
Design Issues in the Construction of a Cryptographically Secure Instant Message

Service for Android Smartphones

Alexandre Melo Braga, Daniela Castilho Schwab

Centro de Pesquisa e Desenvolvimento em Telecomunicações (Fundação CPqD)

Campinas, São Paulo, Brazil

{ambraga,dschwab}@cpqd.com.br

Abstract—This paper describes design and implementation

issues concerning the construction of a cryptographically

secure instant message service for Android devices along with

its underlying cryptographic library. The paper starts by

discussing security requirements for instant message

applications, and proceeds to the architecture of cryptographic

components and selection of cryptographic services.

Concerning this last point, two sets of services were

implemented: one based only on standardized algorithms and

other based solely on non-standard cryptography.

Keywords-Cryptography; Security; Android; Instant Message.

I. INTRODUCTION

Currently, the proliferation of smartphones and tablets
and the advent of cloud computing are changing the way
software is being developed and distributed. Contemporary
to this context change, the use in software systems of
security functions based on cryptographic techniques is
increasing as well.

The scale of cryptography-based security in use today
has increased not only in terms of volume of encrypted data,
but also relating to the amount of applications with
cryptographic services incorporated within their
functionalities. In addition to the traditional use cases
historically associated to cryptography (e.g.,
encryption/decryption and signing/verification), there are
several new usages, such as privacy preserving controls,
bringing diversity to the otherwise known universe of threats
to cryptographic software.

This paper discusses the construction of a mobile
application for secure instant messaging on Android devices
and a cryptographic library intended to support it. The paper
focuses on design decisions as well as on implementation
issues. This work contributes to the state of the practice by
discussing the technical aspects and challenges of
cryptographic implementations on modern mobile devices.
The contributions of this paper are the following:

 The design of cryptographically secure instant message
service;

 The elicitation of strong security requirements for
cryptographic key negotiation over instant messages;

 The selection of a minimum set of standard
cryptographic services capable of fulfill the
requirements;

 The selection of non-standard cryptography in order to
replace the whole standard algorithm suite.

The remaining parts of the text are organized as follows.
Section II presents related work. Section III details
requirements and design decisions. Section IV describes
implementation aspects. Section V outlines improvements
under development. Section VI concludes this text.

II. RELATED WORK

Nowadays, secure phone communication does not mean

only voice encryption, but encompasses a plethora of

security services built over the ordinary smartphone

capabilities. To name just a few of them, these are SMS

encryption, Instant Message (IM) encryption, voice and

video chat encryption, secure conferencing, secure file

transfer, secure data storage, secure application

containment, and remote security management on the

device, including management of cryptographic keys. All

these security applications have been treated by an

integrated framework [3] as part of a research project [4].

This section focuses on security issues of IM protocols

and applications, as well as cryptography issues on Android

devices.

A. Security issues in IM protocols and applications

The work of Xuefu and Ming [7] shows the use of

eXtensible Messaging and Presence Protocol (XMPP) for

IM on web and smartphones. Massandy and Munir [12]

have done experiments on security aspects of

communication, but there are unsolved issues, such as

strong authentication, secure storage, and implementation of

good cryptography, as shown by Schrittwieser et al.[39].

It seems that the most popular protocol for secure IM in

use today is the Off-the-Record (OTR) Messaging [32], as it

is used by several secure IM apps. OTR Messaging

handshake is based upon the SIGMA key exchange protocol

[15], a variant of Authenticated Diffie-Hellman (ADH) [45],

just like Station-to-Station (STS) [6][46], discussed in

further detail at Section IV.

 A good example of security issues found in current IM

software is a recently discovered vulnerability in WhatsApp

[36]. The vulnerability resulting from misuse of the Rivest

Cipher 4 (RC4) stream cipher in a secure communication

7Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

protocol allowed the decryption, by a malicious third party

able to observe conversations, of encrypted messages

exchanged between two WhatsApp users. The issues related

to this vulnerability are twofold. First, the incorrect use of

RC4 stream cipher in place of a block cipher. Second, the

reuse of cryptographic keys in both communication

directions. The reuse of keys in a stream cipher and the

existence of fixed parts, such as headers, at the

communication protocol enabled the partial discovery of

cryptographic keys.

B. Cryptography issues on Android devices

A recent study [2] showed that despite the observed

diversity of cryptographic libraries in academic literature,

this does not mean those implementations are publicly

available or ready for integration with third party software.

In spite of many claims on generality, almost all of them

were constructed with a narrow scope in mind and

prioritizes academic interest for non-standard cryptography.

Furthermore, portability to modern mobile platforms, such

as Android, is a commonly neglected concern on

cryptographic libraries, as that evaluation has shown [2].

Moreover, there are several misuse commonly found on

cryptographic software in use today. According to a recent

study [24], the most common misuse of cryptography in

mobile devices is the use of deterministic encryption, where

a symmetric cipher in Electronic Code Book (ECB) mode

appears mainly in two circumstances: Advanced Encryption

Standard (AES) in ECB mode of operation (AES/ECB for

short) and Triple Data Encryption Standard in ECB mode

(TDES/ECB). There are cases of cryptographic libraries in

that ECB mode is the default option, automatically selected

when the operation mode is not explicitly specified by the

programmer. A possibly worse variation of this misuse is the

Rivest-Shamir-Adleman (RSA) cryptosystem in Cipher-

Block Chaining (CBC) mode with Public-Key Cryptography

Standards Five (PKCS#5) padding (without randomization),

which is also available in modern cryptographic libraries,

despite of been identified more than 10 year ago [34].

Another frequent misuse is hardcoded Initialization

Vectors (IVs), even with fixed or constant values [34]. A

related misuse is the use by the ordinary programmer of

hardcoded seeds for PRNGs [24].

 A common misunderstanding concerning the correct use

of IVs arises when (for whatever reason) programmers need

to change operation modes of block ciphers. For instance, the

Java Cryptographic API [20] allows operation modes to be

easily changed, but without considering IV requirements.

Figure 1. Basic flow of the secure exchange of instant messages.

8Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

According to a NIST standard [30], CBC and Cipher

feedback (CFB) modes require unpredictable IVs. However,

Output feedback (OFB) mode does not need unpredictable

IVs, but it must be unique to each execution of the

encryption operation. Considering these restrictions, IVs

must be both unique and unpredictable, in order to work

interchangeably with almost all common operation modes of

block ciphers. The Counter (CTR) mode requires unique IVs

and this constraint is inherited by authenticated encryption

with Galois/Counter mode (GCM) [31].

The two remarkable differences between the prototype

described in this text and the related work are the following.

First, the prototype uses STS protocol and its variants to

accomplish authenticated key agreement. This has the

benefit of facilitating protocol extension to use alternative

cryptographic primitives. Second, authenticated encryption is

the preferred encryption mechanism to protect messages, so

the burden of IV management is minimized.

III. REQUIREMENTS FOR SECURE IM APPLICATIONS

This section describes the primary usage scenario of a

mobile application for secure IM, as well as the selection of

cryptographic services required by that application. This

scenario illustrates the requirements elicitation that guided

the design of the library.

A. Primary usage scenario for IM applications

The prototype for cryptographically secure, end-to-end

communication operates on a device-to-device basis,

exchanging encrypted IM via standard transport protocols.

In the following text, the prototype is called CryptoIM.

CryptoIM implements the basic architecture used by all

IM applications, using the standard protocol XMPP [35] at

the transport layer. The application then adds a security

layer to XMPP, which is composed of a cryptographic

protocol for session key agreement and cryptographic

transaction to transport encrypted messages. Therefore,

CryptoIM is able to transport encrypted information through

public services offered by providers such as Google (for

Gtalk or HangOut) and Whatsapp.
The usage scenario that inspired the implementation of

CryptoIM was to secure end-to-end communication, as
described before. The two sides of communication (Alice
and Bob) want to use their mobile device to exchange
confidential and authentic messages. In CryptoIM, when a
user selects a contact she wants to talk to, the protocol for
secure conversation is initiated behind the scenes. The
following action flow can be observed in Figure 1:
1) User 1 enters the application;
2) User 2 enters the application;
3) User 1 opens a conversation with User 2;
4) User 2 accepts the conversation;
5) Security negotiation occurs;
6) Secure conversation proceeds as expected.

This basic flow represents the simplest behavior needed
for secure conversation. A secure conversation can be
canceled by either party by sending a cancellation message.

The security negotiation phase is indeed a protocol for key
agreement, as illustrated by Figure 2.

B. Selection of cryptographic services

To accomplish the above mentioned scenario, Alice and
Bob choose to use cryptographically secure communication
with the following general requirements:

 An authentication mechanism of individual messages;

 An encryption algorithm and modes of operation;

 A key agreement protocol;

 A mechanism to protect cryptographic keys at rest.
In addition to a unique key for each conversation, that

ensures security in the exchange of messages, a unique IV is
generated for each exchanged message. To ensure that the
protocol was followed in a transparent manner without user
interference, automated messages were sent behind the
scenes, so that the user does not see the exchange of
messages for key negotiation. This prevents user from trying
to interfere in the key agreement process.

To avoid known security issues in instant messaging
applications [36][39], the key agreement protocol must
provide the security properties described below [47]:
a) Mutual authentication of entities. For this property to be

sustained in the protocol, signed messages must include
the identities of both participants;

b) Mutually authenticated key agreement. The shared
secret is a result of the underlying Key Agreement (KA)
protocol. The freshness or novelty of the secret is the
result of choosing random values for each conversation.
The authenticity of secret sharing is guaranteed by
digital signatures;

c) Mutual confirmation of secret possession. The
decryption using a derived secret key confirms the
possession of secret and evidences that the entity with
knowledge of the secret is the same one signing the
agreement messages. After a run of the protocol, the two
participants observe each other performing encryption
with shared secret key;

d) Perfect Forward Secrecy (PFS). If a private key is
compromised at some point in time, the security of
session keys previously established is not affected. It is
important for the maintenance of this property that the
intermediate values are discarded and safely deleted at
the end of a protocol run;

Figure 2. Station to Station (STS) protocol.

9Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

e) Anonymity. If the certificates are encrypted and the
identities were omitted in the body of messages, a third
party observing the communication network can not
directly identify the interlocutors.

The cryptographic library supporting CryptoIM was
designed to meet each one of these general requirements,
resulting in an extensive implementation.

IV. DESCRIPTION OF THE IMPLEMENTATION

As a general goal, the CryptoIM cryptographic library is
intended to be used in the protection of cryptographically
secure communication via mobile devices. In order to be
useful, the cryptographic library had to accomplish a
minimum set of functional requirements. Each functional
requirement generated a set of non-functional or
supplementary requirements, mostly related to correctness of
algorithms, compliance to industry standards, security, and
performance of the implementation.

In order to facilitate the portability of the cryptographic
library for mobile devices, in particular for the Android
platform, the implementation was performed according to
standard cryptographic Application Programming Interface
(API) for Java, the Java Cryptographic Architecture (JCA),
its name conventions, and design principles [16][20]-[23].

Once JCA was defined as the architectural framework,
the next design decision was to choose the algorithms
minimally necessary to implement a scenario of secure
communication via mobile devices. The choice of a
minimum set was an important design decision in order to
provide a fully functional Cryptographic Service Provider
(CSP) in a relatively short period of time. This minimalist
construction had to provide the follow set of cryptographic
functions:
a) A symmetric algorithm to be used as block cipher,

along with the corresponding key generation function,

and modes of operation and padding;

b) An asymmetric algorithm for digital signatures, along

with the key-pair generation function. This requirement

brings with it the need for some sort of digital

certification of public keys;

c) A one-way secure hash function. This is a support

function to be used in MACs, signatures and PRNGs;

d) A Message Authentication Code (MAC), based on a

secure hash or on a block cipher;

e) A key agreement mechanism or protocol to be used by

communicating parties that have never met before, but

need to share an authentic secret key;

f) A simple way to keep keys safe at rest and that does not

depend on hardware features;

g) A Pseudo-Random Number Generator (PRNG) to be

used by all the key generation functions.
The current version of this implementation is illustrated

by Figure 3 and presents the cryptographic algorithms and
protocols described in the following paragraphs. The figure
shows that frameworks, components, services and
applications are all on top of JCA API. CryptoIM‟s
Cryptographic Service Provider (CSP) is in the middle, along

with BouncyCastle and Oracle providers. Arithmetic
libraries are at the bottom.

Figure 3 shows CryptoIM CSP divided in two distinct
cryptographic libraries. The left side shows only
standardized algorithms and comprises a conventional
cryptographic library. The right side features only non-
standard cryptography and is an alternative library. The
following subsections describe these two libraries.

A. Standard Cryptography

This subsection details the implementation choices for
the standard cryptographic library. The motivations behind
this implementation were all characteristics of standardized
algorithms: interoperability, documentation, and testability.
The programming language chosen for implementation of
this cryptographic library was Java. The standard
cryptography is a pure-Java library according to JCA.

The block cipher is the AES algorithm, which was
implemented along with thee of operation: ECB, and CBC
[30], as well as the GCM mode for authenticated encryption
[31]. PKCS#5 [5] is the simplest padding mechanism and
was chosen for compatibility with other CSPs. As GCM
mode uses only AES encryption, the optimization of
encryption received more attention than decryption.
Implementation aspects of AES and other algorithms can be
found on the literature [17][28][43]. This AES
implementation was inspired by [33].

The asymmetric algorithm is the RSA Probabilistic
Signature Scheme (RSA-PSS) built over the RSA signature
algorithm. PSS is supposed to be more secure them ordinary
RSA [27][43]. Asymmetric encryption is provided by the
RSA Optimal Asymmetric Encryption Padding (RSA-
OAEP) [27][43].

Two cryptographically secure hashes were implemented,
Standard Hash Algorithm 1 (SHA-1) [26] and Message
Digest (MD5). It is well known by now that MD5 is
considered broken and is not to be used in serious
applications, it is present for ease of implementation. In
current version, there is no intended use for these two hashes.
Their primary use will be as the underling hash function in

Figure 3. Cryptographic Service Provider Architecture.

10Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

MACs, digital signatures and PGNGs. The MAC chosen
were the Hash MAC (HMAC) [29] with SHA-1 as the
underling hash function, and the Galois MAC (GMAC) [31],
which can be directly derived from GCM mode. Standard
Hash Algorithm 2 (SHA-2) family of secure hashes supplies
the need for direct use of single hashes.

The need for a Key Agreement (KA) was fulfilled by the
implementation of Station-to-Station (STS) protocol (Figure
2), which is based on Authenticated Diffie-Hellman (ADH)
[45], and provides mutual key authentication and key
confirmation [6][46].

Finally, the mechanism for Password-based Encryption
(PBE) is based on the Password-Based Key Derivation
Function 2 (PBKDF2) [5], and provides a simple and secure
way to store keys in encrypted form. In PBE, a key-
encryption-key is derived from a password.

B. Non-standard Cryptography

This subsection details the implementation choices for
the alternative cryptographic library. The motivation behind
the special attention given to the selection of alternative
cryptographic algorithms was the recently revealed
weaknesses intentionally included by foreign intelligence
agencies in international encryption standards [19]. This fact
alone raises doubt on the confidence of all standardized
algorithms, which are internationally adopted.

In this context, a need arose to treat what has been called
“alternative cryptography” in opposition to standardized
cryptographic schemes. The final intent was strengthening
the implementation of advanced cryptography and fostering
their use. The non-standard cryptography is packaged as
dynamic library written in C and accessible to Java programs
through a Java Native Interface (JNI) connector, which acts
as a bridge to a JCA adapter.

By the time of writing, this alternative library was under
the final steps of its construction. It provides advanced
mathematical concepts, such as bilinear pairings and elliptic
curves, which are not fully standardized by foreign
organizations and suffer constant improvements. The most
advanced cryptographic protocols currently implemented are
based on a reference implementation [8] and listed below.
a) Elliptic Curve Diffie–Hellman (ECDH) [11]. The key

agreement protocol ECDH is a variation of the Diffie-
Hellman (DH) protocol using elliptic curves as the
underlying algebraic structure.

b) Elliptic Curve Digital Signature Algorithm (ECDSA)
[25]. This is a DSA-based digital signature using elliptic
curves. ECSS [11] is a variant of ECDSA.

c) Sakai-Ohgishi-Kasahara (SOK) [37]. This protocol is a
key agreement for Identity-Based Encryption (IBE). It is
also called SOKAKA (SOK Authenticated Key
Agreement).

d) Boneh-Lynn-Shacham (BLS) [9]. A short digital
signature scheme in which given a message m, it is
computed S = H (m), where S is a point on an elliptic
curve and H() is a secure hash function.

e) Zhang-Safavi-Susilo (ZSS) [14]. Similar to the previous
case, it is a more efficient short signature, because it

utilizes fixed-point multiplication on an elliptic curve
rather arbitrary point.

f) Blake [41]. Cryptographic hash function submitted to
the worldwide contest for selecting the new SHA-3
standard. It was ranked among the five finalists of this
competition.

g) Elliptic Curve Augmented Encryption Scheme (ECIES)
[11]. It is an asymmetric encryption algorithm over
elliptic curves. This algorithm is non-deterministic and
can be used as a substitute for RSA-OAEP, with the
benefit of shorter cryptographic keys.

h) Elliptic Curve Station-to-Station (ECSTS) [11].
Variation of STS protocol using elliptic curves and
ECDH as a replacement for ADH.

i) Salsa20 [18]. This is a family of 256-bit stream ciphers
submitted to the ECRYPT Project (eSTREAM).

j) Serpent [40]. A 128-bit block cipher designed to be a
candidate to the contest that chose the AES. Serpent did
not win, but it was the second finalist and enjoys good
reputation in the cryptographic community.

C. Evaluation of standard and non-standard cryptography

A previous work [2] identified lack of alternative
cryptography in public libraries, such as non-standard elliptic
curves and bilinear pairings. This prototype attempts to
fulfill this gap by offering alternatives to possibly
compromised standards. Its construction has been discussed
in a recent paper [1]. Only key points are recalled here.

Considering security, protection against side-channel
attacks was an important issue in the choice of alternative
cryptography. Schemes with known issues were avoided,
while primitives that were constructed to resist against such
attacks were regarded. Also, the library offers alternatives for
256-bit security for both symmetric and asymmetric
encryption. For instance, in symmetric encryption, Serpent-
256 replaces AES-256. In asymmetric encryption, the same
security level is achieved by elliptic curves over 521-bit
finite fields, and replaces standard RSA with 15360-bit keys.

Considering performance measurements, experiments [1]
have shown that standard cryptography can be competitive to
other implementations. Also, in higher security levels, the

Figure 4. Key agreement for secure conference.

11Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

performance of non-standard elliptic-curve cryptography is
significantly better than standard alternative. In contrast,
non-standard pairings-based cryptography has shown
relatively low performance. Figure 6 illustrates this behavior
for signature operations on a Samsung Galaxy S III (1.4 GHz
quad-core Cortex-A9, 1 GB RAM, and 16GB storage).
Complete results can be found in [1].

The observed responsiveness shown by the prototype is
quite competitive and usage has shown that delay caused by
key negotiation is negligible, considering a local wireless
network (Wi-Fi) and a household deployment of a XMPP
server with few users. However, additional effort needs to be
taken in order to optimize the mobile app as well as improve
both performance and scalability on server-side application.

V. IMPROVEMENTS UNDER DEVELOPMENT

By the time of writing, two improvements were under
construction. The first is a mobile PKI responsible for digital
certification, which is fully integrated to the mobile security
framework. PKI‟s Server-side is based upon the EJBCA PKI
[13]. Client-side follows recent recommendations for
handling certificates on mobile devices [38].

The second is a secure text conference (or group chat) via
instant messages. As depicted in Figure 4, the Organizer or
Chair of the conference requests the conference creation to
the Server, as this is an ordinary XMPP feature. The key
agreement for the requested conference proceeds as follows,
where Enck(x) means encryption of x with key k:
1. Chair (C) creates the key for that conference (ck);

2. For each guest (g[i]), Chair (C) does:

a) Opens a STS channel with key k: C  g[i], key k;

b) Sends ck on time t to g[i]: C  g[i]: Enck(ck).

The steps above constitute a point-to-point key transport
using symmetric encryption, which is provided by the STS
protocol. After that, all guests share the same conference key
and the conference proceeds as a multicast of all encrypted
messages. Figure 5 shows a screenshot for a secure
conference, in which users are differentiated by colors. Both
the conversation and the interface are in Portuguese.

VI. CONCLUDING REMARKS

This paper discussed design and implementation issues
on the construction of a cryptographically secure Instant
Message application for Android and the underlying
cryptographic library that supports it. This text has shown
how cryptographic services can be crafted to adequately fit
to a secure IM service in a way that is transparent to the final
user, without sacrificing security. A well defined architecture
allowed the selection and use of non-standard cryptography.

Future work includes other cryptographically secure
services, such as SMS, group chat, and mobile PKI, as well
as protections against side-channels and vulnerabilities of
insecure programming. Also, performance over 3G networks
is being measured and analyzed, for future improvements.

ACKNOWLEDGMENT

The authors acknowledge the financial support given to
this work, under the project "Security Technologies for

Mobile Environments – TSAM", granted by the Fund for
Technological Development of Telecommunications –
FUNTTEL – of the Brazilian Ministry of Communications,
through Agreement Nr. 01.11. 0028.00 with the Financier of
Studies and Projects - FINEP / MCTI.

REFERENCES

[1] A. M. Braga and E. M. Morais, “Implementation Issues in the
Construction of Standard and Non-Standard Cryptography on
Android Devices,” The Eighth International Conference on Emerging
Security Information, Systems and Technologies (SECURWARE
2014), in press.

[2] A. Braga and E. Nascimento, Portability evaluation of cryptographic
libraries on android smartphones. In Proceedings of the 4th
international conference on Cyberspace Safety and Security (CSS'12),
Yang Xiang, Javier Lopez, C.-C. Jay Kuo, and Wanlei Zhou (Eds.).
Springer-Verlag, Berlin, Heidelberg, 2012, pp. 459-469.

[3] A. M. Braga, “Integrated Technologies for Communication Security
on Mobile Devices”, The Third International Conference on Mobile
Services, Resources, and Users (Mobility) , 2013, pp. 47–51.

[4] A. M. Braga, E. N. Nascimento, and L. R. Palma, “Presenting the
Brazilian Project TSAM – Security Technologies for Mobile
Environments”, Proceeding of the 4th International Conference in
Security and Privacy in Mobile Information and Communication
Systems (MobiSec 2012). LNICST, vol. 107, 2012, pp. 53-54.

[5] B. Kaliski, “PKCS #5: Password-Based Cryptography Specification”,
Version 2.0, RFC 2898. Retrieved [July 2014] from
tools.ietf.org/html/rfc2898.

[6] B. O'Higgins, W. Diffie, L. Strawczynski, and R do Hoog,
"Encryption and ISDN - A Natural Fit", International Switching
Symposium (ISS87), 1987.

[7] B. Xuefu and Y. Ming, “Design and Implementation of Web Instant
Message System Based on XMPP”, Proc. 3rd International
Conference on Software Engineering and Service Science (ICSESS),
Jun. 2012, pp. 83-88.

[8] D. Aranha and C. Gouvêa, “RELIC Toolkit. Retrieved [July 2014]
from code.google.com/p/relic-toolkit.

[9] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil
pairing”, J. Cryptology, 17(4), Sept. 2004, pp. 297–319.

[10] D. Bornstain, Dalvik VM Internals. Retrieved [July 2014] from
sites.google.com/ site/io/dalvik-vm-internals.

Figure 5. Screenshot of a secure text conference (group chat).

12Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

[11] D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to Elliptic
Curve Cryptography, Springer-Verlag, New York, Inc., Secaucus, NJ,
USA, 2003.

[12] D. T. Massandy and I. R. Munir, “Secured Video Streaming
Development on Smartphones with Android Platform”, Proc. 7th
International Conference on Telecommunication Systems, Services,
and Applications (TSSA), Oct. 2012, pp. 339-344.

[13] EJBCA PKI CA. Retrieved [July 2014] from http://www.ejbca.org.

[14] F. Zhang, R. Safavi-Naini, and W. Susilo, “An Efficient Signature
Scheme from Bilinear Pairings and Its Applications”, in F. Bao, R. H.
Deng and J. Zhou, ed., 'Public Key Cryptography', 2004, pp. 277-290.

[15] H. Krawczyk, "SIGMA: The „SIGn-and-MAc‟ approach to
authenticated Diffie-Hellman and its use in the IKE protocols."
Advances in Cryptology-CRYPTO 2003, Springer Berlin Heidelberg,
2003, pp. 400-425.

[16] How to Implement a Provider in the Java Cryptography Architecture.
Retrieved [July 2014] from docs.oracle.com/javase/7/docs/technotes/
guides/security/crypto/HowToImplAProvider.html.

[17] J. Bos, D. Osvik, and D. Stefan, “Fast Implementations of AES on
Various Platforms”, 2009. Retrieved [July 2014] from
eprint.iacr.org/2009/501.pdf.

[18] J. D. Bernstein, The Salsa20 family of stream ciphers. Retrieved [July
2014] from cr.yp.to/papers.html#salsafamily.

[19] J. Menn, Experts report potential software "back doors" in U.S.
standards. Retrived [July 2014] from http://www.reuters.com/article
/2014/07/15/usa-nsa-software-idUSL2N0PP2BM20140715?irpc=932.

[20] Java Cryptography Architecture (JCA) Reference Guide. Retrieved
[July 2014] from docs.oracle.com/javase/7/docs/technotes/guides/
security/crypto/CryptoSpec.html.

[21] Java Cryptography Architecture Oracle Providers Documentation for
Java Platform Standard Edition 7. Retrieved [July 2014] from
docs.oracle.com/javase/7/docs/technotes/guides/security/SunProvider
s.html.

[22] Java Cryptography Architecture Standard Algorithm Name
Documentation for Java Platform Standard Edition 7. Retrieved [July
2014] from docs.oracle.com/javase/7/docs/technotes/guides/security/
StandardNames.html.

[23] Java Cryptography Extension Unlimited Strength Jurisdiction Policy
Files 7 Download. Retrieved [July 2014] from www.oracle.com/
technetwork/java/javase/downloads/jce-7-download-432124.html.

[24] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical
study of cryptographic misuse in android applications,” Proceedings
of the 2013 ACM SIGSAC conference on Computer and
Communications Security (CCS ‟13), 2013, pp. 73–84.

[25] NIST FIPS PUB 186-2. Digital Signature Standard (DSS). Retrieved
[July 2014] from csrc.nist.gov/publications/fips/archive/fips186-
2/fips186-2.pdf.

[26] NIST FIPS-PUB-180-4. Secure Hash Standard (SHS). March 2012.
Retrieved [July 2014] from csrc.nist.gov/publications/fips/fips180-
4/fips-180-4.pdf.

[27] NIST FIPS-PUB-186. Digital Signature Standard (DSS). Retrieved
[July 2014] from csrc.nist.gov/publications/fips/archive/fips186-
2/fips186-2.pdf.

[28] NIST FIPS-PUB-197. Announcing the ADVANCED ENCRYPTION
STANDARD (AES). Federal Information Processing Standards
Publication 197 November 26, 2001.

[29] NIST FIPS-PUB-198. The Keyed-Hash Message Authentication
Code (HMAC). Retrieved [July 2014] from
csrc.nist.gov/publications/fips/fips198/fips-198a.pdf.

[30] NIST SP 800-38A. Recommendation for Block Cipher Modes of
Operation. 2001. Retrieved [July 2014] from
csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf.

[31] NIST SP 800-38D. Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC. 2007.
csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf.

[32] Off-the-Record Messaging webpage. Retrieved [July 2014] from
otr.cypherpunks.ca.

[33] P. Barreto, AES Public Domain Implementation in Java. Retrieved
[July 2014] from www.larc.usp.br/~pbarreto/JAES.zip.

[34] P. Gutmann, “Lessons Learned in Implementing and Deploying
Crypto Software,” Usenix Security Symposium, 2002.

[35] P. Saint-Andre, K. Smith, and R. Tronçon, “XMPP: The Definitive
Guide - Building Real-Time Applications with Jabber Technologies”,
O‟reilly, 2009.

[36] Piercing Through WhatsApp‟s Encryption. Retrieved [July 2014]
from blog.thijsalkema.de/blog/2013/10/08/piercing-through-
whatsapp-s-encryption.

[37] R. Sakai, K. Ohgishi, and M. Kasahara. “Cryptosystems based on
pairing”. The 2000 Symposium on Cryptography and Information
Security (SCIS 2000), Okinawa, Japan, January 2000, pp. 26–28.

[38] S. Fahl, M. Harbach, and H. Perl, “Rethinking SSL development in
an appified world,” Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security - CCS ‟13
(2013), 2013, pp. 49–60.

[39] S. Schrittwieser et al., “Guess Who's Texting You? Evaluating the
Security of Smartphone Messaging Applications”. Proc. 19th
Network & Distributed System Security Symposium, Feb. 2012.

[40] SERPENT webpage, “SERPENT A Candidate Block Cipher for the
Advanced Encryption Standard”. Retrieved [July 2014] from
www.cl.cam.ac.uk/~rja14/serpent.html.

[41] SHA-3 proposal BLAKE webpage. Retrieved [July 2014] from
https://131002.net/blake.

[42] SpongyCastle webpage, Spongy Castle: Repackage of Bouncy Castle
for Android, Bouncy Castle Project (2012), Retrieved [July 2014]
from rtyley.github.com/spongycastle/

[43] T. St. Denis. “Cryptography for Developers”, Syngress, 2007.

[44] The Legion of the Bouncy Castle webpage. Legion of the Bouncy
Castle Java cryptography APIs. Retrieved [July 2014] from
www.bouncycastle.org/java.html.

[45] W. Diffie and M. Hellman, “New Directions in Cryptography”, IEEE
Transact. on Inform. Theory, vol. 22, no. 6, Nov. 1976, pp. 644-654.

[46] W. Diffie, P. C. van Oorschot, and M. J. Wiener, “Authentication and
Authenticated Key Exchanges”, Designs, Codes and Cryptography
(Kluwer Academic Publishers) 2 (2), 1992, pp. 107–125.

[47] W. Mao, “Modern cryptography: theory and practice”, Prentice Hall
PTR, 2004.

0

5

10

15

20

25

30

35

Ti
m

e
(m

s)

Signing (s) and verification (v)

Figure 6. Time measurements for signature algorithms.

13Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

http://rtyley.github.com/spongycastle/
http://www.bouncycastle.org/java.html

