
DeadDrop-in-a-Flash: Information Hiding at SSD NAND Flash Memory

Physical Layer

Avinash Srinivasan and Jie Wu
Temple University

Computer and Information Sciences
Philadelphia, USA

Email: [avinash, jiewu]@temple.edu

Panneer Santhalingam and Jeffrey Zamanski
George Mason University

Volgenau School of Engineering
Fairfax, USA

Email: [psanthal, jzamansk]@gmu.edu

Abstract—The research presented in this paper, to
the best of our knowledge, is the first attempt at
information hiding (IH) at the physical layer of a Solid
State Drive (SSD) NAND flash memory. SSDs, like
HDDs, require a mapping between the Logical Block
Addressing (LB) and physical media. However, the
mapping on SSDs is significantly more complex and is
handled by the Flash Translation Layer (FTL). FTL
is implemented via a proprietary firmware and serves
to both protect the NAND chips from physical access
as well as mediate the data exchange between the
logical and the physical disk. On the other hand, the
Operating System (OS), as well as the users of the SSD
have just the logical view and cannot bypass the FTL
implemented by a proprietary firmware. Our proposed
IH framework, which requires physical access to NAND
registers, can withstand any modifications to the logical
drive, which is accessible by the OS as well as users.
Our framework can also withstand firmware updates
and is 100% imperceptible in the overt-channels. Most
importantly, security applications such as anti-virus,
cannot detect information hidden using our framework
since they lack physical access to the NAND registers.
We have evaluated the performance of our framework
through implementation of a working prototype, by
leveraging the OpenSSD project, on a reference SSD.

Keywords—Anti-forensics; Covert Communication;
Information Hiding; Security; Solid State Drives.

I. Introduction
With IH, a majority of the research has primarily fo-

cused on steganography, the concept of hiding information
in innocuous existing files. There has also been consider-
able research on hiding information within file systems.
The advent of SSDs, among other things, has also created
new attack vectors from the view point of IH. However,
little research exists in regards to IH on SSDs. From an IH
view point, the combination of simplicity, standardization,
and ubiquity of the traditional Hard Disk Drive (HDD)
poses a major challenge. The lack of complex abstraction
between physical and logical drive, detailed information
on the structure of almost all file systems in use, along
with open source tools enabling physical access to HDDs as
well as analyzing and recovering both deleted and hidden
data makes IH on the HDDs futile. This can be noted
from the file system-based IH technique proposed in [1],
which utilizes fake bad blocks. Although, this sounds like
a generic solution since it is specific to file systems and is
independent of storage media. In reality, since the mapping

of logical blocks to physical flash memory is controlled by
the FTL on SSDs, this cannot be used for IH on SSDs. Our
proposed solution is 100% filesystem and OS-independent,
providing a lot of flexibility in implementation. Note that
throughout this paper, the term “physical layer” refers
to the physical NAND flash memory of the SSD, and
readers should not confuse it with the Open Systems
Interconnection (OSI) model physical layer.

Traditional HDDs, since their advent more than 50
years ago, have had the least advancement among storage
hardware, excluding their storage densities. Meanwhile,
the latency-gap between Random Access Memory (RAM)
and HDD has continued to grow, leading to an ever-
increasing demand for high-capacity, low-latency storage
to which the answer was SSDs. While flash memory has
served this purpose for many years in specialized commer-
cial and military applications, its cost has only recently
decreased to the point where flash memory-based SSDs are
replacing the traditional HDDs in consumer class Personal
Computers (PCs) and laptops. Our proposed framework
can operate under two different scenarios – 1) A user hides
information strictly for personal use; 2) A group of users
collude with the SSD as the DeadDrop [2], and any user
can hide a secret message which can later be retrieved by
another user, with the appropriate map-file.

In contrast to traditional HDDs, SSDs introduce signif-
icant complexities [3] including: 1) An inability to support
in-place data modification; 2) Incongruity between the
sizes of a “programmable page” and an “erasable block” ;
3) Susceptibility to data disturbances; and 4) Imposing
an upper bound on their longevity due to progressive wear
and/or degradation of flash cells. While these complexities
are inevitable to provide the expected performance and
longevity from SSDs, they also pair well with the notion of
IH. These complexities, if exploited effectively, can provide
highly secure and robust IH.

Another technique, as noted by Wee [1], is similar to our
proposed data hiding methodology, and is to provide the
file system with a list of false bad clusters. Subsequently,
the file system discounts these blocks when hiding new
data, and as such, can be safely used for IH. Nonetheless,
in all of the aforementioned techniques, the entire HDD
can be easily read and analyzed for the existence of hidden
information using both open source and commercial tools.
However, SSDs as such have posed to be the biggest hurdle
faced by the digital forensics community [4][5]. Hence,

68Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

our proposed approach is very robust to detection and/or
destruction, depending on the motive of the user.

A. Assumptions and Threat Model
We assume that there is a key exchange protocol as well

as a Public Key Infrastructure (PKI) in place and known to
all participants including the adversary. Figure 1 captures
the basic idea of our IH framework. Alice and Bob are two
users, who wish to exchange secret messages in presence of
the adversary Eve. With our proposed framework, shown
in Figure 1, they can securely exchange secret messages
using the SSD as the DeadDrop. Additionally, they need
to exchange the corresponding map-file generated during
the hiding process. While several different approaches exist
that can be used during the above steps, we employ the
very popular PKI approach in our discussions. The tools
for hiding and retrieving secret messages on the SSD are
available to both Alice and Bob. If Eve wishes to extract
the secret message from the SSD, then she will need both
of these – the tool for retrieving the secret message and
the corresponding map-file. While obtaining the tool is
very hard, it cannot be completely disregarded. On the
other hand, obtaining the map-file can be safely ruled
out, particularly owing to the strong security properties
of the underlying PKI system that strengthens session
initiation with end user authentication with the help of
digital certificates. If Eve, somehow, gets access to the SSD
physically, she might try the following attacks. We discuss
our defense mechanisms to these attacks in section VI-A.
Attack-1: Get a complete logical image of the drive using
any available disk imaging tool.
Attack-2: Try to destroy the drive by erasing it.
Attack-3: Get a physical image of the entire drive.
Attack-4: Launch a Man-in-the-Middle attack to sniff the
map-file, and subsequently apply it to the drive.

For any IH scheme to be effective, below are the two key
features expected to be satisfied: 1) Confidentiality of the
hidden message; and 2) Integrity of the hidden message.
Most importantly, a very critical feature for an effective
IH scheme is that it should conceal the very fact that a
secret message is hidden. Our proposed framework indeed
achieves all of the above three properties. We use Elliptic
Curve Cryptography (ECC) algorithms for encryption,
decryption, digital signatures, and for key exchange. ECC
algorithms are chosen because of the strong cryptographic
properties they meet with small keys sizes. As noted by
Rebahi et al. [6], a 160-bit ECC key provides equivalent
security to RSA with 1024-bit keys.

Our proposed “Hide-in-a-Flash” IH framework for
SSDs differs from existing techniques proposed for tradi-
tional HDDs in several key aspects that have been dis-
cussed throughout this paper. However, we have identified
ones that are pivotal to our research and present them in
our list of contributions below and in Section III-A.

B. Our Contributions
Our contributions, at the time of this writing and to

the best of our knowledge, can be summarized as follows:

Fig. 1. Hide-in-a-Flash Threat Model.

• This is the first attempt at IH on SSDs at the
NAND flash memory physical layer. We have suc-
cessfully implemented our secure IH technique on
the reference OCZ Vertex Series SATA II 2.5”
SSD. The algorithms used in our framework are
wear leveling compliant and do not impact the
SSD’s longevity. Additionally, our implementation
of the framework does not affect data integrity and
performance of the SSD.

• We have adapted the code from the OpenSSD
project to bypass the FTL with Barefoot Con-
troller firmware, which otherwise completely pre-
vents access to physical flash memory.

• The proposed IH framework is very robust and
secure – it can be implemented to be 100% un-
detectable without prior knowledge of its use, and
100% resistant to manufacturer’s updates includ-
ing destructive SSD firmware updates that com-
pletely thwart the proposed IH framework. Most
importantly, it is 100% transparent to the user,
the OS, and even the FTL.

• Our approach hides information within “false bad
blocks” tracked by the FTL in its bad blocks list,
thereby preventing any operations on those blocks
and making it resistant to updates or overwriting.

• Our framework does not exploit the filesystem’s
data structure to hide information nor does it hide
data in various slack spaces and unallocated space
of a drive [7]. Consequently, it does not break the
information to be hidden into bits and pieces.

• We have successfully identified functionalities of
firmware which are not part of Open-SSDs doc-
umentation through firmware reverse engineering.
We are working toward making it publicly available
through the OpenSSD project website, so that
others can continue their research using our infor-
mation as the baseline.

• Finally, we have designed a tool, by leveraging
OpenSSD framework, which can get a physical
image of an SSD (with Barefoot flash controller)
which we have tested during our evaluations. How-
ever, a few minor firmware functionalities are yet
to be built into this tool.

69Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

C. Road Map
The remainder of this paper is organized as follows. We

begin with a review of relevant related works in Section II.
In Section III, we provide a background discussion on
SSDs, specifically focusing on their departure from tra-
ditional HDDs. We also discuss the OpenSSD platform in
this section. Section IV investigates various design choices
we had to make in designing our system. Later, Section V
presents details of the proposed IH framework followed by
evaluations methods used and an analysis of the results in
Section VI. Finally, in Section VII, we conclude this paper.

II. Related Work
All existing work on IH are proposed for HDDs and

nothing specific to SSDs. Those that are for HDDs, the
notable ones revolve around hiding information within
existing file systems within slack space and unallocated
space. Verhasselt [8] examines the basics of these tech-
niques. Another technique, as noted in [1], is similar to our
proposed data hiding methodology, and is to provide the
file system with a list of false bad clusters. Subsequently,
the file system discounts these blocks when hiding new
data, and as such can be safely used for IH. Nonetheless,
in all of the aforementioned techniques, the entire HDD
can be easily read and analyzed for the existence of hidden
information using both open source and commercial tools.
However, SSDs as such have posed to be the biggest hurdle
faced by the digital forensics community [4][5]. Hence,
our proposed approach is very robust to detection and/or
destruction, depending on the motive of the user.

According to McDonald and Kuhn [9], cryptographic
file systems provide little protection against legal or illegal
instruments that force data owners to release decryption
keys once the presence of encrypted data has been estab-
lished. Therefore, they propose StegFS, a steganographic
file system, which hides encrypted data inside unused
blocks of a Linux ext2 file system.

RuneFS [10] hides files in blocks that are assigned to
bad blocks inode, which happens to be inode 1 on ext2.
Forensic programs are not specifically designed to look at
bad blocks inode. Newer versions of RuneFS also encrypt
files before hiding them, making it a twofold problem. On
the other hand, FragFS [11] hides data within Master
File Table (MFT) of an New Technology File System
(NTFS) volume. It scans the MFT table for suitable entries
that have not been modified within the last year. It then
calculates how much free space is available and divides it
into 16-byte chunks for hiding data.

Khan et. al. [12] have applied steganography to hard
drives. Their technique overrides the disk controller chip
and positions the clusters according to a code, without
which, hidden information cannot be read. In [13], authors
propose a new file system vulnerability, DupeFile, which
can be exploited for IH. The proposed approach hides
data in plain sight in the logical disk by simply renaming
malicious files with the same name as that of an existing
good file. Since the renaming is done at the raw disk level,
the OS does not complain to the end user of such file
hiding. In another IH method, in [14], authors propose
information hiding in file slack space. This technique,
called HideInside, splits a given files into chunks, encrypts

them, and randomly hides them in the slack space of differ
files. The proposed technique also generates a map-file
that resides on a removable media, which will be used for
retrieval and reconstruction of the randomly distributed
encrypted chunks.

In [15], Nisbet et al. analyze the usage of TRIM as
an Anti-Forensics measure on SSDs. They have conducted
experiments on different SSDs running different operating
systems, with different file systems to test the effectiveness
of data recovery in TRIM enabled SSDs. Based on their
experiments it can be concluded that, with TRIM enabled,
Forensic Investigators will be able to recover the deleted
data only for a few minutes from the time TRIM was
issued.

Wang et. al. [16] have successfully hidden and recovered
data from flash chips. Here, authors use the term “flash
chips” to refer to removable storage devices like USB flash
drives. They use variation in the program time of a group
of bits to determine if a given bit is a 0 or a 1. They
convert the data to be hidden into bits, and determine
the blocks required. Authors have come up with a method
to program a group of bits overcoming default page-
level programming. While their method is quite robust,
it suffers from a significant downside, which is the amount
of information that could be hidden. Their method can
hide up to 64 MB of data on a 32 GB flash drive, while
our proposed IH can hide up to 2 GB of information on a
32 GB SSD, which is an increase in hiding capacity of the
channel, by a factor of 16.

III. SSD Background
In contrast to the mechanical nature of the traditional

HDDs, an SSD is more than just a circuit board contain-
ing numerous flash memory packages and a controller to
facilitate the interface between the OS and the physical
flash memory. SSDs may utilize either the NOR flash or
the NAND flash memory. As the latter is relatively cheap
it is highly used for consumer SSDs.

A. Salient Features
Below is a list of salient features of SSDs:

1. Flash Memory: At the lowest level, each flash mem-
ory package contains thousands of cells, each capable of
holding one or more bits. While read and write operations
on a cell are relatively fast, physical limitations imposed
by the storage medium necessitate cell erasure before
overwriting it with new information. Flash memory cells
are logically grouped into pages. A page is the basic unit
of reading and writing. Pages are grouped into blocks,
which is the basic unit of erasure. Blocks are grouped into
dies, and dies are grouped into flash memory packages, aka
banks. Within a SSD, multiple flash memory packages are
grouped to provide the total capacity of the drive.

2. Flash Translation Layer (FTL): In order to manage
the complexities of the physical layout, optimize the use
and endurance of the flash memory, and provide the
OS with the traditional block device interface of storage
devices, SSDs contain a controller which implements an
additional layer of abstraction beyond traditional HDDs

70Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

TABLE I. REFERENCE SSD OCZ VERTEX SPECIFICATION

Total number of banks 8 Dies per Bank 2
Blocks per Die 4096 Pages per Block 128

Cell Type 2-level cells Cells per Page 17, 256
Bits per Cell 34, 512 Total Size 32 GB

Advertised capacity 30 GB Over-provisioning 2 GB

known as the FTL. Below are the three fundamental op-
erations of the FTL – 1) logical to physical block mapping;
2) garbage collection; and 3) wear leveling.

3. Pages Size, Spare Bytes & Error Correction: Tra-
ditional HDDs implement storage based on a predefined
allocation unit called a sector, which is a power of two.
To facilitate the mapping of logical blocks to physical
flash memory, the flash memory is manufactured with
page sizes also being powers of two. However, since flash
memory is susceptible to data disturbances caused by
neighboring cells, it is critical for the FTL to implement
an error correction mechanism. To accommodate the stor-
age requirements of the Error Correction Code (ECC),
the flash memory is manufactured with additional spare
bytes, in which FTL can store the ECC. For instance, a
flash memory page may consist of 8192 bytes with 448
additional bytes reserved for ECC.

4. Bad Blocks: Due to the physical characteristics of the
flash memory as well as cell degradation over time, flash
memory packages may ship with blocks that are incapable
of reliably storing data, even with an ECC employed.
These blocks are tested at the factory and marked in a
specific location within the block to identify them as initial
bad blocks. During SSD manufacturing, the flash memory
is scanned for bad block markings and an initial bad block
list is stored for use by the FTL. Beyond this initial list of
bad blocks, the FTL must keep the list updated with the
inclusion of newly identified bad blocks at runtime.

5. Over-Provisioning: Write amplification, a serious
concern with SSDs, is an inevitable circumstance where the
actual amount of physical information written is greater
than the amount of logical information requested to be
written. On SSDs, this occurs for several reasons, including
but not limited to: need for ECC storage, garbage col-
lection, and random writes to logical blocks. In order to
maintain responsiveness when the drive is near capacity
and longevity when flash memory cells begin to fail, SSDs
may be manufactured with more flash memory than they
are advertised with, a concept known as over-provisioning.
For example, an SSD containing 128GB of flash memory
may be advertised as 100GB, 120GB, or with 28%, 6.67%,
or 0% over-provisioning, respectively.

B. OpenSSD
The OpenSSD Project [17] was created by

Sungkyunkwan University in Suwon, South Korea in
collaboration with Indilinx, to promote research and
education on SSD technology. This project provides
the firmware source code for the Indilinx Barefoot
Controller used by several commercial SSD manufacturers
including OCZ, Corsair, Mushkin, and Runcore IV. The

firmware code provided in this project is an open source
implementation, and a version of research implementation
of a complete SSD known as Jasmine Board, is available
for purchase.

Table I summarizes the specifications of the reference
SSD. During the course of our research, we learned that the
Jasmine Board uses the same Indilinx Barefoot controller
firmware as our reference SSD, which is an OCZ Vertex
Series SATA II. We also learned that the firmware instal-
lation method used by the OCZ Vertex SSD. Furthermore,
the Jasmine Board involved setting of a jumper on the
SSD, to enable a factory or engineering mode. Upon
setting the jumper on the reference SSD and compiling
and running the firmware installation program adapted
from the OpenSSD Project, we were able to connect to
the SSD in factory mode with physical access to NAND
flash memory chips, bypassing the FTL.

IV. Framework Design Choices
We have successfully identified the following critical

pieces of information from the OpenSSD code about
firmware functionalities through reverse engineering, in-
formation which was otherwise not available on OpenSSD
documentation:
• Block-0 of each flash memory package is erased

and programmed during the firmware installation
process.

• First page of block-0 contains an initial bad block
list before the firmware installation, which will be
read by the installer, erased along with the remain-
der of block-0, and programmed with identical
information as part of the installation process.

• In addition to page-0, a minimal set of metadata
such as the firmware version and image size is pro-
gramed into pages-1 through 3, and the firmware
image itself is programmed into sequential pages
starting with page-4.

Based on our analysis of the firmware, we came up with
the following storage covert channels that can be used in
designing our IH framework.

1) Manipulating the FTL data structure: We consid-
ered the possibility of modifying the firmware and
utilizing it for IH. One possibility was to redesign
the wear leveling algorithm such that some blocks
will never be considered for allocation.

2) Utilizing the spare bytes: All spare bytes available
per page are not completely used. Some of the
spare bytes are used for storing ECC. Thus the
remaining spare bytes can be used for IH.

3) Using the blank pages in block zero: Only a few
pages of block zero were used during firmware
installation; the remaining were free for IH.

4) Manipulating the initial bad block list: By inserting
new bad blocks in the bad block list in block zero,
and using them for IH.

With due diligence, we decided against the first three
methods because OpenSSD’s implementation is a stripped
down version of the actual firmware. This means, the
full-blown version of the firmware could easily overwrite

71Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

Fig. 2. Flow chart illustrating the initial system design.

any modifications we make to the FTL data structure.
Therefore, the first method is not very useful. Though the
unused spare bytes can be used, it was uncertain whether
or not the firmware would use them during the life of the
SSD. Hence, the second method was decided against. As
with the blank pages on block 0, they did not provide much
room for hiding information because of which third method
was ruled out. Finally, we had narrowed down our choice to
one stable and robust method – manipulation of the initial
bad block list, details of which follow in the next section.

V. Information Hiding Framework
A. Process Overview

Scenario: Alice and Bob could be friends or total
strangers communicating over an insecure channel. Their
goal is to exchange secret messages over the insecure
channel in the presence of Eve, the adversary. As noted
in Section I-A, we will not discuss the details of key
negotiation as plenty of known works exist on this subject.
For simplicity, we assume the use of PKI in our discussions.
Step-1: Alice has the secret message Msec she wishes to
share with Bob.
Step-2: She generates a random session key KAlice

rand that
she inputs to the Hiding Algorithm along with Msec.
Step-3: Msec is encrypted with KAlice

rand generating the
following message:

E[Msec]KAlice
rand

(1)

This message is then written into fake bad blocks.
Simultaneously, a map-file Fmap is generated. The purpose
of Fmap is identifying blocks holding the secret message.
Step-4: Alice then encrypts Fmap and KAlice

rand with her
private key KAlice

prv generating the following message. This
is necessary to provide Bob with a message integrity
verification service.

Mverify
sec = E[Fmap||KAlice

rand]KAlice
prv

(2)

She then encrypts the Mverify
sec message with Bob’s

public key KBob
pub , generating the following message.

conf Mverify
sec = E[(Fmap)||(KAlice

rand)]KBob
pub

(3)

1: file⇐ user input secret message
2: blocksRequired = sizeOf(file)

sizeOf(block)
3: leastBadBlockBank = 0
4: for i = 0 to bank.count do
5: if (i.badBlocksEraseCount <
6: leastBadBlockBank.badBlocksEraseCount)

then
7: leastBadBlockBank = i
8: end if
9: end for

10: while (leastBadBlockBank.blocksinbadBlockList)
&&

11: (leastBadBlockBank.blocks.metadata==keyword)
&&

12: (count < blocksRequired) do
13: newBadBlock.count = leastBadBlockBank.block;
14: count + +
15: end while
16: Payload = Encrypt(metadata, file)
17: payload.Write()
18: newKey = encode(leastBadBlockBank, newBadBlock)

Fig. 3. Algorithm for Hiding

The message conf Mverify
sec encrypted with Bob’s public

key provides confidentiality service for message exchange.
Note that, the use of encryption keys in this specific order
also provides communication endpoint anonymity.
Step-5: Alice sends conf Mverify

sec to Bob. On receiving this
message, Bob uses his private key KBob

prv to decrypts the
message extracting Mverify

sec . Then, Bob uses KAlice
pub to

extract the Fmap and KAlice
rand . Note that Alice and Bob

could use either a client-server or P2P architecture to
eliminate the need for physical access to the SSD.
Steps-6 & 7: Bob extracts Fmap and KAlice

rand . He inputs
Fmap to the Retrieving algorithm, presented in Figure 4,
which applies it to the SSD to retrieve and reconstruct the
encrypted secret message E(Msec)KAlice

rand
.

Steps-8 & 9: Bob uses KAlice
rand to decrypt E(Msec)KAlice

randand finally extracts the secret message Msec.

B. Initial Design
In the first phase of our research, we modified the

open SSD framework to our specific requirements and
tried to hide a test file. As illustrated in the flowchart
in Figure 2, we designed a simple tool with a command
line interface that receives filename as input from the user.
Subsequently, the tool decides the number of bad blocks
to be allocated for hiding that file based on the file size.
Finally, the tool chooses a random bank on the SSD and
allocates the required number of blocks. While allocating
the blocks, we made sure that the blocks are not part of
the initial bad block list the SSD was shipped with. If
the allocation is successful, copy the file to the specified
blocks and create the map-file (used to identify the bank
and block). The map-file is used for the retrieval process.

C. Challenges with the Initial Design
In this section, we address some of the challenges we

face with the initial design of our IH framework.

72Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

1: map-file ⇐ file received from sender
2: bankAndBlock = decode(map-file)
3: metadata = bankAndBlock.Read()
4: decrypt(metadata)
5: decrypt(file.Read())
6: file.Write()
7: if then(ReadandErase)
8: Erase(bankAndBlock)
9: eraseCount + +

10: eraseCount.Write()
11: end if

Fig. 4. Algorithm for Retrieving

1) As the number of bad blocks increase, firmware
installation fails, rendering the drive useless.

2) If we hide data in blocks that hold the firmware,
then firmware reinstallation would rewrite these
blocks, irrespective of their inclusion in the bad
block list.

3) As part of experiment, we did a complete physical
image of drive, including the bad blocks, and were
able to find that the hidden files signature was
visible along with the metadata.

4) Every time we added a new bad block and hid
data, we had to reinstall the firmware. This was
required because the firmware would only keep
track of the bad blocks that were in the list when
the firmware was installed.

D. Enhanced design
We shall now discuss our enhanced design with im-

provements to overcome the challenges of the initial design
as delineated above.
• Uninstall the SSD firmware.
• Enable the user to specify the banks on which bad

blocks have to be assigned and the number of bad
blocks to be allocated on each bank.

• Have the tool allocate the user specified number
of blocks on user specified banks and append these
blocks to the bad block list maintained by the FTL.

• Reinstall the firmware on the SSD.
• Add metadata to user-created bad blocks to distin-

guish them from firmware identified bad blocks. In
our prototype implementation of the IH framework
on the reference SSD, we reserve the very first
byte of user-specified bad blocks to keep track
of its erase count, which serves as the metadata.
The erase count variable is initialized to 0, and is
incremented every time new data is written to the
corresponding block, since write operation on as
SSD is preceded by an erase operation.

Note that, as shown in the Table IV, the first byte is the
erase count which is followed by the data. This helps to
select the least-erased block every time we pick a block for
hiding, and make sure the block is empty.

As can be seen in Figure 3, we pick blocks from banks
that have the least erase count. We achieved this by
keeping track of the cumulative erase count, comparing

TABLE II. Information retrieval under different scenarios.

Condition Hidden File Retrieved
Firmware Reinstallation Yes
NTFS Formatted Drive Yes

Partitioned Drive Yes
Populate Disk to Full Capacity Yes

Factory Mode Erase No

the cumulative erase count of all the bad blocks in the
banks, and finally pick the one with the least value. Next,
in order to address the firmware overwrite problem, we
started excluding the first 32 blocks (This was done during
the pre-allocation of bad blocks) in every bank. Finally, in
order to escape from the physical imaging, we started to
encrypt both the metadata and the file. While retrieving
the file, we gave an option for the user to erase and retrieve
the file or just retrieve the file alone. If user chooses to erase
and retrieve the file, we erased the block and increased the
erase count by one such that the block was not used until
all the other bad blocks have reached a similar erase count.

VI. Evaluation of Enhanced Design
We confirm through evaluations that our framework is

100% undetectable and robust to firmware updates.
Experiment-1: We test the conditions under which the
secret message is retained and retrievable. Table II summa-
rizes the different scenarios under which we evaluated our
framework on the reference SSD. As can be seen, we were
able to retrieve the secret message in every scenario except
when erased in the factory mode. However, this operation
requires access to the SSD in factory mode as well as
knowledge of factory commands specific to the firmware
in use, without which it is impossible to wipe the physical
memory of the SSD.
Experiment-2: With this experiment, our objective was
to determine the maximum number of blocks that can be
tagged as bad, both firmware-detected and user-specified,
before the firmware installation starts to fail. This would
give us the total amount of data that can be hidden safely,
using our IH framework, without causing drive failure.
We also wanted to know if hiding data would result in
any changes, as perceivable by a normal user. For this,
we gradually increased the bad block count in each bank,
in increments of 10. With every increment, we did the
following – 1) increment the counter tracking the bank’s
bad block count ; 2) re-install the firmware; 3) install
the file system on top of the firmware; and 4) check the
available logical disk space. During the experiments, we
determined that the threshold for number of blocks, as
a fraction of the total number of blocks per bank, that
can be tagged as bad, is approximately 2.6% per bank.
This is equivalent to 218 blocks per bank. Beyond this,
the firmware installation fails. We have summarized the
results in Table III. Furthermore, based on the results,
we conclude that bad block management is a part of
over-provisioning and hence, a typical user won’t notice
any changes to the logical structure of the disk when
information is hidden, proving that our system is 100%
imperceptible by end users.
Experiment-3: Finally, we wanted to test if any of the ex-
isting computer forensic tools would be able to discover the

73Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

TABLE III. Drive size with different bad block count.

Bad Block Count Drive Size
25 29.7GB
50 29.7GB
75 29.7GB

100 29.7GB
109 29.7GB

secret messages hidden on an SSD using our IH framework.
We used freeware tools like WinHex and FTK imager.
Both the tools, though very popular and powerful, were
unsuccessful in getting past the logical disk. We confidently
conclude that none of the existing computer forensics tools,
at the time of this writing and to the best of our knowledge,
have the capability to access the physical layer of an SSD.

TABLE IV. Manipulated bad block layout.

Number of Bytes Information
1 Erase Count

Remaining bytes Hidden data

A. Defense against attacks
In Section I-A, we presented four possible attacks that

an adversary, Eve, can potentially try against our IH
framework. We shall discuss why none of these attacks will
be successful against our IH framework.
• Attack-1 Defense: The hidden information is not

part of the logical drive. Hence, Eve will not benefit
from a logical image of the DeadDrop SSD.

• Attack-2 Defense: SSD blocks that are tracked
as bad blocks by the FTL firmware are never
accessed and erased by the firmware. Hence, this
attack will not be successful.

• Attack-3 Defense: Currently, it is impossible for
Eve to make a physical image of the SSD without
our modified OpenSSD software. Additionally, Eve
should have the ability to access the SSD into
factory mode with appropriate jumper settings,
and should know the firmware functionalities that
we have identified beyond those provided in the
OpenSSD documentation. Beyond this, she would
still need the random session key generated by
Alice that was used to encrypt the secret message.
Additionally, she would need Bob’s (recipient of
the map-file) private key to decrypt the random
session key and the map-file, without which the
secret message cannot be reconstructed. Therefore,
the feasibility of this attack can be safely ruled out.

• Attack-4 Defense: Assuming Eve is able to sniff
the map-file from the traffic between Alice and
Bob, as discussed in Section V, she still needs Bob’s
private key to decrypt the map-file. Bob’s private
key, however, is not accessible to anyone other then
Bob himself. Hence, this attack is ruled out.

VII. Conclusion and Future Work
In this paper, we have presented the design, algo-

rithms, and implementation details of secure and robust
IH framework that can hide information on SSDs at the

physical layer. We have presented multiple methods for IH
highlighting their strengths and weaknesses. Finally, we
have evaluated the proposed framework through real world
implementations on a reference SSD running Indilinx’s
Barefoot flash controller, which is used by various SSD
manufacturers including, Corsair, Mushkin, and Runcore
IV [18]. Consequently, this IH framework can be used
on SSDs from different manufacturers, making it quite
pervasive and ubiquitous.

The ability to interface SSDs with the OpenSSD plat-
form and bypass the FTL has significant impact on the
Digital Forensics community. Also, this is the first step to-
ward potential antiforensics techniques. Having discovered
this possibility, law enforcement agencies can now focus
on potential information theft and antiforensics attacks
on SSDs, which otherwise was deemed near impossible.
As part of our future work, we would lim to investigate
the potential of integrating more support for other popu-
lar proprietary firmware. This will enable to expand the
existing project to support forensics investigation of SSDs
from a wide array of manufacturers.

Acknowledgment
The authors would like to thank the Defense Cyber

Crime Centre, Linthicum, Maryland, USA, for the refer-
ence SSD drive used in the experiments.

References
[1] C. K. Wee, “Analysis of hidden data in NTFS file sys-

tem,” 2013, URL: http://www.forensicfocus.com/hidden-data-
analysis-ntfs [accessed: 2013-04-25].

[2] “DeadDrop,” 2014, URL: http://en.wikipedia.org/wiki/Dead
drop [accessed: 2014-07-26].

[3] L. Hutchinson, “Solid-state revolution: in-depth on how SSDs
really work,” 2014, URL: http://arstechnica.com/information-
technology/2012/06/inside-the-ssd-revolution-how-solid-
state-disks-really-work/2/ [accessed: 2014-07-25].

[4] G. B. Bell and R. Boddington, “Solid state drives: the beginning
of the end for current practice in digital forensic recovery?”
vol. 5, no. 3. Association of Digital Forensics, Security and
Law, 2010, pp. 1–20.

[5] C. King and T. Vidas, “Empirical analysis of solid state disk
data retention when used with contemporary operating sys-
tems,” vol. 8. Elsevier, 2011, pp. S111–S117.

[6] Y. Rebahi, J. J. Pallares, N. T. Minh, S. Ehlert, G. Kovacs, and
D. Sisalem, “Performance analysis of identity management in
the session initiation protocol (sip),” in Computer Systems and
Applications, 2008. AICCSA 2008. IEEE/ACS International
Conference on. IEEE, 2008, pp. 711–717.

[7] E. Huebnera, D. Bema, and C. K. Wee, “Data hiding in the
ntfs file system,” vol. 3, 2006, pp. 211–226.

[8] D.Verhasselt, “Hide data in bad blocks,” 2009, URL:
http://www.davidverhasselt.com/2009/04/22/hide-data-
in-bad-blocks/ [accessed: 2009-04-22].

[9] A. D. McDonald and M. G. Kuhn, “Stegfs: A steganographic
file system for linux,” in Information Hiding. Springer, 2000,
pp. 463–477.

[10] Grugq, “The art of defiling: Defeating forensic analysis on unix
file systems,” Black Hat Conference, 2005.

[11] I. Thompson and M. Monroe, “Fragfs: An advanced data
hiding technique,” 2004, URL: http://www.blackhat.com/
presentations/bh-federal-06/BH-Fed-06-Thompson/BH-Fed-
06Thompson-up.pdfTrueCrypt(2006) [accessed: 2014-6-02].

[12] H. Khan, M. Javed, S. A. Khayam, and F. Mirza, “Designing
a cluster-based covert channel to evade disk investigation and
forensics,” vol. 30, no. 1. Elsevier, 2011, pp. 35–49.

74Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

[13] A. Srinivasan, S. Kolli, and J. Wu, “Steganographic informa-
tion hiding that exploits a novel file system vulnerability,” in
International Journal of Security and Networks (IJSN), vol. 8,
no. 2, 2013, pp. 82–93.

[14] A. Srinivasan, S. T. Nagaraj, and A. Stavrou, “Hideinside –
a novel randomized & encrypted antiforensic information hid-
ing,” in Computing, Networking and Communications (ICNC),
2013 International Conference on. IEEE, 2013, pp. 626–631.

[15] A. Nisbet, S. Lawrence, and M. Ruff, “A forensic analysis
and comparison of solid state drive data retention with trim
enabled file systems,” in Proceedings of 11th Australian Digital
Forensics Conference, 2013, pp. 103–111.

[16] Y. Wang, W.-k. Yu, S. Q. Xu, E. Kan, and G. E. Suh, “Hiding
information in flash memory,” in Proceedings of the 2013 IEEE
Symposium on Security and Privacy, S&P’13. IEEE Computer
Society, 2013, pp. 271–285.

[17] “OpenSSDWiki,” 2013, URL: http://www.openssd-project.org
[accessed: 2013-04-25].

[18] “Barefoot,” 2014, URL: http://en.wikipedia.org/wiki/Indilinx
[accessed: 2013-10-02].

75Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

