
Enhancing System-Called-Based Intrusion Detection with Protocol Context

Anyi Liu∗, Xuxian Jiang†, Jing Jin∗, Feng Mao‡, and Jim X. Chen∗
∗Department of Computer Science

George Mason University, Fairfax VA 22030
Email: aliu1, jjin3, jchen@gmu.edu
†North Carolina State University

Raleigh, NC 27695
Email: jiang@cs.ncsu.edu

‡EMC
Santa Clara, CA 95054

Email: fengmao@acm.org

Abstract—Building an accurate program model is chal-
lenging but vital for the development of an effective host-
based intrusion detection system (IDS). The model should be
designed to precisely reveal the intrinsic semantic logic of a
program, which not only contains control-flows (e.g., system
call sequences), but also data-flows as well as their inter-
dependency. However, most existing intrusion detection models
consider either control-flows or data-flows, but not both or their
interweaved dependency, leading to inaccurate or incomplete
program modeling. In this paper, we present a semantic flow-
based model that seamlessly integrates control-flows, data-
flows, as well as their inter-dependency, thus greatly improv-
ing the precision and completeness when modeling program
behavior. More specifically, the semantic flow model describes
program behavior in terms of basic semantic units, each of
which semantically captures one essential aspect of a program’s
behavior. The relationship among these semantic units can be
further obtained by applying the protocol knowledge behind
the (server) program. We show that the integrated semantic
flow model enables earlier detection and prevention of many
attacks than existing approaches.

Keywords-Intrusion detection; System calls; Protocol specifi-
cation; Context.

I. INTRODUCTION

Building an accurate program model is challenging but
vital for the development of an effective host-based intrusion
detection system (IDS). A strict model will likely generate
alerts with high false positives while a loose model might
not detect any advanced evasive attacks. To improve the
detection accuracy, a number of models [4], [5], [12] have
been proposed to precisely capture the intrinsic semantic
logic of a program. Particularly, due to the efficiency and
convenience in collecting system call logs as well as rich
semantics of collected logs, system calls have been widely
leveraged to build program models. For example, Forrest et
al. [7] uses normal system call sequences to model program
behavior and considers any violation as an intrusion; Gao et
al. [5] applies a gray-box approach to reconstruct program
execution graph and is able to detect anomaly system call
sequences when any inconsistency is observed; Sekar et al.
[1] leverages system call arguments to obtain a model that
describes the inherent data-flow dependency.

From another perspective, note that a program’s seman-
tic logic usually contains control-flows (e.g., system call

sequences), data-flows (e.g., system call argument rela-
tionships), and their inter-dependency. However, existing
techniques consider either control-flows or data-flows, but
not both, resulting in an inaccurate or incomplete program
modeling. This weakness could be potentially exploited by
advanced attackers to avoid their detection. For example,
Wagner et al. [13] demonstrates that the mimicry attack can
effectively evade the detection from system call sequence-
based models and related IDSes.

To address the weakness, we present a new semantic flow-
based model that naturally integrates control-flows, data-
flows, and their inter-dependency. Different from previous
program models, the semantic flow model describes program
behavior in terms of basic semantic units. With collected
system call sequences, arguments, as well as related run-
time context information, each semantic unit semantically
describes one essential aspect of a program’s behavior. In
addition, with the protocol knowledge behind the (server)
program, the interweaved dependency among these semantic
units can be naturally extracted and modeled. For example,
the possible data-control relation describes the dependency
from system call arguments to subsequent system calls and
the data-data relation reveals the inherent semantic depen-
dency among different system call arguments. Specifically,
when compared with existing approaches, our semantic flow
approach has the following three key advantages: (1) Logical
integration of control-flows and data-flows. (2) Protocol-
aware semantic analysis. (3) Early and accurate detection.

We have applied the semantic flow model to characterize
most popular server programs (e.g., httpd and ftpd).
For each one of them, we are able to observe those basic
semantic units and then construct their semantic relations.
The experimental results with real world attacks, including
both control-flow and data-flow exploits, show that the
semantic flow model can immediately detect them once any
violation to the normal semantic flow model occurs, result-
ing in much earlier detection and prevention than existing
approaches. We believe that the semantic flow model holds
great promise for more precise and complete host-based
intrusion detection.

103Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

II. RELATED WORK

To construct a program behavior-based anomaly detection
model, various approaches have been proposed. Starting
from the work of Forrest et al. [7], the black-box ap-
proaches [12], [13] model the normal program behavior
(e.g., based on system calls) and then detect intrusions
by identifying anomaly within observed system calls. The
white-box approaches apply static analysis on either source
code [9], [14] or binary [6] to build program models.
And the gray-box approaches further leverage the program
runtime information to improve the accuracy of anomaly
detection models [2], [4], [5]. Our work is more closely
related to data-flow anomaly detection [1], which examines
inherent data-flow dependencies among system call argu-
ments to make the model more robust. However, none of
the previous works utilizes protocol knowledge behind the
modeled program, which inspires our work to fully exploit
the semantic meanings of system call arguments and build
semantic dependencies among extracted semantic units. Our
approach makes one step further and allows to derive more
complicated semantic dependencies, e.g., data → control
and control → data relations. As such, our approach enables
the construction of more accurate and complete program
models for anomaly detection.

III. AN ILLUSTRATIVE EXAMPLE

In this section, we illustrate the semantic flow model with
a representative example, i.e., the Apache web server. For
each incoming web request, we can divide the corresponding
Apache behavior (or the httpd worker daemon) into the
following four logical phrases: (1) The Apache server waits
for a client request, and prepares a worker thread. (2) The
worker thread handles the request and process it. (3) The
server generates response for the incoming request. (4) After
the response is sent back to the clinet, the network socket
used for the communication is closed.

Figure 1 shows the Apache behavior when answering an
incoming request, both from a network/OS viewpoint as
well as the semantic flow viewpoint. Specifically, Figure
1(a) contains a list of invoked system calls as well as
their arguments while Figure 1(b) highlights some inherent
dependencies within these system calls and their arguments.
Instead of syntactically grouping adjacent system calls into
sequences or mining arguments for possible relationships,
the semantic flow model aims to leverage the protocol logic
that has been implemented by the modeled program to
characterize its behavior. In addition, we can verify the
program logic by reconstructing the implemented protocol
with semantic-sensitive information from observed system
calls, arguments, or other run-time context information.

The above example illustrates system calls and arguments
are strongly connected. The key to obtain their relationships
lies in protocol-aware semantic analysis. Partial analysis on
system call sequences or arguments without knowing their
semantic implications will lead to incomplete and imprecise
program modeling.

Session AssmblerProtocol Specification Model Generator Semantic Flow Model Detection ResultsNetworking PayloadTainter System Calls Enhanced Anomly Detection System
Figure 2. Overview of semantic flow model

IV. DESIGNING SEMANTIC FLOW MODEL

A. Terminologies

In this section, we first define the terminologies that will
be used throughout this paper.
• We denote the set of system calls and the set of system

call arguments as C = {ci | 1 ≤ i ≤ m} and A = {ai |
1 ≤ i ≤ n}, respectively. For simplicity, the return
value of a system call will be considered as one of its
arguments. We also represent the control-flow relation
Rc on C as Rc ⊆ C×C and the data-flow relation Rd

on A as Rd ⊆ A × A. Note that existing models that
are built upon {C,Rc} fall into the control-flow model
category and others built based on {A,Rd} belong to
the data-flow model category.

• We log system calls and save them as a record in the
form of sc = {n,A}, in which sc.n is the name of
the system call, sc.A is the set of arguments. When
processing system calls, we simply consider them as
an array sc. An argument sc[i].aj ∈ A is assigned
by a value and a semantic type, which denoted as
sc[i].aj .value, and sc[i].aj .type, respectively.

• The semantic set Ssem is the super set of system
calls and arguments and can be simply represented as
Ssem = 2C∪A. The semantic relation Rs on Ssem

is similarly denoted as Rs ⊆ Ssem × Ssem. We
call models build upon {Ssem,Rs} as semantic flow
models.

B. System Overview

Figure 2 shows our semantic flow-based intrusion de-
tection model, which has three main components: (1) The
session assembler propagate tainted networking payload to
invoked system calls within a networking session (Sec-
tion V-A); (2) The protocol selector leverages protocol
knowledge and matches semantic units with pre-defined
protocol specification (Section V-B); (3) The semantic flow
model generator will reconstruct semantic relations among
semantic units and build the program behavior model as
the corresponding semantic flow model (Section V-C). The
doted line circulated the major components.

V. METHODOLOGY

A. Networking Input Propagation

To correlate the networking traffic with system calls and
their arguments, we use tain techniques, which have been
discussed in [11], [15]. Specifically, we initially taint the
string in packet payload received by networking-related

104Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

Server

Send the file content

Ack

Network View OS View

Client

Request a file

W
ai

t f
or

 a
 r
eq

u e
st

H
an

dl
e

th
e

re
qu

es
t

C
lo
s
e
 c
o
n
n
e
c
ti
o
n

S
en

d
th

e
re

sp
on

se

1. accept (socket m) = s1

2. getsockname(s1)=0

3. getsockopt (s1)=0

4. read (s1, Message1)=sizeOf(Message1)

5. stat (“index.html”, T2)=0

6. open (“index.html”, RD)=fd1

7. mmap (fd1)=add1

8. close (fd1)

9. select(s1, RD)=0

10. write (s1, Message2)=sizeOf(Message2)

12. shutdown(s1, SHUT_WR)=0

13. read (s1, Buffer)=0

14. close (s1)

11. write(fd2, Log)=sizeOf(Log)

(a) Network and OS views

If (method == ‘GET’)

Message2.Code = 200 (OK)

Message2.Connection=Close

Message2.Length = file_size

System calls (9-10): Send the Response

System calls (1-4): Wait for Request

stat.filename = file_name

IF (stat.modify_time >= modify_time) {

 file_size stat.filesize

 open.filename = file_name

 mmap.length = file_size

}

System calls (5-8): Handle the Request

If (stat.modify_time

 >= modify_time)

file_name Message1.URI

modify_time Message1.Last_Modified

Shutdown.method =SHUT_WR

IF(Message.Co

nnection=close)

System calls (12-14): Close the Connection

Log.Code = Message2.Code

Log.Content_Length = file_size

System calls (11): Write to Local Log

(b) Semantic dependencies between system calls

Figure 1. The simplified network/OS view (left) and the semantic flow (right) of Apache when answering an incoming request. In the OS view, the
recorded system calls are sequentially labeled (some of them are omitted for readability). The semantic flow highlights some inherent dependencies among
invoked system calls and their arguments.

system calls, such as sys socket. We also instrument the
data movement instructions (e.g., mov) and arithmatic/logic
instruction (e.g., add, mul, and), such that the tainted
string can be propagated through the lifetime of string
processing. For a data movement instruction, we check
whether the source operand is marked. If yes, we will
annotate the destination operand, which can be a register
or a memory location, with the source operand’s annotation,
i.e. its offset in the original message. If the source operand is
not marked, we will simply unmark the destination operand.
If two marked operands appear in the same instruction, we
will union their annotations (e.g., for the add operation, the
result is the union of the operands if they are both marked).

Then, we need to re-map system call arguments based on
semantic types, based on the protocol specification. Semantic
types are used to more precisely capture the semantic mean-
ing of system call arguments as they cannot be naturally
obtained from the original argument types according to the
neutral system-wide system call convention. An an example,
the first argument of the open system call, which originally
defined as a string, is now redefined as the Filename
semantic type. Its return value will be similarly redefined
as the semantic type FileDescriptor, instead of int.

Name Filename Flag FileDescriptor
open ‘‘/etc/passwd’’ ‘‘RD’’ 6

Besides the knowledge of system call convention, we
further use protocol specification to extend our knowledge
of semantic meaning. We used the technique in [10] to dis-
cover protocol formatting specification. In the following, we
illustrate the snippet of SERVICE_REQUEST specification
for the HTTP protocol.

<SERVICE_REQUEST>
SYSCALL = Read(FD, BUFFER, RET)
FD = %Accepted_Socket
BUFFER =((GENERAL_HEADER|REQUEST_HEADER)\13\10)*\13\10
GENERAL_HEADER = %Method %URI %Dummy\13\10
REQUEST_HEADER = From|Host|If-Match|Last-Modified...=\%VALUE
RET = sizeOf(BUFFER)

Recall the read system call in the line 4 of Figure 1(a). We
can capture its semantic meaning with the above protocol
specification. More specifically, the file descriptor equals
to the accepted socket number after accepting the incom-
ing request. The argument BUFFER contains two fields,
GENERAL_HEADER and REQUEST_HEADER, each of them
can be further parsed into various sub-fields and eventually
casted into more specific semantic types. For example, the
REQUEST_HEADER field can be analyzed based on the
following format:

From: Type = Email, Format = %username@%hostname
Host: Type = IP|Host_Name, Format = %{4B}|String
Last-Modified: Type = Date, Format = Timestamp

The first line states that the From field should be parsed
as an email address. The second line specifies that the Host
field should be defined as an IP address or a host name. The
third line is to define the type of Last-Modified field
as the default timestamp format.

B. Algorithm for Constructing Semantic Units

To describe the high-level functionalities of a networking
protocol, we introduce the concept of user session S to rep-
resent a execution path of one server program, and semantic
unit U , which intended to capture one essential aspect of
modeled program behavior. As an example, the accept
and the close system call are the starting point and the
ending point of the user session shown in Figure 1. Semantic
units comprises of a number of system calls, their arguments,
as well as return values. In our current implementation, we
organize semantic units from adjacent system calls based on
whether they share the same file descriptors, filenames, or
network sockets. In other words, adjacent system calls that
manipulate the same file descriptor, filename, or network
socket will be grouped to the same semantic unit. For
example, the following system call sequence is a semantic
unit as the three system calls open, read, and close are

105Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

used to access a file named “/etc/passwd” by referring to
the same file descriptor.

open("/etc/passwd", RD)=6,
read(6, buf)=123,
close(6)=0

Algorithm 1: SemanticUnitExtraction(sc, U)
input : A system call sc, and the semantic unit

array U .
output: The updated array of semantic units U .

begin
for i=1 to N do

for j=1 to M do
if sc.ai.type = U [i].aj .type and
sc.ai.value = U [i].aj .value then

U [no of su] = UNION(U [i], sc);
break;

else
no of su++; instantiate
U [no of su];
U [no of su] = sc;
break;

end

With collected system calls, our algorithm SemanticU-
nitExtraction(sc, U) groups them into different semantic
units. The algorithm works as follows: It maintains a global
variable no of su (initialized with 0) that keeps the current
number of semantic units in S. For each collected system
call sc, the algorithm will be check whether it is a member
of the existing semantic unit U [no of su]. If yes, it will be
added to U [no of su] (via the UNION(U[i], sc) function)
and the global variable remains intact. Otherwise, a new
semantic unit will be created and the no of su will be
incremented by 1. We need to point out that adjacent
system calls manipulate the same file descriptors, file names,
or sockets will be grouped into the same semantic unit.
However, not all system calls that manipulate the same file
descriptor, filename, or socket will be included into the same
semantic unit. This design choice makes the Algorithm 1
easy to implement.

Example 1 We illustrate the algorithm by revisiting the
simplified httpd case in Section III. First, when the first
system call – accept – is encountered, it will be included
in a new semantic unit U1. The following three system calls
(at line 2-4) will also be grouped into the same semantic unit
U1 as they essentially wait for (and then receive) incoming
requests and manipulate the same socket (as the accept
system call). After that, the stat system call at line 5 will
start with a new semantic unit U2 as it is not related to
the previous socket, and their main purpose is to handle the
request. Moreover, since the following system calls at lines
6-8 handles the same file named “index.html” with the stat
system call, they will join with the second semantic unit
because they send back the response to the requesting client.
In a similar manner, system calls at line 9-10 (U3) send back
the response to the requesting client; the requesting behavior

is locally recorded at line 11 (U4); and the communication
channel is finally shutdown and closed at lines 12-14, U5).

C. Constructing Semantic Specification

Different from previous approaches that solely depend on
either control-flow or data-flow relations, a semantic relation
flow Rs covers the inter-dependencies between them. In
this paper, we focus our semantic flow relations in three
categories: Data → Control, Data → Data, and Control →
Data, which illustrate in Table I.

VI. EVALUATION

We have implemented a proof-of-concept system that runs
on the Fedora 13. The system calls, arguments, and return
values are collected with a customized loadable Linux kernel
module (LKM). The experiments are performed on a PC
with Intel Core 2 Due 2.83GHZ CPU and 2G physical
memory.

A. Effectiveness

We evaluate the effectiveness of our approach with a
number of real-world attacks that are publicly obtained from
[3]. Table II contains the list of five experimented server
programs as well as attacks exploiting their vulnerabilities.
Within these attacks, two of them are control-flow attacks
which directly hijack the control flow of vulnernable pro-
grams, while the other three are data-flow attacks that are
able to manipulate security-critical data to evade traditional
detection techniques. Since server programs of wu-ftpd
and ghttpd are vulnerable to both control-flow and data-
flow attacks, we simply use a subscript to differentiate them.
For instance, we use wu-ftpd1 to represent the control-flow
attack and wu-ftpd2 to represent the data-flow attack against
wu-ftpd.

In the following, we use three examples to show that how
the three types of semantic relations, i.e., Data → Control,
and Data → Data are used to detect attacks.

Data → Control Violation Detection All versions of wu-
ftpd before 2.6.1 contain a vulnerability that can be exploited
to trigger a heap corruption vulnerability (CVE-2001-0550).
The vulnerability is located in the ftpglob function, which
fails to properly handle the FTP commands and consequently
allows remote attackers to execute arbitrary commands via
a ∼ { argument [16].

Figure 3(a) shows the related semantic flow specification
that will be violated by this attack. More specifically, there
exist three related semantic units for the exploited wu-ftpd
sub-session. The first semantic unit receives the command
request from the client and interprets it to be a CWD
command. The following semantic unit will actually execute
the CWD command by invoking the chdir system call. The
return value of chdir will determine the code field that
will be later sent back to the client in the third semantic
unit. The code field essentially notifies the client whether
the operation is successful or not.

Our approach detected this attack when the server sent
its response to the client via a write system call. Based
on the ftp protocol, the raw command CWD pathname

106Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

Category Subcategory Meaning Example

Single data to control relations Relations that a single argument determines fol-

lows system calls

In ftp protocol, the argument CWD determines system call

chdir

Data → Control Multiple data to control relations Multiple arguments together determine system

calls later

The readfds and writefds arguments of select system call

determine the following read or write system call

Number of loops relations Relations that arguments determine the number

of system calls that will appear later

The argument st_size of system call stat determines the

number of write system calls be invoked later

Logical relations Relations that a single argument might deter-

mine future system calls

The return value of -13 (meaning Permission denied) of

open determines the error code 304 in the reply buffer.

Data → Data Numeric relations Relations that evaluate two numeric values v1

and v2

LargerThan(v1, v2), SmallerThan(v1, v2), EqualTo(v1, v2)

Timing relations Relations evaluate two timing values d1 and d2 Before(d1, d2), After(d1, d2), and At(d1, d2)

Control → Data Relations determine system calls to system call

arguments

The system call write determines certain keywords in the

reply buffer, such as Code, Connection, and Length

Table I
SEMANTIC RELATIONS Rs IN OUR FRAMEWORK

Program Reference Attack description Program Total # of # of system calls Violation

(version) size(KB) system calls in attack session

wu-ftpd1(2.6.1) CVE-2001-0550 Heap corruption allows execute arbitrary commands via 2916 1372 2 Data → Control

a ∼ { argument to commands

ghttpd1(1.4) CAN-2001-0820 Long arguments passed to the Log function in util.c 311 27 20 Data → Control

allows attackers to get shell

wu-ftpd2(2.6.0) S.Chen et al. [3] Format string overwrite user ID 2916 15754 8 Data → Data

ghttpd2(1.4) S.Chen et al. [3] Stack overflow to overwrite backup value of ESI 311 105 14 Control → Data

null-httpd(0.5) S.Chen et al. [3] Two POST commands corrupt CGI-BIN configure string 806 230 72 Data → Data

Table II
VULNERABLE SERVERS AND REAL-WORLD ATTACKS USED IN OUR EVALUATION

allows the client to change the current working directory
to pathname. As such, in our semantic flow specification
(Figure 3(a)), the semantic unit U2 will invoke the system
call chdir. After invoking the chdir, the server will
notify the client with the return code either 250(indicating
“the CWD command is successful”), or 550(meansing “No
such file or directory”).

When considering the actual attack sequence, it violates
at least twice our semenatic flow specifications: First, there
does not exist a subsequent chdir system call. Second, the
response message will usually contain return code of 250 or
550. For previous approaches that detect control injection
attacks, the same attack could be detected when the attack
invokes the execve system call to obtain a command shell
(“/bin/sh”), which is much later than the detection point by
our approach. Figure 3(b) shows the difference between the
detection point by our approach and the detection point by
other approaches.

Data → Data Violation Detection The same wu-ftpd
server (versions 2.6.0 and earlier) contains another vulner-
ability, i.e., a format string bug (CVE-2000-0573), which
can be exploited with a specially-crafted string to the SITE
EXEC command. Instead of overwriting the return address

on the stack, this attack use format string to overwrote a
security-critical variable pw → pw uid to 0. After that, the
attack further established another data connection and issues
a get command, which essentially invoked the function
getdatasock() in the wu-ftpd server. Due to the corruption
of pw → pw uid, the execution of the function will set the
EUID of the process to 0, elevating the process privilege
to the super-root. As such, an originally non-privileged user
is able to access the system with the root privilege. This
overall exploitation is a typical data-flow attack [3].

It is interesting to point out that data-flow-based anomaly
detection is also able to detect this attack. As dis-
cussed in [1], this attack can be detected as a vio-
lation of the equality relation between the seteuid
system call and another setuid system call (in func-
tion pass()). However, the root cause of this attack is
that the attacker crafts a format string, in the form as
SITE EXEC aaabcd%.f%.f%.f%...%d...|%.8x, to over-
write pw → pw uid to 0. And our semantic flow-based
detection is able to identify this attack when the Equal
relation between the file name execve invoked and the
file name in reply message is been violated, which is earlier
than the previous detection point.

107Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

#U1: Receive a client request U1(Message){SWITCH(CMD)CASE (“CWD”){ PARAMETER = pathname;CALL U2(chdir,PARAMETER);}……#U2: Handle the requestU2(SYSCALL, PARAMETER) {IF(chdir(PARAMETER).ret < 0){/* No such file or directory */Code= 550; } ELSE{/* The CWD command succeeds */Code = 250;}}#U3: Send the replyU3(CMD, Code){write.Message.cmd = CMD;write.Message.code = Code;}…...
…...

(a) Partial semantic specification for wu-ftpd

Others’ detection points
#Other normal system calls……read(0, "CWD ~{\10././././././.\10.\10000….\10", 1024) = 7 write(1, "$\10sP\10$", 4) = 4read(0, “3U/AF3E…..”, 255) = 72setreuid(0, 0) = 0mkdir (“T”, 237)=0chroot(“T”)=0chroot()=0execve(“//bin/sh”, addr, 00000000)Our detection point

(b) Logged (attack) system calls and the detection points

Figure 3. A control-flow attack based on the wu-ftpd heap corruption
vulnerability (CVE-2001-0550): The system call sequences shown in Figure
3(b) violates the semantic specification in Figure 3(a).

VII. CONCLUSION

In this paper, we have presented a semantic flow-based
host intrusion detection model that seamlessly integrates
control-flow and data-flow dependencies. When compared
with existing approaches, which only focus on control-flows,
or data-flows but not both, our approach greatly improves the
accuracy and completeness of the obtained program behavior
models. An efficient algorithm is presented to accurately
extract basic semantic units, each of which characterizes
an essential aspect of the modeled program behavior, and
then obtain the semantic dependencies among them. Our
experimental results show that our model enables earlier
detection and prevention of many attacks than existing
approaches and holds great promise for more precise and
complete host-based intrusion detection.

ACKNOWLEDGMENT

We would like to thank Zhiqiang Lin from Purdue Uni-
versity for providing the source code of AutoFormat, the
networking protocol reverse engineering tool.

REFERENCES

[1] S. Bhatkar, A. Chaturvedi, and R. Sekar. “Dataflow Anomaly
Detection”. In S&P ’06: Proceedings of 2006 IEEE Sympo-
sium on Security and Privacy, Oakland, CA, USA. pp. 48-62.
May 2006.

[2] M. D. Bond, V. S. Kathryn, S. McKinley, V. Shmatikov. “Ef-
ficient Context-Sensitive Detection of Real-World Semantic
Attacks”. In PLAS ’10: Proceedings of the 5th ACM SIG-
PLAN Workshop on Programming Languages and Analysis
for Security. pp. 1-10. ACM, 2010

[3] S. Chen, J. Xu, E. Sezer, P. Gauriar and R. Iyer. “Non-
Control-Data Attacks Are Realistic Threats”. In USENIX
Security ’05: Proceedings of the 14th USENIX Security
Symposium, Baltimore, MD, USA. pp. 177-192. August 2005.

[4] H. Feng, J. Giffin, Y. Huang, S. Jha, W. Lee, and B. P. Miller.
“Formalizing sensitivity in static analysis for intrusion detec-
tion”. In S&P ’04: Proceedings of 2004 IEEE Symposium on
Security and Privacy, Oakland, California, USA, pp. 194-208.
May 2004.

[5] D. Gao, M.K. Reiter and D. Song. “Gray-Box Extraction
of Execution Graphs for Anomaly Detection”. In CCS ’04:
Proceedings of the 11th ACM Conference on Computer and
Communications Security. Washington, DC, pp. 318-329.
October 2004

[6] J. Giffin, S. Jha, and B. Miller. “Efficient contextsensitive
Intrusion Detection”. In NDSS ’04: Proceedings of The 11th
Annual Network and Distributed System Security Symposium,
San Diego, CA.

[7] S. A. Hofmeyr, S. Forrest, and A. Somayaji. “Intrusion
Detection Using Sequences of System Calls”. Journal of
Computer Security (JCS), 6(3):151-180, 1998.

[8] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. “On the Detec-
tion of Anomalous System Call Arguments”. In ESORICS’03:
Proceedings of the 8th European Symposium on Research in
Computer Security. Gjovik, Norway, pp. 101-118. October
2003

[9] L. C. Lam and T. Chiueh. “Automatic Extraction of Accu-
rate Application-specific Sandboxing Policy”. In RAID ’04:
Proceedings of the 7th International Symposium on Recent
Advances in Intrusion Detection. French Riviera, France. pp.
1-20.

[10] Z. Lin, X. Jiang, D. Xu, and X. Zhang. “Automatic Protocol
Format Reverse Engineering Through Context-Aware Mon-
itored Execution”. In NDSS ’08: Proceedings of the 15th
Network and Distributed System Security Symposium, San
Diego, CA, February 2008

[11] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, D.
Song. “A Symbolic Execution Framework for JavaScript”. In
S&P ’10: Proceedings of IEEE Symposium on Security and
Privacy, Oakland, California, USA, May 2010.

[12] R. Sekar, M. Bendre, P. Bollineni and D. Dhurjati. “A Fast
Automaton-Based Method for Detecting Anomalous Program
Behaviors”. In S&P ’01: Proceedings of 2001 IEEE Sympo-
sium on Security and Privacy, Oakland, California, USA. pp.
144re-155. May 2001.

[13] D. Wagner and P. Soto. “Mimicry attacks on host-based
intrusion detection systems”. In CCS’02: Proceedings of the
9th ACM Conference on Computer and Communications
Security, Washington, DC, USA. pp. 255-264. Noverber 2002.

[14] D. Wagner and D. Dean. “Intrusion Detection via Static
Analysis”. In S&P’01: Proceedings of 2001 IEEE Symposium
on Security and Privacy, Oakland, California. May 2001.

[15] H. Yin, D. Song, E. Manuel, C. Kruegel, and E. Kirda.
“Panorama: Capturing system-wide information flow for mal-
ware detection and analysis”. In CCS’07: Proceedings of the
14th ACM Conferences on Computer and Communication
Security, pp. 116-127. October 2007.

[16] Wu-ftpd vulnerability. http://www.securityfocus.com/bid/
3581/references (June 2, 2011)

108Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

