
Enforcing Security Policies on Choreographed Services using Rewriting Techniques

Karim Dahmani
karim.dahmani@fst.rnu.tn

Mahjoub Langar
mahjoub.langar@ift.ulaval.ca

LIP2 Research Laboratory
Faculté des Sciences de Tunis

Tunis, Tunisia

Abstract—This paper presents an automated formal approach
for enforcing security policies on a choreography of Web
Services. We take as input a formal description of a
choreography of web services and a security property
represented by a process, then we define some rewriting rules
and rewrite the two processes in order to make them
synchronize on each communication action. This approach
produces as output a secure version of the concerned web
service which behaves like the original one but does not violate
the security property.

Keywords-Web Service Composition Security;
Instrumentation; Choreography; Formal Verification; End-
Point Calculus.

I. INTRODUCTION

Web Services (WS) are distributed and modular
applications that communicate by message passing in order
to complete specific activities. Composition of WS consists
in combining different WS to provide value-added services.
WS composition rules deal with how different services are
composed into a coherent global service. In particular, they
specify the order in which services are invoked, and the
conditions under which a certain service may or may not be
invoked. Among the approaches investigated in service
composition, we distinguish orchestration and choreography.
The orchestration composes available services and adds a
central coordinator (the orchestrater) which is responsible for
invoking and composing the single sub-activities. However
the second one, referred to as WS choreography, does not
assume the exploitation of a central coordinator but rather
defines complex tasks via the definition of the conversation
that should be undertaken by each participant. Several
proposals exist for orchestration and choreography languages
such as Business Process Execution Language (BPEL) [1]
for orchestration and Web Service Choreography
Description Language (WS-CDL) [2] for choreography.
Since the orchestration technique uses a central coordinator
that composes the available services, it seems trivial to
enforce security policies. So the technique that will be used
in this paper for composing WS is the choreography. One of
the main challenges for researchers in this domain is the
formalization of these composition languages. Although,
several contributions have been developed in the last decade
that formalize WS-CDL such as the Global Calculus (GC)
and the End-Point Calculus (EPC) proposed by Carbone et
al. [3], the Choreography Language proposed by N. Busi et
al. [4], The Choreography Description Language proposed

by H. Yang et al. [12] and timed automata proposed by G.
Diaz et al. [5]. The formal specification language used in this
paper is the End-Point Calculus that has been introduced by
Carbone et al. [3]. One of the reasons behind this choice is
that the end-point calculus is a modified version of the pi-
calculus, so its syntax is more familiar and its expressivity is
stronger.

The need of secure WS composition has led to a great
interest from researchers in the last decade. In this paper, we
propose an automated formal approach for the enforcement
of security policies on choreographed services. We take as
input a formal description of the behavior of a participant in
a choreography and a security property. We define rewriting
rules for adding some special actions to processes and
security properties in order to ensure synchronization and
consequently control the evolution of the behavior of a
participant.

This paper is structured as follows: in Section II, we
introduce the choreography specification language used in
this topic. In Section III we present the security property
specification language. Section IV deals with the
enforcement approach. The proof of this approach is given in
Section V. Related work is in Section VI and conclusion and
future work are in Section VII.

II. CHOREOGRAPHY SPECIFICATION LANGUAGE

Carbone et al. [3] have proposed a formal language for
specifying a choreography of WS. This language is the GC.
It describes behaviors of WS from a global viewpoint. GC is
distilled from WS-CDL. Carbone et al. [3] have also
proposed a second formal language: the EPC, which
specifies behaviors of WS from a local viewpoint. Finally, a
projection under some assumptions from GC to EPC have
been proposed by Carbone et al. [3], which is called the End-
Point Projection (EPP). The language adapted in this paper
for formally specifying processes and security properties is
EPC.

A. Syntax of the End-Point Calculus

EPC describes the behavior of each participant in the
choreography from its end-point view. EPC is a variant of
the pi-calculus augmented with the notion of participants
and their local states. We present hereafter the syntax and
formal semantics of EPC where P,Q range over processes,
ch range over service channels, s range over session
channels, opi range over operator names, x range over

89Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

variables, e range over expressions and X range over term
variables.

P : :=!ch(s̃). P∣ch(ν s̃). P∣ s▹Σi opi(xi). Pi

∣ s◃op(e) .P ∣ x :=e.P∣ P⊕Q∣ P∣Q
∣ if e then P else Q∣(ν s)P

∣ rec X.P∣0
• ! ch(s̃). P and ch(ν s̃). P represent session

initiation. ! ch(s̃). P is used for input and
ch(ν s̃). P for output. ! ch(s̃). P says that

the service channel ch, which is available to public,
is ready to receive an unbounded number of
invocations, offering a communication via its
freshly generated session channels s∈s̃.

ch(ν s̃). P is an invocation of a service located
at the service channel ch and an initiation of a
communication session that will occur through
session channels s∈s̃. After a session has been
initiated between two participants and freshly
generated session channels have been shared
between them, they can communicate via these
channels using the communication constructs.

• s▹Σi opi(xi). Pi is an offer of one of operators
opi and a reception of an expression e through

the session channel s that will be evaluated and
stored in the local variable x. A participant having
this behavior will receive an invocation of one of
its operator names opi and an expression e. The
value of e is saved in its local variable x.
For instance, a seller service receives a
confirmation or a cancellation for a purchase :

s▹confirmPurchase(x1). P
+s▹cancelPurchase(x2).0

• s◃op(e) .P sends the expression e and invokes
operator op through the session channel s. Indeed,
a buyer service requests a quote of a chosen
product from a seller through the channel s:

s◃quoteRequest(eproduct). P
In addition, operator names op1,op2,... are
invoked by a message sender or offered by a
message receiver. Operator names in in-session
communications are analogous to methods in
objects [3].

• x :=e.P is the assignment operator. It is a local
operation. It assigns the result of the evaluation of
the expression e to the variable x. For example, the
buyer assigns to its variable x the value of the
quote received from the seller : xquote:=equote.P

• if e then P elseQ is a choice based on the
evaluation of the boolean expression e. For
example, the buyer accepts the quote if it is under
1000

if equote<1000 then s◃accept(equote). P
elses◃reject(equote) .0

• P⊕Q is the non deterministic choice. When the
choice of the buyer is arbitrary, it would be written
as: s◃accept(equote). P⊕s◃reject(equote) .0

• P∣Q is the parallel composition of processes.
For example, a seller that offers his service to
buyers should have his service running in parallel
for new requesters ! chseller(s) .P∣P '∣P ' '∣...
where P',P'',... are processes dealing with different
buyers.

• (ν s)P expresses the fact that the session
channel s is local to P. It is used to restrict a
session channel to be used between only two
participants that communicate through it.

• rec X.P is the recursion operator used to
express repetitive behaviors. For example, a
participant having the following behavior will
always request quotes until he receives an

acceptation rec X.s◃quoteRequest(e) .
s▹accept.P⊕s▹ reject.X

.

• Finally, 0 is the inaction.
Processes are located within participants. Participants and
their composition are called Networks (written N,M,...),
whose grammar is given by:

N : :=A[P]σ∣ N∣M ∣ (ν s)N ∣ǫ .
For more details about the syntax of EPC, the reader can
refer to [3].

B. Semantics of the End-Point Calculus

In order to minimize the number of reduction rules, we
define ≡ as the least congruence generated from:

P∣0≡P
P∣Q≡Q∣P

(P∣Q)∣R≡P∣(Q∣R)
P⊕P≡P

P⊕Q≡Q⊕P
(P⊕Q)⊕R≡P⊕(Q⊕R)

(ν s)0≡0
(ν s1)(ν s2)P≡(ν s2)(ν s1)P

((ν s)P)∣Q≡(ν s)(P∣Q) (s∉ fn(Q))

A[P]σ≡A[Q]σ (P≡Q)
A[(ν s)P]σ≡(ν s)(A[P]σ)

M∣ǫ≡M
M∣N≡N∣M

(M ∣N)∣L≡M ∣(N∣L)
(ν s)ǫ≡ǫ

(ν s1)(ν s2)M ≡(ν s2)(ν s1)M
((ν s)M)∣N≡(ν s)(M∣N) (s∉ fn(N))

The operational semantics of EPC are given in Figure 1.
• Init shows how two participants initiate a session by

sharing new freshly generated session channels
s̃. These session channels are restricted to

participants A and B using the binding operator
ν .

90Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

• Comm explains how a communication is
established between two participants: when B
invokes the operator opj , which is offered by
A, and sends the expression e j , which will be
evaluated to value v at A, then A receives it and
assigns v to its local variable x j .

• Assign is a local operation. Assignment rule
evaluates an expression e and assigns the result of
this evaluation to variable x in A, then A behaves as
P.

• IfThenElse evaluates the boolean expression e and
following the result of this evaluation, it behaves
either as P1 or P2.

• Par shows the behavior of two concurrent
processes.

• Sum shows the alternative choice behavior.
• Rec says that if the process P, within which we

replace each occurrence of X by rec X.P ,
behaves as P' then rec X.P will behave as P'.

• Res restricts the use of session channels s̃ to
the process P in A.

Finally, the following rule says we take the reductions up to
the structural rule:

M ≡M ' M ' →N ' N '≡N
M → N

Struct� NW

C. Example
We consider a simplified version of a travel reservation
system. The scenario consists of three participants: a traveler,
a travel agent and an airline reservation system. The traveler
is planning for taking a trip. Once the traveler selects a trip,
he submits his choice to the travel agent. The travel agent
checks for seats availability within the airline reservation
system and sends back either a trip cancel or a validation.
The traveler wants to reserve tickets for this trip by sending
payment details to the travel agent. The travel agent now
must verify one more time availability of seats. If the seats
are still available then the airline reservation system accepts
the payment details and sends back to the travel agent tickets
of the trip. The travel agent responds to the traveler either by
tickets of the trip or by canceling the reservation.
The behavior of the traveler is given in EPC by:

chTA(νs).s▹ack.s◃orderTrip(e1) .
s▹cancel.0⊕s▹available(x1) .s◃book(e2).

s▹cancelBook.0⊕s▹ tickets(x2).0
The traveler starts by opening a session with the travel agent
through the public service channel chTA and initiates a
communication channel s through which the communication
between the traveler and the travel agent will occur. Then,
the traveler receives through s an acknowledgment message

s▹ack . After that, the traveler sends an order trip
s◃orderTrip(e1) with expression e1 which contains

details about the chosen trip. At this point, there are two
scenarios: the traveler either receives a cancel request

s▹cancel when there are no available seats, or an
available message s▹available(x1) containing details of
the trip. In this case, the traveler may book the flight

s◃book(e2) . Finally, traveler receives tickets message
s▹ tickets(x2) if the transaction has succeed, otherwise

he will receive a cancelBook message .

The behavior of the travel agent is given by:
! chTA(s) .s◃ack.s▹orderTrip(x1).

chA(ν s'). s '▹ack.s '◃checkSeat(e1).
s '▹noSeats.s◃cancel.0⊕

s'▹ seatsOK(x2) .s◃available(e2).s▹book(x3) .
s '◃ reserve(e3) .

s '▹ reserved(x4). s◃ tickets(e4) .0⊕
s '▹notReserved(x5). s◃cancelBook.0

The travel agent offers his service through chTA by
providing a communication channel s. Once his service is
invoked, he sends an acknowledgment message, receives an
order trip, then contacts the airline service through its public
service channel chA . The communication between the
airline service and the travel agent occurs through the session
channel s' . The travel agent looks for available seats

s'◃checkSeat(e1) . If there are no available seats then he
receives noSeats message s'▹noSeats and he sends a
cancel message s◃cancel to the traveler. Otherwise he
receives a seatsOK message s'▹ seatsOK(x2) and sends
an available message s◃available(e2) to the traveler.
After that, the travel agent receives a book message from the
traveler s▹book(x3) and proceeds to flight reservation

s '◃ reserve(e3) . Depending on seats availability, he
receives either a confirmation message s'▹reserved(x4)
or a notReserved message s'▹notReserved(x5) . In the
first case, he sends ticketss◃ tickets(e4) to the traveler
elsewhere he sends a book cancellation s◃cancelBook.
The behavior of the airline is given by:

! chA(s '). s '◃ack.s '▹checkSeat(x1).
if available(x1) thens '◃ seatsOk(e1).
s'▹ reserve(x2). if available(x2) then

s '◃ reserved(e2) .0 else
s '◃notReserved(e3) .0

elses'◃noSeats.0
The airline service offers his service through the service
channel chA . Once his service is invoked, he sends an
acknowledgment message. Then, he receives a checkSeat
request. Subject to availability, he responds with a seatsOK
or noSeats message. In the first case, he may receive a seat's
booking request s'▹ reserve(x2) . At this stage, the airline
service checks another time seats availability before
finalizing the process by either sending a reserved

s'◃ reserved(e2) or s'◃notReserved(e3)
as notReserved message.

III. SECURITY POLICY SPECIFICATION LANGUAGE

In this Section, we introduce the Security Policy Calculus
(SPC), a formalism used for describing security policies.
SPC is considered as a subset of EPC in the sense that it uses
only some operators of EPC. Indeed the operators that are

91Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

used in SPC are communication actions, recursion,
indeterministic choice and no action. Security policies will
be represented by processes that will monitor the execution
of an another process from EPC.

A. Syntax

The syntax of SPC is given by:
φ : := s◃⊕opi .φi ∣ s▹Σopi .φi ∣φ1⊕φ2 ∣ rec X .φ ∣0

• The construct s◃⊕opi .φi expresses the fact
that invoking one of operatorsopi through
session channel s is permitted by φ .

• Next we have s▹Σopi .φi , which allows
reception of operators opi through s.

• The indeterministic branching is given by
φ1⊕φ2 .

• For representing repeated behaviors, we use the
recursion operator and

• finally, 0 denotes the lack of actions.

For describing security properties, we need usually to
express the prohibition of executing some actions. In our
case, when we want for example to interdict sending
operation op1 through s we would write this security
property: φ=s◃⊕

i≠1
opi .0 , which says that we can invoke

anyone of the operators opi unless op1 . If we want
this behavior to be repeatedly verified we would write
φ=rec X.s◃⊕

i≠1
opi . X . The semantics are the same as

for EPC since SPC is a subset of EPC.

Usually, we use temporal logics for describing security
properties but when using the security policy calculus we
also reach our goal of expressing any security property that
we want to enforce on the behavior of a WS. Since this
approach introduces a dynamic verification of WS, so the

security properties that we verify in this paper are safety
properties and liveness properties without infinite behavior.
The reason behind this choice is that some liveness
properties can only be verified statically.

B. Shortcuts

For shortness, we will denote by ϕs and ϕs the
portions of a security property that respectively allows all
input (output) interactions through s. So ϕs=s▹Σ opi (xi)
and ϕs=s◃⊕opi (ei) .

C. Example

In the airline reservation system, it is assumed the travel
agent wants to be sure that his service does not send tickets
before the reception of payment details. The travel agent
receives payment details within the book message

s▹book(x3) and sends tickets within the tickets message
s◃ tickets(e4) . So we want to ensure that
s◃ tickets(e4) does not occur before s▹book(x3) .

The security property will be written as follows:

rec X.s◃ ⊕
opi≠ tickets

opi(ei). X⊕s▹ Σ
opi≠book

opi(xi). X

⊕ϕs ' . X⊕ϕs ' . X⊕s▹book(x).
(rec Y.ϕs.Y⊕ϕs .Y⊕ϕs ' .Y⊕ϕs ' .Y)

The security property is written using a recursion. The idea is
to put after each action different from book and tickets the
recursion variable X. Thus, the property will remain invariant
when executing these actions. It will evolve only by
executing the book message. In this recursion, one of these 4
blocks will be executed:

• s◃ ⊕
opi≠tickets

opi(ei). X : it prohibits invoking

tickets operator through s, which is shared between
the traveler and the travel agent. Any message
different from tickets can be sent.

Figure 1

92Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

• s▹ Σ
opi≠book

opi (xi) . X : this block prohibits the

reception of book operator invocation through the
session channel s. Any message different from
book can be received.

• ϕs' . X and ϕs' . X : all actions are permitted
between the travel agent and the airline reservation
service. The channel s' is a session channel shared
between the travel agent and the airline reservation
system.

• s▹book(x).rec Y.ϕs.Y⊕ϕs.Y⊕ϕs' .Y⊕ϕs' .Y
this block intercepts the invocation of the book
operator within the travel agent and then we take
off the control on tickets operator by allowing all
actions between the traveler and the traveler agent
through s and the travel agent and the airline
reservation system through s' to be executed.

IV. ENFORCEMENT APPROACH

In this Section, we will introduce our enforcement
approach using rewriting techniques. This approach consists
in adding some special actions to processes representing the
behavior of a WS and a security property in order to make
them synchronize on each interaction that will occur.

A. Communication Actions of EPC

Communication actions are used in this context to
designate interactions of EPC. Interactions of EPC are given
by these two constructs: s◃op(e) and s▹Σopi(xi).
They are distinguished by three criteria:

• session channel (s),
• operator name (opi),

• and direction (s◃ or s▹).
Indeed, each interaction in EPC occurs through a session
channel that have been freshly generated and shared between
two participants. Within each interaction an operator is either
invoked or offered depending on the direction of the
interaction. For instance, s◃op1(e) is an invocation of
the operator op1 through the session channel s,

s'▹op2(x) is a reception of an invocation of the
operator op2 on the session channel s'.
The goal of this approach is to monitor the execution of
interactions inside a choreography. This goal will be
achieved by controlling the execution of communication
actions of EPC.

B. Synchronization Actions

Synchronization actions are special actions that we add to
the process and to the security property enforced on this
process in order to ensure the interception of each
communication action by the monitor. The idea of using
synchronization actions to intercept actions is inspired from
[6]. So, given a communication action s◃op(e)
(respectively s▹Σopi(xi)), the corresponding
synchronization action is s◃op(e) (respectively

s▹Σopi(xi)).

C. Rewriting Processes

In order to achieve our goal that consists on enforcing a
security property on the behavior of a participant A in a
choreography, we need to rewrite its process by adding
synchronization actions. Informally, we will add before
each communication action its corresponding
synchronization action. Formal rules for rewriting a process
P of EPC are:

〈 ! ch(s̃) .P〉 := ! ch(s̃).〈P〉
〈ch(ν s̃) .P〉 := ch(ν s̃). 〈P〉
〈x :=e.P〉 := x :=e.〈P〉
〈P⊕Q〉 := 〈P〉⊕〈Q 〉
〈P∣Q〉 := 〈P〉∣〈Q〉

〈if e then P else Q〉 := if e then〈P〉 else〈Q 〉
〈 rec X.P〉 := rec X.〈P〉

〈s◃op(e). P〉 := s◃op(e). s◃op(e) . 〈P〉
〈s▹op(x). P〉 := s▹op(x) .s▹op(x).〈P〉

D. Rewriting Security Properties

Rewriting the security property consists on replacing
each communication action by its synchronization action.
Formal rules for rewriting security properties are:

〈s◃⊕opi .φi 〉 := s◃⊕opi . 〈φi 〉
〈s▹Σ opi .φi 〉 := s▹Σ opi .〈φ i〉

〈φ1⊕φ2〉 := 〈φ1〉⊕〈φ2〉
〈 rec X .φ〉 := rec X .〈φ 〉

E. Restriction Operator

In order to make the rewritten security property φ and
the rewritten process P synchronize, we will define an
operator of EPC that we call the restriction operator and we
denote by P∖φ . The role of this operator is to let the
process evolve normally when no communication actions is
willing to occur. Before a communication action will occur

P∖φ will intercept its synchronization action and verify
if the security property can evolve by executing this
synchronization action. If it is the case then P and φ
execute this synchronization action. Else P will block and
will not execute any other actions. An another role of this
enforcement operator is that it hides synchronizations of P
and φ for the rest of the choreography. Thus, executions
of synchronization actions in EPC will be marked by τ
as silent actions. Thus our restriction operator does not affect
the evolution of P when no synchronization action is willing
to occur. P∖φ must ensure the synchronization of P and
φ on only synchronization actions.

F. Normal Form of a Process

Every process representing the local behavior of a
participant in a WS can be written as an internal sum of
processes, which we call the normal form of a process:

P=⊕
i∈I

ai .Pi where ai range over atomic actions, I is

a finite subset of natural numbers, and Pi range over
processes.

Atomic actions of EPC are: session initiation request

93Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

(ch(ν s̃)), session initiation offer (! ch(s̃)),
communication input (s▹op(x)), communication output
(s◃op(e)), assignment (x :=e) and synchronization
actions (s▹op(x) , s◃op(e)).

G. Simulation

We say that a process P can execute an action a and becomes
P' and we write P→

a
P' if, when we write P in its normal

form (P=⊕
i∈I

ai .Pi), there exists j∈ I such that

a j=a and P j≡P ' where ≡ is the structural
equality defined in the semantics of EPC.

H. Semantics

Reduction rules for making P∖φ progress when
executing synchronization actions are given by:

P →
s◃op(e)

P ' φ →
s◃op(e)

φ '
A[P∖φ]σ→

τ
A[P ' ∖φ ']σ

P →
s▹op(x)

P ' φ →
s▹op(x)

φ '
A[P∖φ]σ →

τ
A[P ' ∖φ ']σ

These rules say that each synchronization action of P will be
intercepted by φ and it cannot be executed ifφ
prohibits it. If the synchronization action can be executed by
φ then P becomes silently P' and φ becomes φ ' .

I. Example

Consider the airline reservation system case study. We will
enforce the security propertyφ defined in the precedent
example on the behavior P of the travel agent defined in the
first example of this paper. The rewritten process and
security property are:

P=!chTA(s). s◃ack. s◃ack.s▹orderTrip(x1).
s▹orderTrip(x1) .chA(νs ') .s '▹ack.s '▹ack.

s '◃checkSeat(e1) .s '◃checkSeat(e1).
(s '▹ noSeat. s '▹noSeat.s◃cancel.s◃cancel.0)

⊕ s '▹seatOk(x2) .s '▹seatOk(x2) .s◃available(e2).

s◃available(e2).s▹book(x3) .s▹book(x3) .

s '◃ reserve(e3) .s '◃ reserve(e3). s '▹ reserved(x4) .

s '▹ reserved(x4) .s◃ ticket(e4) .s◃ticket(e4) .0

⊕s '▹notReserved(x5) .s '▹notReserved(x5) .
s◃cancelBook.s◃cancelBook.0

φ=rec X.s◃ ⊕
opi≠ticket

opi (ei). X⊕s▹ Σ
opi≠book

opi (xi) . X⊕

〈ϕs '〉 . X⊕〈ϕs '〉 . X⊕ s▹book(x). rec Y.〈ϕs〉 .Y⊕〈ϕs〉 .Y⊕
〈ϕs' 〉 .Y⊕〈ϕs' 〉 .Y

where 〈ϕs〉=s▹Σ
i
op(x) , 〈ϕs〉=s◃⊕

i
opi (ei) and

similarly for 〈ϕs ' 〉 and 〈ϕs ' 〉 .
TravelAgent[P∖φ] will use first Init reduction rule to

open a parallel session then for each communication action,
it will synchronize with φ using the reduction rules of

P∖φ and then communicates using communication
reduction rules. We can see easily that this process P
satisfies the security property φ .

V. PROOF OF THE APPROACH

In this Section, we prove the correctness of our theory by
defining first a partial order over processes and the
satisfaction notion.

A. Definition (Subprocess)

Let P, Q be two processes. We say that P is a subprocess of
Q and we write P⊆Q if the following condition hold :

P→
a

P' ⇒ Q→
a

Q' and P'⊆Q' .

B. Definition (Safe Action, Safe Trace)

A trace ξ of EPC is a sequence of atomic actions
executed by a process. An atomic action is said to be safe if
it is not a synchronization action. A trace is said to be safe if
it contains only safe actions.

C. Definition (Progression of P)

We say that a process P can progress by executing some
safe actions and a synchronization action a and become Q,

and we write P⇥
a

Q if it exists a safe trace ξ and a

process P' such that P→
ξ

P' and P' →
a

Q .

D. Definition (Satisfaction Notion)

We say that a process P satisfies a security property φ
and we write P≈φ if for all synchronization action a

such that P⇥
a

P ' we have φ→
a
φ ' and P '≈φ ' .

E. Theorem

Let P be a process andφ a security property. The
following properties hold :

• P∖φ⊆P ,

• P∖φ≈φ ,

• ∀P '≈φ , P '⊆P⇒P '⊆P∖φ .

F. Proof

• The proof is obtained directly from the reduction
rules of our enforcement operator and from the
definition of ⊆ . Indeed P∖φ is defined so
that it cannot execute any actions that P does not
execute it.

• Let a be a synchronization action such that

P∖φ⇥
a

P '∖φ ' . It exists a safe trace ξ such

that P∖φ→
ξ

P ' ' ∖φ and P ' ' ∖φ→
a

P '∖φ ' .
But executions of synchronization actions by

P ' ' ∖φ are given by In-Sync and Out-Sync

rules. Then we have necessarilyφ→
a
φ ' .

• Let P' be a process satisfying a security property

φ such that P'⊆P . Suppose P' →
a

P' ' .

As P'⊆P then P→
a

Q . If a is a
synchronization action then from the hypothesis

94Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

P '≈φ we conclude that φ→
a
φ ' and then

P∖φ→
a

Q∖φ ' . If a is not a synchronization

action then P∖φ→
a

Q∖φ .

VI. RELATED WORK

Several works have studied the correctness and
conformance of composition of WS to security
requirements.
A. Baouab et al. [7] show a run-time event-based approach
to deal with the problem of monitoring conformance of
interaction sequences. When a violation is detected, the
program shows errors in dashboards. So the program does
not stop before the violation occurred. J. Simmonds et al.
[8] formalize sequence diagrams to express WS
conversations and security requirements and then translate
them to nondeterministic finite automata and generate
monitors from NFA. Their WS conversation is extracted
from the definition of simple services and so they did not
consider the great number of WS conversations that will be
provided with the composition of WS. D. Dranidis et al. [9]
introduced an approach to verify the conformance of a WS
implementation against a behavioral specification, through
the application of testing. The Stream X-machines are used
as an intuitive modeling formalism for constructing the
behavioral specification of a stateful WS and a method for
deriving test cases from that specification in an automated
way. The test generation method produces complete sets of
test cases that, under certain assumptions,
are guaranteed to reveal all non-conformance faults in a
service implementation under test. However, this approach
only returns nonconformance faults and does not react
dynamically against these errors. Furhtermore, L. Ardissono
et al. [10] propose a monitoring framework of a
choreographed service which supports the early detection of
faults and decide whether it is still possible to continue the
service.
R. Gay et al. [11] have proposed service automata as a
framework for enforcing security policies in distributed
systems. They encapsulate the program in a service
automaton composed of the monitored program, an
interceptor, an enforcer, a coordinator and a local policy.
The interceptor intercepts critical actions and passes them to
the coordinator that determines whether the action complies
the security policy or not and decides upon possible
countermeasures then the enforcer implements these
decisions. However the authors do not precise how to detect
critical actions. W. She et al. [13] have developped an
innovative security-aware service composition protocol with
composition-time information flow control, which can
reduce the execution-time failure rate of the composed
composite services due to information flow control
violations. This approach only guarantees that there are no
access control violations at execution time but do not
guarantee that there are not access control violations at
runtime. Jose A. Martìn et al. [14] developed a framework

based on the partial model checking technique for statically
verifying whether a composition of WS satisfies
cryptographic properties such as secrecy and authenticity.

VII. CONCLUSION AND FUTURE WORK

The goal of this research is to introduce an automated
formal approach for enforcing dynamically security policies
on a choreography of WS using the rewriting technique. We
used a formal language to express conversations of different
participants and to express also security requirements. Then,
we have shown how to restrict the progression of
participant's behavior in order to satisfy security policies.
Future work is concentrated on the optimization of this
approach by reducing the number of synchronization actions
that have been added to processes.

REFERENCES

[1] I. Corporation, “Business process execution language for web
services bpel-4ws,” http://www.ibm.com/developerworks/library/ws-
bpel/, 2002.

[2] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon,
“Web services choreography description language version 1.0,” W3C
Working Draft, December 2004.

[3] M. Carbone, K. Honda, and N. Yoshida, “Theoretical aspects of
communication-centred programming,” Electr. Notes Theor. Comput.
Sci., vol. 209, 2008., pp. 125–133.

[4] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro, “Towards
a formal framework for choreography,” in WETICE, 2005, pp. 107–
112.

[5] G. D´ıaz, J. J. Pardo, M.-E. Cambronero, V. Valero, and F. Cuartero,
“Automatic translation of ws-cdl choreographies to timed automata,”
in EPEW/WS-FM, pp. 230–242, 2005.

[6] M. Langar, M. Mejri, and K. Adi, “Formal enforcement of security
policies on concurrent systems,” J. Symb. Comput., vol. 46, no. 9, pp.
997–1016, 2011.

[7] A. Baouab, O. Perrin, and C. Godart, “An optimized derivation of
event queries to monitor choreography violations,” in ICSOC, 2012,
pp. 222– 236.

[8] J. Simmonds et al., “Runtime monitoring of web service
conversations,” IEEE T. Services Computing, vol. 2, no. 3, 2009, pp.
223–244.

[9] D. Dranidis, E. Ramollari, and D. Kourtesis, “Run-time verification
of behavioural conformance for conversational web services,” in
ECOWS, 2009, pp. 139–147.

[10] L. Ardissono, R. Furnari, A. Goy, G. Petrone, and M. Segnan,
“Monitoring choreographed services,” in Innovations and Advanced
Techniques in Computer and Information Sciences and Engineering,
2007, pp. 283– 288.

[11] R. Gay, H. Mantel, and B. Sprick, “Service automata,” in Formal
Aspects in Security and Trust, 2011, pp. 148–163.

[12] H. Yang, X. Zhao, Z. Qiu, G. Pu, and S. Wang, “A formal model for
web service choreography description language (WS-CDL),” in 2006
IEEE International Conference on Web Services (ICWS 2006),
September 2006, 18-22. Chicago, Illinois, USA, 2006, pp. 893–894.

[13] W. She, I. Yen, B. M. Thuraisingham, and E. Bertino, “Security-
aware service composition with fine-grained information flow
control,” IEEE T. Services Computing, vol. 6, no. 3, pp. 330–343,
2013.

[14] J. A. Mart´ın, F. Martinelli, I. Matteucci, E. Pimentel, and M.
Turuani, “On the synthesis of secure services composition,” in
Engineering Secure Future Internet Services and Systems - Current
Research, 2014, pp. 140– 159.

95Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

