
Security and Confidentality Solutions for Public Cloud Database Services

Luca Ferretti, Fabio Pierazzi, Michele Colajanni, and Mirco Marchetti

Department of Engineering “Enzo Ferrari”

University of Modena and Reggio Emilia, Italy

e-mail: {luca.ferretti, fabio.pierazzi, michele.colajanni, mirco.marchetti}@unimore.it

Abstract—The users perception that the confidentiality of their
data is endangered by internal and external attacks is limiting the
diffusion of public cloud database services. In this context, the use
of cryptography is complicated by high computational costs and
restrictions on supported SQL operations over encrypted data.
In this paper, we propose an architecture that takes advantage
of adaptive encryption mechanisms to guarantee at runtime the
best level of data confidentiality for any type of SQL operation.
We demonstrate through a large set of experiments that these
encryption schemes represent a feasible solution for achieving
data confidentiality in public cloud databases, even from a
performance point of view.

Keywords-Cloud; Database; Confidentiality; Adaptivity; Encryp-
tion

I. INTRODUCTION

The Database as a Service (DBaaS) [1] is a novel paradigm

through which cloud providers offer the possibility of storing

data in remote databases. The main concerns that are prevent-

ing the diffusion of DBaaS are related to data security and

confidentiality issues [2]. Hence, the main alternative seems

the use of cryptography, which is an already adopted solution

for files stored in the cloud, but that represents an open issue

for database operations over encrypted data.

Fully homomorphic encryption theoretically supports any

kind of computation over encrypted data [3], but it is computa-

tionally unfeasible, because it increases the computational cost

of any operation by many orders of magnitude. Other schemes

which allow the execution of computations over encrypted data

limit the type of allowed operations (e.g., order comparions

in [4], sums in [5], search in [6]). Although these methods

were successfully deployed in some DBaaS contexts [7], they

require the anticipatory choice of which encryption scheme

can be used for each database column and for a specific set

of SQL commands.

In this paper, we propose a cloud database architecture

based on adaptive encryption techniques [8] that encapsulate

data through different layers of encryption. This adaptive

encryption architecture is attractive because it does not require

to define at design time which operations are allowed on each

column, and because it can guarantee at runtime the maximum

level of data confidentiality for different SQL operations.

Unfortunately, this scheme is affected by high computational

costs. However, through a prototype implementation of an en-

crypted cloud database, we show that adaptive encryption can

be well applied to a cloud database paradigm, because most

performance overheads are masked by network latencies. This

study represents the first performance evaluation of adaptive

encryption methods applied to cloud database services. Other

experiments [8] assumed a LAN scenario and no network

latency.

The paper is structured as follows. Section II describes the

proposed adaptive encryption scheme for cloud database ar-

chitectures. Section III presents the results of the experimental

evaluations for different network scenarios, workload models

and number of clients. Section IV outlines main conclusions

and possible directions for improvement.

II. ARCHITECTURE

We describe the architecture we propose to guarantee data

confidentiality through adaptive encryption methods in cloud

database environments.

A. Architecture model

We refer to the distributed architecture represented in Fig. 1,

where we assume that independent and distributed clients

(Client 1 to N) access a public cloud database service [9].

All information (i.e., data and metadata) is stored encrypted

in the cloud database. The proposed architecture manages five

types of information.

• plain data: the informative content provided by the client

users.

• encrypted data: the encrypted data that are stored in the

cloud database.

• plain metadata: all the information required by the clients

to manage encrypted data on the cloud database.

• encrypted metadata: the encrypted metadata that are

stored in the cloud database.

• master key: the encryption key of the encrypted metadata.

We assume that it is distributed to all legitimate clients.

A legitimate client can issue SQL operations (SELECT,

INSERT, UPDATE, DELETE) to the encrypted cloud database

by executing the following steps. It retrieves encrypted meta-

data, and obtains plain metadata by decrypting them through

the master key. The metadata are cached locally in a volatile

representation that is used for improving performance. Then,

the client can issue SQL operations over the encrypted data

(i.e., the real informative content), because it is able to encrypt

the queries, their parameters, and decrypt their results by using

the local plain metadata.

This architecture guarantees confidentiality of data in a

security model in which the WAN network is untrusted (ma-

licious), while client users are trusted, that is, they do not

reveal any information about plain data, plain metadata, and

36Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

owner
TextBox
Security and Confidentiality Solutions for Public Cloud Database Services

Figure 1. Cloud database architecture

the master key. The cloud provider administrator is semi-

honest [10] (also called honest-but-curious), because he could

try accessing information stored in the database, but he does

not modify internal data and SQL operations results.

B. Adaptive encryption techniques

We consider SQL-aware encryption algorithms that guaran-

tee data confidentiality and allow the cloud database server to

carry out a large set of SQL operations over encrypted data.

Each algorithm supports a specific subset of SQL operators.

This paper refers to the following encryption schemes.

Deterministic (Det): it deterministically encrypts data, so

that the encryption of an input value always guarantees the

same output value. It supports the equality operator.

Order Preserving Encryption (OPE) [4]: this encryption

scheme preserves in the encrypted values the numerical order

of the original unencrypted data. It supports the following SQL

operators: equal, unequal, less, less or equal, greater, greater

or equal.

Sum: this encryption algorithm is homomorphic with re-

spect to the sum operation: summing unencrypted data is

equivalent to multiplying the correspondent encrypted values.

It supports the sum operator between integer values.

Search: it supports equality check on full strings (i.e., the

LIKE operator) that do not include fragments of words.

Random (Rand): it is a semantic secure encryption (IND-

CPA) that does not reveal any information of the original plain

value. It does not support any SQL operator.

Plain: a special kind of “encryption” that leaves values

unencrypted. It supports all SQL operators, and it is included

to store publicly available data, or some anonymous values

that do not require any data confidentiality.

If each column data was encrypted through only one of these

algorithms, the database administrator would have to decide at

the design time which operations must be supported on each

database column. This assumption is impractical in most cases.

Hence, we need to define adaptive schemes that allow our

architecture to support at runtime the SQL operations issued

by the clients, while preserving a high level of confidentiality

on the columns that are not involved in any operation. For

this reason, we organize the encryption schemes into structures

called Onions. Each Onion is composed by different encryp-

tion algorithms, called (Encryption) Layers, one above the

other. Outer Layers guarantee higher data confidentiality and

lower number of allowed operations, and each Onion supports

a specific set of operators. When additional SQL operations are

to be executed on a column, the outer Layers are dynamically

decrypted. In this paper, we consider and design the following

Onions, which are also represented in Fig. 2.

Onion-Eq: it manages the equality operator.

Onion-Ord: it manages the following operators: less, less

or equal, greater, greater or equal, equal, unequal.

Onion-Sum: it manages the sum operator.

Onion-Search: it manages the string equality operator.

Onion-Single-Layer: a special type of Onion that supports

only a single Encryption Layer. It is recommended for columns

in which operations to be supported are known at design time.

Figure 2. Onions and layers structure

In our architecture, each plain database column is encrypted

into one or more encrypted columns, each one corresponding

to a different Onion, depending on the SQL operations that

must be supported on that column. The most external Encryp-

tion Layer of an Onion is called Actual Layer, which by default

corresponds to its strongest encryption algorithm.

Each data type is characterized by a default set of supported

Onions, depending on the operations supported by the data

type and the compatibility between the encryption algorithms

and the data type itself. Each database column can be de-

fined through three parameters: column name, data type, and

confidentiality parameters. The confidentiality parameters of

a column define the set of Onions to be associated with it,

and their starting Actual Layers. The Onions associated to

a column must be compatible with the column data type.

For example, integer columns can be associated to Onion-

Eq, Onion-Ord and Onion-Sum, because integer values sup-

port equality checks, order comparisons and sums, but they

cannot be associated to Onion-Search, which manages the

string equality operator. At the time of a table creation, the

database administrator (DBA) has the possibility to specify

only a column’s name and data type, as in normal relational

databases, because our architecture can automatically choose

37Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

the default set of Onions with regard to the column data type.

However, the DBA can also manually specify the confiden-

tiality parameters of a column, when the SQL operations to

be supported on the column are known at design time.

Fig. 3 represents an example of the Onions in the structure

of the encrypted database table. Each column’s Onion corre-

sponds to a different encrypted column. We have two columns:

an integer column id, with Onion-Eq and Onion-Ord, and a

string column name, with Onion-Search. We observe that the

representation of the encrypted table in this figure is just for

clarity, because in the real implementation the table and the

columns names should be encrypted too.

Figure 3. Onions in the encrypted database

The main benefit of the Onions is to allow our architecture

to adapt the level of data confidentiality to the current SQL

workload by decrypting an encrypted column’s outer Layer(s).

In such a way, it supports at runtime any SQL operation issued

by a user. We refer to the Onion adaptation process as the

automatic column re-encryption. The proposed architecture is

designed so that the column re-encryption is executed on the

cloud database through User Defined Functions (i.e., stored

procedures) that, when required, are automatically invoked by

the clients. Only trusted clients that know decryption keys can

invoke column re-encryption. For security reasons, they cannot

request any column re-encryption that would expose the Plain

Layer of an Onion. Hence, all information stored in the cloud

database is always encrypted, and the cloud provider does not

have access to plain data.

The two main phases involved in the column re-encryption

operation are re-encryption invocation on the client side and

the re-encryption execution on the cloud database side. We

describe these two phases with reference to Fig. 4.

Figure 4. Automatic column re-encryption

In the re-encryption invocation phase, the client examines

the plaintext query issued by the user (which can also be an

external application) and evaluates whether the involved SQL

operators (e.g., equality checks and order comparisons) are

supported with respect to the Actual Layers of the Onions

available on the involved columns. If it is necessary to adjust

the Actual Layer of one or more Onions in order to support the

operators, the client issues a request for re-encryption to the

cloud database through a stored procedure invocation. Only

trusted clients know the decryption key that is required by

the stored procedure to decrypt the outer Layer of the Onion.

The invocation phase is repeated for each column that requires

re-encryption.

In the re-encryption execution phase, the cloud database

engine executes a properly defined stored procedure that

diminishes the Actual Layer of an Onion by decrypting its

row values one by one. After the stored procedure execution,

the cloud database sends the information about its outcome

(success or failure) to the client that issued the request for re-

encryption. We observe that any new execution of the same

SQL operator on the column does not require to invoke the

re-encryption process again, because the cloud database does

not encrypt the Onion back to the upper Layer.

For example, let us consider a client that issues an SQL

operation involving an equality check on a column that has

only Onion-Eq with Actual Layer Rand. The Rand Encryption

Layer does not support any operator, and therefore the equality

check could not be performed on Rand. In the proposed archi-

tecture, a client is able to understand whether the issued query

involves an equality check, and therefore it can automatically

issue to the cloud database a request to lower down the

Actual Layer of Onion-Eq from Rand to Det (re-encryption

invocation), which supports the equality operator. After the

re-encryption execution, the cloud database sends to the client

the information about the outcome of the re-encryption.

We observe that the automatic column re-encryption mech-

anism is the most critical part of the proposal in terms of

deployment and performance. The deployment problem is

that the proposed solution requires to install some encryption

libraries on the cloud database, in order to allow the stored

procedures to be able to decrypt values with the proper

encryption schemes (the same used by the clients). Com-

patibility with possibly any cloud database can be achieved

by designing a column re-encryption mechanism that may

be disabled anytime. This solution preserves compatibility at

the price of losing adaptivity. The performance problem is

that re-encryption increases the response time for operations

requiring column re-encryption, especially if the column to be

re-encrypted consists of a large number of rows. In highly

dynamical contexts in which the SQL workload changes

frequently, this overhead may be severe.

C. Discussion

The proposed data confidentiality architecture is inspired by

the solutions presented in [8] and [7]. Nevertheless, this is the

first that allows to leverage adaptive encryption mechanisms

while avoiding the use of any intermediate (trusted) proxy

server to manage encryption details.

There are several benefits characterizing the proposed ar-

chitecture. It guarantees confidentiality of information stored

in the cloud database, while allowing the execution of SQL

operations over encrypted data. It simplifies database con-

figuration, because it does not require to manually define

38Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

at design time which operations should be allowed on each

column. It guarantees best level of data confidentiality for any

SQL workload, thanks to the automatic column re-encryption

mechanism. It does not require any intermediate (trusted)

proxy to manage encryption details.

We observe that adaptive encryption is also affected by

two major drawbacks. The first problem is that each plain

column must be encrypted into one or more encrypted columns

(Onions), thus increasing the overall database size up to one

order of magnitude. This cost may be considered acceptable,

or it can be reduced by the database administrator through a

suitable tuning of the confidentiality parameters. The second

problem is the performance overhead characterizing adaptive

encryption, that has to encrypt all parameters and decrypt the

results of every SQL operation through all the Encryption

Layers of each involved Onion. These costs prevent the use of

adaptive encryption methods on most real contexts. However,

in Section III we show that this overhead becomes less

significant when an encrypted database is used in the cloud,

because in these scenarios realistic network latencies tend to

mask the CPU time of expensive operations.

III. PERFORMANCE EVALUATION

A. Experimental Testbed

We design a suite of performance tests in order to evaluate

the impact of adaptive encryption methods on response times

and throughput for different network latencies (from 0 to 120

ms) and number of clients (from 5 to 20). The experiments

are carried out in Emulab [11], which provides us with a set

of machines in a controlled LAN environment. The TPC-C

standard benchmark is used as the workload model for the

database services.

In Emulab, we design and implement the testbed as a

simulated network that connects 20 clients with one server.

Each client machine runs the Python client prototype of

our architecture on a pc3000 machine having single 3GHz

processor, 2GB of RAM and two 10,000 RPM 146GB SCSI

disks. The server machine hosts a database server implemented

in PostgreSQL 9.1 on a d710 machine having a quad-core

Xeon 2.4 GHz processor, 12GB of RAM and a 7,200 RPM

500GB SATA disk. Each machine runs a Fedora 15 image.

The current version of the prototype supports the main SQL

operations (SELECT, DELETE, INSERT and UPDATE) and

the WHERE clause expressions. The prototype integrates the

following encryption algorithms (see Section II).

• Deterministic: implemented through the standard AES al-

gorithm [12] in CBC mode using a constant initialization

value (PyCrypto 2.6 library);

• Random: implemented through the standard AES algo-

rithm in CBC mode using a random initialization value

(PyCrypto 2.6 library);

• OPE: implementation based on the OPE algorithm pro-

posed by [4] and used by [8].

Hence, we implemented the following Onions: Onion-Eq,

Onion-Ord and Onion-Single-Layer.

In the PostgreSQL database server, the stored procedures

required for column re-encryption (see Section II) are imple-

mented with the PL/Python and the PL/pgSQL languages. The

PyCrypto 2.6 library has been installed in the database server

machine in order to support Rand Layer decryption, by using

the same functions defined in the client prototype.

In the experiments, we consider three TPC-C compliant

databases having ten warehouses and a scale factor of five.

• PostgreSQL Plain. This database contains plaintext data.

• Encrypted. This configuration refers to an encrypted

database where each column is defined as an Onion-

Single-Layer. This configuration improves system perfor-

mance, but does not guarantee adaptive encryption, be-

cause each data is encrypted through only one Encryption

Layer. Plain, Det, OPE and Rand algorithms are used.

• Adaptive Encryption. This database integrates Onion-Eq,

Onion-Ord and Onion-Single-Layer.

In the encrypted databases, each column is set to the highest

Encryption Layer required to support the SQL operations from

the TPC-C workload. In the adaptively encrypted database,

we consider the default configuration in which each column

is encrypted into all the Onions supported by its data type.

As expected, adaptive encryption schemes increment the

overall encrypted database size, but we consider acceptable

a larger database size if it guarantees data confidentiality in

a cloud environment. In particular, the size of the plaintext

database is 490MB, and the size of the adaptively encrypted

database is about 4.3GB.

During each TPC-C test lasting for 300 seconds, we monitor

the number of executed TPC-C transactions, and the response

times of all the SQL operations from the standard TPC-C

workload. We repeat the test for each database configuration

(plain, encrypted, and adaptively encrypted), for increasing

number of clients (from 5 to 20), and for increasing net-

work latencies (from 0 to 120). In order to guarantee data

consistency, the three databases have been set to repeatable

read (snapshot) isolation level [13]. Since the standard TPC-C

workload does not modify the database structure, the experi-

ments consider a situation in which the Onions Actual Layers

do not change dynamically at runtime.

B. Experimental results

The experiments aim to evaluate the overhead caused by

adaptive encryption and network latencies in terms of system

throughput and response time.

In Fig. 5, we report the number of committed TPC-C

transactions per minute executed on the three cloud databases.

The results refer to 5 and 20 active clients (Fig. 5a and Fig. 5b,

respectively) for different network latencies. We can appreciate

that in both cases (and in others not reported for space reasons)

the throughput of the encrypted database is close to that of

the plain database. Moreover, as the network emulated latency

increases, even the performance of the database with adaptive

encryption tend to that of the other two systems, and it is close

to that for latencies higher than 60ms, which are realistic for

typical cloud database scenarios. This is an extremely positive

39Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100 120

M
ea

n
co

m
m

itt
ed

 tr
an

sa
ct

io
ns

pe
r

m
in

ut
e

[tx
n/

m
in

]

Emulated latency [ms]

PostgreSQL Plain
Encryption

Adaptive Encryption

(a) Mean committed txn/m - 5 clients

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100 120

M
ea

n
co

m
m

itt
ed

 tr
an

sa
ct

io
ns

pe
r

m
in

ut
e

[tx
n/

m
in

]

Emulated latency [ms]

PostgreSQL Plain
Encryption

Adaptive Encryption

(b) Mean committed txn/m - 20 clients

Figure 5. Throughput of the three types of cloud database

 0.001

 0.01

 0.1

 1

 10

 100

Delivery Order
Status

Stock
Level

Payment New
Order

A
ve

ra
ge

 e
nc

ry
pt

io
n

tim
e

[m
s]

(a) Non adaptive configuration

 0.001

 0.01

 0.1

 1

 10

 100

Delivery Order
Status

Stock
Level

Payment New
Order

A
ve

ra
ge

 e
nc

ry
pt

io
n

tim
e

[m
s]

(b) Adaptive configuration

Figure 6. Average encryption times grouped by TPC-C transactions

result, because it demonstrates that adaptive encryption can be

realistically used in cloud database services. We observe that

the database throughput increases proportionally as a function

of the number of clients, because in our experiments the clients

do not saturate the database capacity.

In Fig. 6, we report two histograms in which we represent

the mean encryption times required by each SQL operation

composing the TPC-C workload. These results refer to the

mean time that is required by a client to encrypt the parameters

involved in each SQL operation of the TPC-C workload.

The results are grouped on the basis of classes of TPC-

C operations. The histogram in Fig. 6a considers the mean

encryption times in the non adaptive configuration, while the

other histogram in Fig. 6b considers the adaptive configuration.

We can observe how some SQL operations in the adaptive con-

figuration require higher encryption times with respect to those

of the non adaptive case. Further analyses show that the two

peaks in the non adaptive configuration (Fig. 6a) are related to

SQL operations which require OPE encryption, and that most

of the additional peaks in the adaptive configuration (Fig. 6b)

are related to INSERT operations combined with OPE en-

cryption. The OPE algorithm requires an encryption time that

is two or three orders of magnitude higher than that related

to Rand and Det algorithms [8]. In the adaptive encryption

configuration, if the database administrator does not specify

otherwise, every integer column is associated by default with

Onion-Eq and Onion-Ord (which has an OPE Layer). Hence,

every insertion of a value into an integer column requires an

OPE encryption, and this increases significantly the overall

encryption overhead. On the other hand, in the non adaptive

configuration, the OPE Layer is associated only to the columns

in which the database administrator explicitly requires the

support for order comparison operations. However, we observe

that most of the TPC-C queries encryption times have not been

affected by the introduction of adaptive encryption methods

(Fig. 6).

In the following set of experiments, we investigate the im-

pact of network latency on the SQL operations response time,

40Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

M
ea

n
R

es
po

ns
e

T
im

e
[m

s]

Emulated Latency [ms]

PostgreSQL Plain
Encryption

Adaptive Encryption

(a) SELECT - 10 clients

 0

 25

 50

 75

 100

 0 20 40 60 80 100 120

R
es

po
ns

e
T

im
e

O
ve

rh
ea

d
[%

]

Emulated Latency [ms]

Encryption
Adaptive Encryption

(b) SELECT overhead - 10 clients

Figure 7. Response time and overhead of the chosen SELECT operation (10 clients)

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

M
ea

n
R

es
po

ns
e

T
im

e
[m

s]

Emulated Latency [ms]

PostgreSQL Plain
Encryption

Adaptive Encryption

(a) INSERT - 10 clients

 0

 25

 50

 75

 100

 0 20 40 60 80 100 120

R
es

po
ns

e
T

im
e

O
ve

rh
ea

d
[%

]

Emulated Latency [ms]

Encryption
Adaptive Encryption

(b) INSERT overhead - 10 clients

Figure 8. Response time and overhead of the INSERT operation (10 clients)

with regard to the overhead caused by adaptive encryption. For

this reason, we evaluate the response time of the most popular

SELECT, DELETE, INSERT and UPDATE operations chosen

from the TPC-C workload.

In Fig. 7a and Fig. 7b, we report the mean response times

and the overhead of the chosen SELECT operation for 10

active clients as a function of increasing network latencies. The

overhead of encryption and adaptive encryption is measured

with respect to the plain database response time. These two

figures confirm that the response time is quite similar for any

type of database, and that the overhead of adaptive encryption

tends to be masked for latencies higher than 60ms. This is

an important conclusion because the results of the chosen SE-

LECT query are also representative of the performance related

to the chosen DELETE and UPDATE operations. Completely

different results are obtained for the chosen INSERT operation

in Fig. 8. In such a case, the adaptively encrypted version

of the cloud database has response time and overhead much

higher than those of the encrypted and plain databases. While

for the encrypted database we can have similar conclusions to

those achieved for the other SQL operations, the cost of the

chosen INSERT combined with adaptive encryption is very

high, and it remains high even for latencies superior to 120ms.

In order to understand the motivation of the overhead of

this adaptive INSERT, in Table I, we report the number of

encryptions (kE) required to encrypt the parameters of the

operations, and the number of decryptions (kD) required to

decrypt the results (if any), for each of the two configurations

of the cloud database: encrypted and adaptively encrypted. We

use the symbol E* to denote the number of OPE encryptions

in Table I, because the encryption time required by the OPE

algorithm is two or three orders of magnitude higher than that

related to Rand and Det algorithms [8]. From this table, we can

see that the high overhead of the INSERT in the adaptively

encrypted configuration is caused by the higher number of

encryptions required by the adaptive architecture to encrypt

all parameters of the different Onions, and by the very high

computational cost characterizing the OPE encryption.

41Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

TABLE I. NUMBERS OF ENCRYPTIONS (kE) AND DECRYPTIONS (kD)
INVOLVED IN THE CHOSEN SELECT AND INSERT OPERATIONS FOR
THE TWO ENCRYPTED DATABASE CONFIGURATIONS

Query Layers Non adaptive
configuration

Adaptive
configuration

SELECT

DET 2E 2E + 3D

OPE none none

RAND 3D 3D

INSERT

DET 2E 6E

OPE none 3E*

RAND 7E 7E

C. Main conclusions of the performance study

All experimental results show that network latencies higher

than 60 ms, which are typical of most cloud database en-

vironments, make the adaptive encryption overhead almost

negligible when considering the overall set of operations of

the TPC-C standard benchmark. However, in the adaptively

encrypted database configuration, for some SQL operations

involving the OPE encryption or for the encryption of a high

number of parameters through several Encryption Layers (e.g.,

INSERT), the impact on the response time is visible even

for network latencies higher than 120 ms. We can conclude

that the proposed approach must be improved for contexts

characterized by a large number of these operations. We are

working on parallelized encryption schemes through multi-

threading over different cores.

If we refer to a scenario for increasing numbers of clients,

we can observe that the (adaptive) encryption overheads (e.g.,

Fig. 7b and Fig. 8b) remain constant, while the cloud database

throughput (e.g., Fig. 5a and Fig. 5b) increases proportionally

as a function of the number of active clients.

It is worth to observe that the adaptively encrypted configu-

ration represents a worst case scenario, in which each database

column is encrypted into all the Onions supported by its data

type (each Onion is assumed at its highest Encryption Layer).

This is a scenario in which no user manually configure any

encryption detail, and our architecture automatically chooses

for each column all the supported Onions in order to guarantee

adaptivity. This completely adaptive configuration requires a

high number of encryptions and decryptions per query that

may affect system performance especially for some SQL

operations. On the other hand, the non adaptively encrypted

configuration represents a best case scenario, in which the

user manually defines which encryption scheme to use on each

database column (see Section II). This configuration guaran-

tees best performance, but no adaptivity. As a consequence,

we can claim that realistic workloads are characterized by

performance results falling between the two extreme scenarios

presented in this paper.

IV. CONCLUSION AND FUTURE WORK

We proposed an architecture that supports adaptive data

confidentiality in cloud database environments without re-

quiring any intermediate trusted proxy. Adaptive encryption

mechanisms have two main benefits: they guarantee at run-

time the maximum level of data confidentiality for any SQL

workload, and they simplify database configuration at design

time. However, they are affected by high computational costs

with respect to non adaptive encryption schemes.

This paper demonstrated that applying adaptive encryption

methods to cloud database services is a suitable solution, be-

cause network latency masks the overhead caused by adaptive

encryption for most SQL operations. If we consider the overall

set of queries belonging to the TPC-C standard benchmark,

the overhead becomes negligible for network latencies that

are typical of most intra-continental distances, and lower than

those of inter-continental distances that often characterize

cloud services.

Our results also show that the overhead of some SQL op-

erations requiring more encryption steps and more parameters

are not masked by Internet latencies. If the workload is char-

acterized by many similar operations, the present alternative is

to accept this cost when data confidentiality is more important

than performance. As a future solution, we are also studying

encryption parallelization solutions that can leverage multi-

threading over different processor cores.

REFERENCES

[1] H. Hacigümüş, B. Iyer, and S. Mehrotra, “Providing database as a
service,” in Proc. of the 18th IEEE International Conference on Data
Engineering, February 2002, pp. 29–38.

[2] T. Mather, S. Kumaraswamy, and S. Latif, “Cloud security and privacy:
an enterprise perspective on risks and compliance”. O’Reilly Media,
Incorporated, 2009.

[3] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
of the 41st annual ACM symposium on Theory of computing, May 2009,
pp. 169–178.

[4] A. Boldyreva, N. Chenette, and A. O’Neill, “Order-preserving encryp-
tion revisited: Improved security analysis and alternative solutions,” in
Proc. of the Advances in Cryptology – CRYPTO 2011. Springer,
August 2011, pp. 578–595.

[5] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Proc. of the Advances in Cryptology – EURO-
CRYPT99. Springer, May 1999, pp. 223–238.

[6] D. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proc. of the IEEE Symposium on Security and
Privacy, May 2000, pp. 44–55.

[7] L. Ferretti, M. Colajanni, and M. Marchetti, “Distributed, concurrent,
and independent access to encrypted cloud databases,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 99, no. PrePrints, 2013.

[8] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: protecting confidentiality with encrypted query processing,”
in Proc. of the 23rd ACM Symposium on Operating Systems Principles,
October 2011, pp. 85–100.

[9] L. Ferretti, M. Colajanni, and M. Marchetti, “Supporting security
and consistency for cloud database,” in Proc. of the 4th International
Symposium on Cyberspace Safety and Security. Springer, December
2012, pp. 179–193.

[10] O. Goldreich, Foundations of Cryptography: Volume 2, Basic Applica-
tions. Cambridge university press, 2004.

[11] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” in Proc. of the 5th
USENIX Conference on Operating Systems Design and Implementation,
December 2002, pp. 255–270.

[12] J. Daemen and V. Rijmen, The design of Rijndael: AES – the advanced
encryption standard. Springer, 2002.

[13] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha, “Making
snapshot isolation serializable,” ACM Transactions on Database Sys-
tems, vol. 30, no. 2, June 2005, pp. 492–528.

42Copyright (c) IARIA, 2013. ISBN: 978-1-61208-298-1

SECURWARE 2013 : The Seventh International Conference on Emerging Security Information, Systems and Technologies

