of EPC.

H. Semantics

Reduction  rules  for  making  P∖φ progress  when
executing  synchronization  actions  are  given  by:

P →
s◃op(e)

P ' φ →
s◃op(e)

φ '
A[P∖φ]σ→

τ
A[P ' ∖φ ' ]σ

P →
s▹op(x )

P ' φ →
s▹op( x)

φ '
A[P∖φ]σ →

τ
A[P ' ∖φ ' ]σ

These rules say that each synchronization action of P will be
intercepted  by φ and  it  cannot  be  executed  ifφ
prohibits it. If the synchronization action can be executed by
φ then P becomes silently P' and φ becomes φ ' .

I. Example

Consider the airline reservation system case study. We will
enforce the security propertyφ defined in the precedent
example on the behavior P of the travel agent defined in the
first  example  of  this  paper.  The  rewritten  process  and
security property are:

P=!chTA(s). s◃ack. s◃ack.s▹orderTrip(x1).
s▹orderTrip(x1) .chA(νs ') .s '▹ack.s '▹ack.

s '◃checkSeat(e1) .s '◃checkSeat(e1).
(s '▹ noSeat. s '▹noSeat.s◃cancel.s◃cancel.0)

⊕ s '▹seatOk(x2) .s '▹seatOk(x2) .s◃available(e2).

s◃available(e2).s▹book(x3) .s▹book(x3) .

s '◃ reserve(e3) .s '◃ reserve(e3). s '▹ reserved(x4) .

s '▹ reserved( x4) .s◃ ticket(e4) .s◃ticket(e4) .0

⊕s '▹notReserved(x5) .s '▹notReserved(x5) .
s◃cancelBook.s◃cancelBook.0

φ=rec X.s◃ ⊕
opi≠ticket

opi (ei ). X⊕s▹ Σ
opi≠book

opi ( xi ) . X⊕

〈ϕs '〉 . X⊕〈ϕs '〉 . X⊕ s▹book(x). rec Y.〈ϕs〉 .Y⊕〈ϕs〉 .Y⊕
〈ϕs' 〉 .Y⊕〈ϕs' 〉 .Y

where 〈ϕs〉=s▹Σ
i
op(x) , 〈ϕs〉=s◃⊕

i
opi (ei)  and 

similarly for 〈ϕs ' 〉  and 〈ϕs ' 〉 .
TravelAgent[P∖φ]  will  use first Init  reduction rule to

open a parallel session then for each communication action,
it will  synchronize with  φ using the reduction rules of

P∖φ  and  then  communicates  using  communication
reduction  rules.  We  can  see  easily  that  this  process  P
satisfies the security property φ .

V. PROOF OF THE APPROACH

In this Section, we prove the correctness of our theory by
defining  first  a  partial  order  over  processes  and  the
satisfaction notion.

A. Definition (Subprocess)

Let P, Q be two processes. We say that P is a subprocess of
Q and we write P⊆Q if the following condition hold :

P→
a

P' ⇒ Q→
a

Q'   and P'⊆Q' .

B. Definition (Safe Action, Safe Trace)

A  trace  ξ of  EPC  is  a  sequence  of  atomic  actions
executed by a process. An atomic action is said to be safe if
it is not a synchronization action. A trace is said to be safe if
it contains only safe actions.

C. Definition (Progression of P)

We say that  a process  P can progress by executing some
safe actions and a synchronization action a and become Q,

and we write  P⇥
a

Q if it exists a safe trace  ξ and a

process P' such that P→
ξ

P'  and P' →
a

Q .

D. Definition (Satisfaction Notion)

We say that a process P satisfies a security property φ
and  we  write P≈φ if  for  all  synchronization  action  a

such that P⇥
a

P ' we have φ→
a
φ ' and P '≈φ ' .

E. Theorem

Let P be a process andφ a security property. The 
following properties hold :

• P∖φ⊆P ,

• P∖φ≈φ ,

• ∀P '≈φ , P '⊆P⇒P '⊆P∖φ .

F. Proof

• The proof is obtained directly from the reduction
rules  of  our  enforcement  operator  and  from  the
definition of ⊆ . Indeed P∖φ  is defined so
that it cannot execute any actions that  P does not
execute it.

• Let  a be  a  synchronization  action  such  that

P∖φ⇥
a

P '∖φ ' . It exists a safe trace ξ  such

that  P∖φ→
ξ

P ' ' ∖φ  and  P ' ' ∖φ→
a

P '∖φ ' .
But  executions  of  synchronization  actions  by

P ' ' ∖φ  are  given  by  In-Sync  and  Out-Sync

rules. Then we have necessarilyφ→
a
φ ' .

• Let  P' be a process satisfying a security property

φ such that P'⊆P . Suppose  P' →
a

P' ' .

As  P'⊆P  then  P→
a

Q .  If  a is  a
synchronization  action  then  from  the  hypothesis
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P '≈φ  we conclude that  φ→
a
φ '  and then

P∖φ→
a

Q∖φ ' .  If  a is  not  a  synchronization

action then P∖φ→
a

Q∖φ .

VI. RELATED WORK

Several  works  have  studied  the  correctness  and
conformance  of  composition  of  WS  to  security
requirements. 
A. Baouab et al. [7] show a run-time event-based approach
to  deal  with  the  problem  of  monitoring  conformance  of
interaction  sequences.  When  a  violation  is  detected,  the
program shows errors in dashboards. So the program does
not stop before the violation occurred. J. Simmonds et al.
[8]  formalize  sequence  diagrams  to  express  WS
conversations and security requirements and then translate
them  to  nondeterministic  finite  automata  and  generate
monitors  from NFA.  Their  WS conversation  is  extracted
from the definition of simple services and so they did not
consider the great number of WS conversations that will be
provided with the composition of WS. D. Dranidis et al. [9]
introduced an approach to verify the conformance of a WS
implementation against a behavioral specification,  through
the application of testing. The Stream X-machines are used
as  an  intuitive  modeling  formalism  for  constructing the
behavioral specification of a stateful WS and a method for
deriving test cases from that specification in an automated
way. The test generation method produces complete sets of
test cases that, under certain assumptions,
are  guaranteed  to  reveal  all  non-conformance  faults in  a
service implementation under test. However, this approach
only  returns  nonconformance  faults  and  does  not  react
dynamically against these errors. Furhtermore, L. Ardissono
et  al.  [10]  propose  a  monitoring  framework  of  a
choreographed service which supports the early detection of
faults and decide whether it is still possible to continue the
service.
R.  Gay  et  al.  [11]  have  proposed  service  automata  as  a
framework  for  enforcing  security  policies  in  distributed
systems.  They  encapsulate  the  program  in  a  service
automaton  composed  of  the  monitored  program,  an
interceptor, an enforcer, a coordinator and a local policy.
The interceptor intercepts critical actions and passes them to
the coordinator that determines whether the action complies
the  security  policy  or  not  and  decides  upon  possible
countermeasures  then  the  enforcer  implements  these
decisions. However the authors do not precise how to detect
critical  actions.  W.  She  et  al.  [13]  have  developped  an
innovative security-aware service composition protocol with
composition-time  information  flow  control,  which  can
reduce  the  execution-time  failure  rate  of  the  composed
composite  services  due  to  information  flow  control
violations. This approach only guarantees that there are no
access  control  violations  at  execution  time  but  do  not
guarantee  that  there  are  not  access  control  violations  at
runtime. Jose A. Martìn et al. [14] developed a framework

based on the partial model checking technique for statically
verifying  whether  a  composition  of  WS  satisfies
cryptographic properties such as secrecy and authenticity.

VII. CONCLUSION AND FUTURE WORK

The  goal  of  this  research  is  to  introduce  an  automated
formal approach for enforcing dynamically security policies
on a choreography of WS using the rewriting technique. We
used a formal language to express conversations of different
participants and to express also security requirements. Then,
we  have  shown  how  to  restrict  the  progression  of
participant's  behavior  in order to satisfy  security policies.
Future  work  is  concentrated  on  the  optimization  of  this
approach by reducing the number of synchronization actions
that have been added to processes. 
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