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Abstract—Consider an area that is covered by a wireless sensor
network whose purpose is to detect any intruder trying to cross
through the area. The sensors can be divided into multiple
subsets, known as barriers. The area remains protected, or
covered, by a sensor barrier if the barrier divides the area into
two regions, such that no intruder can move from one region into
the other and avoid detection. By having only one barrier active
at any time, the duration of the coverage is maximized. However,
sensor barriers may suffer from breaches, which may allow an
intruder to cross the area while one barrier is being replaced
by another. Breaches are not dependent on the structure of an
individual sensor barrier. Instead, they are dependent on the
relative shape of two consecutive sensor barriers. In this paper,
the best-performing centralized heuristic for breach-free barriers
is transformed into a distributed protocol. Furthermore, the
protocol is stabilizing, i.e., starting from any state, a subsequent
state is reached and maintained where the sensors are organized
into breach-free barriers. A detailed proof of the stabilization of
the protocol is also given. Finally, it is shown how the barriers
can organize themselves into a sleep-wakeup schedule without
centralized support.
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I. INTRODUCTION

Earlier work [1] outlined a distributed protocol for ob-
taining a set of breach-free sensor barriers in a fault-tolerant
manner. In particular, the protocol in [1] is stabilizing. In this
paper, the protocol is presented in greater depth, and a detailed
proof that the protocol is stabilizing is also given. In addition,
a final component of the heuristic that was left in [1] for future
work is developed. Before presenting the protocol, the concepts
of sensor barriers, breach-free sensor barriers, and stabilizing
protocols are overviewed below.

A wireless sensor network consists of a large number of
sensor nodes distributed over a geographical area. Each sensor
has a limited battery lifetime, and is capable of sensing its
surroundings up to a certain distance. Data that is collected
by the sensors is often sent over wireless communication to a
base station [2].

The type of coverage provided by the sensors is either full
or partial. In full-coverage, the entire area is covered at all
times by the sensor nodes, and thus, any event within the area
is immediately detected [3] [4] [5] [6]. Partial coverage, on
the other hand, has regions within the area of interest that are
not covered by the sensors [7] [8] [9].

One form of partial coverage that received significant
attention due to its application to intrusion detection is barrier

coverage [10] [11] [12] [13] [14] [15] [16] [17]. A barrier is
a subset of sensors that divide the area of interest into two
regions, such that it is impossible to move from one of the
regions to the other without being detected by at least one of
the sensors. Fig. 1(a) highlights a subset of sensors that provide
barrier coverage to a rectangular area such as a corridor in
a building. The users are located at one end of the corridor
(called the bottom of the area) and possible intruders may
arrive via the opposite end (called the top of the area).

In the specific case of intrusion detection, providing full
coverage is not an efficient use of the sensor resources, and
leads to a reduced network lifetime. Instead, multiple sensor
barriers can be constructed, as illustrated in Fig. 1(b). Only one
barrier needs to be active at any moment in time; the remaining
barriers can remain asleep in order to conserve energy. When
a barrier is close to depleting all of its power, another barrier
is placed in service. Given a set of sensors deployed in an
area of interest, finding the largest number of sensor barriers
is solvable in polynomial-time [12].

Sensor barriers are susceptible to a problem, known as a
barrier-breach, in which it is possible for an intruder to cross
an area during the time that one barrier is being replaced
by another [18] [19]. The existence of a barrier-breach is
dependent not on the structure of an individual sensor barrier,
but on the relative shape of two consecutive sensor barriers.
The complexity of obtaining the largest number of breach-free
sensor barriers is an open problem. Thus, heuristics have been
presented in [18] [19].

An additional heuristic that outperforms those of [18] [19]
was presented in [20]. This heuristic, as well as those in [18]
[19], are centralized.

In [1], the centralized heuristic from [20] is transformed
into a distributed protocol, where the sensor nodes organize
themselves into breach-free barriers. In addition to being
distributed, the solution is self-stabilizing [21] [22] [23] [24],
i.e., starting from any arbitrary state, a subsequent state is
reached and maintained where the sensors are organized into
breach-free barriers. A system that is self-stabilizing is resilient
against transient faults, because the variables of the system can
be corrupted in any way (that is, the system can be moved
into an arbitrary configuration by a fault) and the system will
naturally recover and progress towards a normal operating
state.

In this paper, the distributed solution of [1] is presented
in greater detail and in a manner that is easier to follow. In
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Figure 1. Sensor barriers.

addition, a detailed proof is given that the solution is indeed
stabilizing. Finally, a feature of the protocol that in [1] was
left for future work is explored and developed. Namely, the
barriers organize themselves into a sleep-wakeup schedule
without centralized support.

The paper is organized as follows. Section II reviews
the concept of a barrier breach, and the centralized heuristic
for breach-free barriers. In Section III, the basic mechanisms
necessary to obtain a distributed version of the heuristic are
discussed. Notation for the specification is given in Section
IV, followed by the specification itself in Section V. A quick
overview of the proof is given in Section VI. The detailed proof
is given in the appendix. The specification of the component
that allows the barriers to organize themselves into a sleep-
wakeup schedule is given in Section VII, followed by the
conclusion and future work in Section VIII.

II. RELATED WORK AND BACKGROUND ON BARRIER
BREACHES

A. Motivation
The problem of barrier breaches can be seen through the

example in Fig. 1(b). The figure shows four different sensor
barriers, with each barrier displayed with different line types.

Let us assume that the lifetime of each sensor is one
time unit. Furthermore, assume all sensor nodes are operating
simultaneously. In this case, the lifetime of the network is
simply one time unit, after which an intruder is able to
penetrate the area and reach the users.

An alternative approach is to divide the sensors into multi-
ple barriers. In the example above, the sensors are divided into
four barriers, B1 through B4. Each of these barriers divides
the area into two horizontal sections. If the barriers are used
in a sequential wakeup-sleep cycle (B1, B2, B3, and finally
B4), the users are protected for a total of four time units.
Obviously, while transitioning from barrier Bi to barrier Bi+1,
there has to be a small amount of time during which both
barriers are active. Otherwise, an intruder can reach the users
at the moment barrier Bi is deactivated.

Although advantageous in terms of network lifetime, there
is a potential drawback to this approach. Consider Fig. 1(c),
where specific points in the plane have been highlighted.
(a) The order in which the barriers are scheduled makes a

significant difference, in particular, for barriers B1 and B2.

If B2 is scheduled first, followed by B1, then an intruder
could move to the point highlighted by a diamond, and
after B2 is turned off, the intruder is free to cross the
entire area.

(b) Only one of B3 and B4 is of use. To see this, suppose that
B3 is activated first. In this case, the intruder can move to
the location of marked by the black star. Then, when B4

is activated and B3 deactivated, the intruder can reach the
users undetected. The situation is similar if B4 is activated
first, and the intruder moves to the location of the grey star.

B. Definitions
The original definition of a barrier breach was given in

[18], as follows.
Definition 1: (Barrier-Breach). An ordered pair (B1, B2)

of sensor barriers have a barrier breach if there exists a point
p in the plane such that:

(a) p is outside the sensing range of B1 and B2,
(b) B1 cannot detect an intruder moving from the top of the

area to p, and
(c) B2 cannot detect an intruder moving from p to the bottom

of the area.

Before presenting our heuristic from [20], some back-
ground definitions given in [20] are reviewed.

Definition 2: (Ceilings and Floors) Given that a sensor
barrier B divides the area of interest into an upper region and
a lower region,

• The ceiling of B consists of all points p along the
border of the sensing radius of each sensor in B such
that one can travel from p to any point in the upper
region without crossing the sensing area of any sensor.

• The floor of B consists of all points p along the border
of the sensing radius of each sensor in B such that
one can travel from p to any point in the lower region
without crossing the sensing area of any sensor.

As an example, consider the sensor barrier depicted in Fig.
2(a). The ceiling and floor of this barrier are depicted in Fig.
2(b), where the ceiling is depicted with a solid line and the
floor with a dashed line.
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Figure 2. Ordered-ceilings method.

Using these definitions, a condition can be obtained that
guarantees that a breach is not present [20].

Lemma 1: (Breach-Freedom) An ordered pair (B1, B2) is
breach-free iff the floor of B2 is below the ceiling of B1.

This can then be used to ensure that an intruder does not
reach the users, as follows. A schedule, i.e., a sequence, of
barriers (B1, , B2, . . . , Bn) is said to be non-penetrable if there
is no sequence of moves that an intruder can make to reach
the users without being detected by any of the barriers during
the lifetime of the schedule.

Theorem 1: (Non-Penetrable) A schedule
(B1, B2, . . . , Bn) of sensor barriers is non-penetrable
iff, for each i, 1 ≤ i < n, the ordered pair (Bi, Bi+1) is
breach-free [20].

Consider for example Fig. 1(c). The pair (B1, B2) does not
have a barrier breach because the floor of B2 never crosses
over the ceiling of B1. The pair (B2, B1) does have a breach.

Note also that both (B3, B4) and (B4, B3) have a breach.
Thus, they cannot be scheduled one after the other. This,
however, does not preclude them from being in a schedule
together (although not in the network in Fig. 1). For example,
assume that more sensor nodes are added to form a new barrier
(that is, from the left border of the area to its right border) and
the sensors run along the middle of B3 and B4, closing the
gaps between these barriers. If this new barrier is B′, then the
schedule (B3, B

′, B4) is a non-penetrable schedule.

C. Disjoint Paths Heuristics
As mentioned above, several heuristics have been devel-

oped to obtain breach-free barriers. The heuristics presented
in [18] [19] [25] are based on using a variant of maximum
network flow to find the largest number of node-disjoint (i.e.,
sensor-disjoint) paths (i.e., barriers) that begin on the left side
of the area and terminate on the right side of the area.

In [20], a heuristic known as the ordered ceilings heuristic
is proposed, and it is shown to outperform the heuristics in [18]
[19] [25]. The only exception is when the number of sensors
per unit area is unreasonably high, in which case the heuristic
of [25] outperforms the ordered ceilings heuristic.

D. Ordered Ceilings Heuristic
The ordered ceilings heuristic, which is the focus of this

paper, is a centralized method that is based on the following
observation that follows from the above theorem.

Observation 1: If a set of m sensor barriers does not
have a pair of barriers whose ceilings intersect, then a non-
penetrable schedule exists of duration m by scheduling the
sensor barriers in order from top to bottom.

The heuristic simply finds each barrier iteratively as fol-
lows. Consider the set of all sensor nodes as a barrier, and
obtain its ceiling. The first barrier consists of all sensor nodes
that take part of this ceiling. These nodes are then removed
from the network, and a new ceiling is obtained, which yields
a new barrier, etc.. Fig. 2(c) shows a sample sensor network
and the three barriers resulting from the heuristic.

III. DISTRIBUTED IMPLEMENTATION

In this section, the method used to transform the centralized
heuristic into a distributed protocol is presented. Assumptions
about the network model are presented first, followed by the
steps to perform this transformation.

A. Model
Each sensor node is assumed to be equipped with a global

positioning system (GPS) or other means by which it can infer
its location. The sensing area of each node is assumed to form
a circle, or can be approximated by the largest circle within its
sensing area. The area of interest is assumed to be rectangular,
as shown in Fig. 1, and each sensor is able to determine if its
sensing area overlaps either the left or right border of the area
of interest. Finally, it is assumed that nodes whose sensing
range overlap are able to communicate wirelessly with each
other, i.e., the transmission range is greater than twice the
sensing range.

The batteries used by the sensors are assumed to be
rechargeable, by means such as solar cells or by a station
transmitting microwaves, and thus the network can run con-
tinuously. However, being actively sensing depletes the battery
of the sensor. Sensors must therefore have a period of rest to
recharge. However, self-stabilizing systems are assumed to run
continuously, otherwise, they would not have time to recover
from a transient fault.

Thus, by the above reasons, it is assumed that the network
operates as follows. If there are n barriers constructed, then
each barrier, from top to bottom, is activated sequentially. By
the end of the lifetime of barrier n, the first barrier has had
enough time to recharge to the level to be reactivated, and the
schedule continues.
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Figure 3. Neighbor relationships.

There is of course a period of vulnerability when switching
from barrier n to barrier 1, since an intruder that moved closer
to barrier n could reach the users once the barrier switch is
performed. It is expected that the users are aware of the time at
which this vulnerability occurs, and they will take additional
protection measures during this time.

Finally, sensor nodes, whether actively sensing or not, must
wake up at specified intervals and exchange messages with
their neighbors to maintain or correct their state.

B. Method
Consider Fig. 3(a). Any two sensor areas that overlap

each other will intersect at only two points. These points are
viewed as “edges” (P,Q) and (Q,P ). These edges are directed
according to clockwise order, as indicated in the figure. Hence,
the top intersection point corresponds to edge (P,Q) (from P
to Q), while the bottom intersection point corresponds to edge
(Q,P ) (from Q to P ).

To form a barrier, a node whose sensing range overlaps the
left border finds the outgoing edge clockwise that is closest to
its point on the left border. This edge points to the next node
on the barrier. This is process is then repeated. That is, the
second sensor node chooses the edge that is closest clockwise
the the incoming edge of the previous node, and so on. The
process continues until the right border is found.

As an example, consider again Fig. 2(a). The node over-
lapping the border begins by choosing as the next barrier node
its neighbor higher up as opposed to its neighbor below. This
is because the edge to the higher up neighbor occurs first
clockwise, with respect to the point on the border, than the
edge to the neighbor below. The process repeats, with the
node higher up choosing the first clockwise outgoing edge
(relative to the incoming edge of the previous node). The
border obtained is given in Fig. 2(b), which corresponds to
the ceiling of the nodes.

An interesting observation is that the ceiling may come
back to the original node. This is the case in Fig. 2(a), but
not in Fig. 2(c). This is illustrated more clearly in Fig. 3(b).
Consider the barrier drawn with solid lines. When the barrier
construction reaches sensor R, the next sensor in the barrier
is directly above it. As the barrier continues to be built, the
barrier returns back to R. These nodes constitute a detour, and

are drawn filled with gray. The next node is to the right of R,
which immediately returns back to R. This is another detour,
but it consists of a single node. The barrier then proceeds
along sensor S. Thus, there are two “detours” at R before
continuing on with the barrier. These detours have to be taken
into consideration when designing the distributed algorithm for
barrier construction below.

Another observation from Fig. 3(b) is that some sensors at
the left border are unable to find a path to the right border. This
is the case with the barrier attempt with dashed lines. However,
it is still possible for a node further below to reach the right
border, such as in the case of the barrier drawn with dotted
lines. In particular, assume that in a network there exists a set
of m barriers with no overlapping sensor regions. For example,
Fig. 3(b) has two barriers that do not overlap: the one drawn
with solid lines and the one drawn with dotted lines. Then,
the ordered ceilings heuristic is guaranteed to find at least m
breach-free barriers.

C. Variables and Neighbor Relationships

To implement the above scheme, the main variables (point-
ers) of a sensor node R are shown in Fig. 3(c). Both variables
from and to are parallel sequences of neighbors. If the node
has no detours, then from(1) is the previous neighbor in its
barrier, and to(1) is the next node in the barrier. However,
assume that node R has two detours, which is the case in
Fig. 3(c). In this case, to(1) is the next node after R in the
first detour, and from(2) is the neighbor from which the first
detour returns. Similarly, to(2) and from(3) are the next node
and the returning node for the second detour. Finally, to(3) is
the neighbor that follows R in the barrier, and this neighbor is
not involved in a detour at R. Hence, in a stable state where
all barriers are fixed, |from| = |to|, and the last element of
to corresponds to the next node in the barrier.

Assume a node R must choose between two neighbors, P
and Q, to become its from(1) neighbor. That is, P and Q are
both pointing towards R, and R must be able to distinguish
which one is “best”. If P ’s barrier originated at a higher
point on the border than Q’s barrier, then R will choose P .
However, if both have the same origin point (especially during
a stabilization phase), more information is needed to break the
tie. Also, R must be able to determine if P and Q are pointing
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at it because they occur before R in the barrier or because they
are returning to R from a detour of several hops.

One approach could be for neighbors to exchange the entire
path from the border node to themselves when communicating
with each other. This is sufficient but somewhat excessive,
especially since detours are likely to be either short or non-
existent in a barrier, and communication should be minimized
in a wireless system. For efficiency, each node instead main-
tains an abbreviated version of its path as follows.

For a node on the left border of the area, its path is simply
the pair (d, 1), where d is the distance from the top of the
area to the point on the border where the barrier begins. The
second number in the pair is a hop count. Thus, assuming the
barrier has no detours, then a node h hops from the left border
will have a path equal to (d, h). Also, notice that if there are
no detours, then variable to(1) always points to the next node
on the barrier.

Assume now that detours do exist. Let R.to(3) = S, i.e.,
S is the beginning of the third detour of R. Then

S.path = R.path : (2, 1)

where colon denotes concatenation. The first number denotes
the number of complete detours in its predecessor, R, and the
second number denotes the hop count from the point of the
detour. Hence, the number of pairs in a path correspond to the
number of nodes encountered that had at least one complete
detour. In consequence, if there are no detours after S, then
the nodes after S have the same path as S, except that the hop
count in the last pair increases with each hop.

Consider as an example Fig. 4, where a barrier is being
constructed from left to right (only part of the barrier is drawn).
The sensor node on the left border is P , and it intersects the
left border at a distance d from the top. Hence, its path is
(d, 1). Because P has no detours, node Q has a path equal to
(d, 2), i.e., two hops from the left border. Similarly, because
node Q has no detours, node R has a path equal to (d, 3).
However, R does have two detours, and thus the path of S
is (d, 3) : (2, 1). The pair (2, 1) indicates that two detours
were skipped at the previous node, i.e., at R, and that S is
one hop away from the node where the detours were skipped.

Because neither S nor any remaining node have detours, the
paths of the remaining nodes simply consist of increasing the
hop count of the last term in the path. E.g., the path of W
is (d, 3) : (2, 5), because W is five hops away from the node
where the last detour occurred, i.e., from R.

The hop count of a path is denoted by HC(path). It is
simply the sum of the hop counts of each term in the path. For
example, node HC(W.path) = 3+5 = 8 and HC(T.path) =
3 + 2 = 5. Note that HC corresponds to the number of hops
along the barrier if the nodes involved in a detour are not
counted.

Given the paths of two nodes, R and S, R ≺ S denotes that
R occurs first in the barriers before S. That is, either R occurs
in a barrier above the barrier of S, or they occur in the same
barrier and R occurs first in the barrier. This is straightforward
to determine from the paths as follows.

• If R.path and S.path are equal except in the hop
count of the last pair, then R ≺ S if the hop count of
R is smaller.

• Let (d, h) and (d′, h′) be the first pair in R.path and
S.path where d 6= d′. Then, R ≺ S if d < d′.

IV. PROTOCOL NOTATION

The notation used to specify the protocol originates from
[23] [24], and is typical for specifying stabilizing systems. The
behavior of each node is specified by a set of inputs, a set of
variables, a set of parameters, and a set of actions.

The inputs declared in a process can be read, but not
written, by the actions of that process. The variables declared
in a process can be read and written by the actions of that
process. For simplicity, a shared memory model is used, i.e.,
each node is able to read the variables of its neighbors. This
can be relaxed to a message-passing model, which is discussed
in the conclusion and future work section. Parameters are
discussed further below.

Every action in a process is of the form:

<guard> → <statement>.

The <guard> is a boolean expression over the inputs, vari-
ables, and parameters declared in the process, and also over the
variables declared in the neighboring processes of that process.
The <statement> is a sequence of assignment statements that
change some of the variables of the node.

The parameters declared in a process are used to write a set
of actions as one action, with one action for each possible value
of the parameters. For example, if the following parameter
definition is given,

par g : 1 .. 2

then the following action

x = g → x := x+ g

is a shorthand notation for the following two actions.

x = 1 → x := x+ 1

x = 2 → x := x+ 2
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An execution step of a protocol consists in evaluating the
guards of all the actions of all processes, choosing an action
whose guard evaluates to true, and executing the statement of
this action. An execution of a protocol consists of a sequence
of execution steps, which either never ends, or ends in a
state where the guards of all the actions evaluate to false. All
executions of a protocol are assumed to be weakly fair, that is,
an action whose guard is continuously true must be eventually
executed.

A network stabilizes to a predicate P iff, for every exe-
cution (regardless of the initial state) there is a suffix in the
execution where P is true at every state in the suffix [23] [24].

To distinguish between variables of different nodes, the
variable name is prefixed with the node name. For example,
variable x.v corresponds to variable v in node x. If no prefix
is given, then the variable corresponds to the node whose code
is being presented.

V. PROTOCOL SPECIFICATION

The specification of a stabilizing protocol that organizes
sensors into breach-free barriers is given below. The sensor
barrier of a node can be obtained by following its pointer
variables, i.e., the left node is indicated by variable from(1)
and its right node is indicated by the last entry in its variable
to.

The code below does not organize the barriers, i.e., assign
to each a natural number to indicate its position on the schedule
of barriers. This is a simple addition that will be presented in
Section VII.

To simplify the presentation of the code, the actions for
sensor nodes whose sensing region overlaps the borders, i.e.,
when nodes are a potential endpoint of a barrier, are not
presented. Instead, it is assumed that there are two virtual
nodes S and T , where S is beyond the left border and T is
beyond the right border. Any sensor node P overlapping the
left border is assumed to have an incoming edge (S, P ) whose
intersection point with P is the point where P intersects the
left border. Furthermore, the path that S advertises to P is of
the form (d, 0), where d is the depth of the point of (S, P ).
That is, the distance from the top of the region to this point.
In this way, no two sensors on the border will have the same
path. In the case when sensors are located right next to each
other, ties can be broken by node id’s.

The complete specification of an arbitrary sensor node u is
given in Fig. 5. The specification is broken down into smaller
segments below, and the intuition behind each of them is
presented.

The inputs and variables of a sensor node u are as follows.
The actions are described further below.

node u
inp G : set of node id’s {sensing neighbors}

L : natural number{max. barrier length}
var from : sequence of element of G;

to : sequence of element of G;
path : sequence of (N+, 1 . . . L);

par g : element of G {any neighbor of u}
i : 1 . . . |G|

node u
inp G : set of node id’s {sensing neighbors}

L : natural number {max. barrier length}
var from : sequence of element of G;

to : sequence of element of G;
path : sequence of (N+, 1 . . . L);

par g : element of G {any neighbor of u}
i : 1 . . . |G|

begin
{action 1: new or improved from(1)}
from(1) 6= g ∧ u = g.to(i) ∧HC(g.path) < L ∧
extend-one-hop(g.path, i) ≺ path ∧ →

from := {g}; to := ∅;
path := extend-one-hop(g.path, i);

{action 2: new or improved to(i)}
|from| ≥ i ∧HC(path) < L ∧ g 6= to(i) ∧
clockwise(from(1, i), to(1, i− 1) : g) ∧
|to| ≥ i⇒ between(from(i), g, to(i)) ∧
(extend-one-hop(path, i) ≺ g.path ∨
path ∈ extend-multiple-hop(g.path)) →

to := to(1, i− 1);
from := from(1, i);
if u /∈ g.from then

to := to : g;

{action 3: new or improved from(i+ 1)}
|to| ≥ i ∧ u ∈ g.to ∧ g 6= from(i+ 1) ∧
from-consistent(g, u, i) ∧
clockwise(from(1, i) : g, to(1, i)) ∧
|from| > i⇒ between(to(i), g, from(i+ 1)) →

from := from(1, i) : g;
to := to(1, i);

{action 4: sanity of to, from, and path}
¬(|to| ≤ |from| ≤ |to|+ 1) ∨HC(path) > L ∨
(|from| = 0 ∧ path 6= ∅) ∨ ¬clockwise(from, to)
→

from := ∅; to := ∅; path = ∅;

{action 5: sanity of from(i)}
|from| ≥ i ∧ ¬(u ∈ from(i).to ∧
from-consistent(from(i), u, i)) →

from := from(1, i− 1);
to := to(1, i− 1);

{action 6: sanity of to(i) and neighbor’s path}
|to| ≥ i ∧ g = to(i) ∧ ¬(path ≺ g.path ∧
(|from| > i⇒ to(i).from(1) = u)) →

from := from(1, i);
to := to(1, i− 1);

end

Figure 5. Specification of an arbitrary sensor node u.

The node has two inputs. Input G is the set of neighboring
sensor nodes. It is assumed that a sensor can determine its
neighbor set via a simple hello protocol. The second input, L,
is the maximum number of hops that is allowed in a barrier.
I.e., the sum of the hop counts of all elements of a path should
be at most L. This bound is not necessary to break loops, but
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it may be used to speed up convergence.
The variables from and to of each process are as described

earlier. Variable path is the abbreviated path of the node. Also,
from(i, j), where i < j, denotes the subsequence of from
starting at from(i) and ending at from(j). The subsequence
to(i, j) is defined in the same way.

Each node has six actions. Due to the semantics, the order
in which they are written is irrelevant for their execution. Thus,
actions are presented below in the order that is the easiest to
describe.

The first action obtains a value for from(1), or replaces
it by a better value.

from(1) 6= g ∧ u = g.to(i) ∧HC(g.path) < L ∧
extend-one-hop(g.path, i) ≺ path ∧ →

from := {g}; to := ∅;
path := extend-one-hop(g.path, i);

The above action checks that if a neighbor g is pointing at u
(i.e., g.to(i) = u for some i), and the path of g being offered
to u is better than u’s current path, then u chooses g as its
predecessor. Note that by changing the value of from(1) all
other values of from and to may be invalid, since in effect
the node is changing from one barrier to another. Hence, to
is set to empty, and the path of u is obtained form that of g.
This is obtained from function

extend-one-hop(path, i)

that returns the same path with an increased hop count of 1
when i = 1, or returns path : (i− 1, 1) when i > 1.

If to(i) has a value, then the following action attempts to
improve it, i.e., find a neighbor that is closer clockwise than
to(i). If to(i) does not have a value, then the action attempts
to find a neighbor to point to with to(i).

|from| ≥ i ∧HC(path) < L ∧ g 6= to(i) ∧
clockwise(from(1, i), to(1, i− 1) : g) ∧
|to| ≥ i⇒ between(from(i), g, to(i)) ∧
(extend-one-hop(path, i) ≺ g.path ∨
path ∈ extend-multiple-hop(g.path)) →

to := to(1, i− 1);
from := from(1, i);
if u /∈ g.from then

to := to : g;

Although the guard of the above action seems complex, it is
just a series of simple tests, one per line.

The first one ensures that from(i) is defined, since other-
wise to(i) cannot exist, and it ensures that the hop count of
the path of u can be extended (i.e., it is less than L).

Also, from and to should remain in clockwise order after
replacing to(i) by g.

Furthermore, if to(i) is already defined (i.e., if |to| ≥ i),
then the new value g has to be closer in clockwise order than
the current value of to(i), i.e., g has to be in between from(i)
and to(i).

Finally, u points to g under two conditions: either u’s path
will improve the current path of g (and thus g will choose
u as its predecessor in the barrier) or u is part of a detour
that started at g and u is the last node in this detour. This is

expressed using the functions extend-one-hop, defined earlier,
and extend-multiple-hops(path), which is defined below.

Intuitively, extend-multiple-hops(path) is the set of all
possible path values that can be obtained by extending the
given path by any number of hops. More formally, let

path = (x1, y1) : (x2, y2) : . . . : (xn−1, yn−1) : (xn, yn)

Also, let path′ ∈ extend-multiple-hops(path). Thus, path′
must have one of two forms. The first case is when

path′ = (x1, y1) : (x2, y2) : . . . : (xn−1, yn−1) : (xn, z)

where z > yn. This indicates that path′ extends path by z−yn
hops and there are no detours along these hops. The second
case is when

path′ = (x1, y1) : (x2, y2) : . . . : (xn−1, yn−1) : (xn, z) :

(a1, b1) : (a2, b2) : . . . : (am, bm)

where z ≥ yn and m ≥ 1. This indicates that path′ encounters
m nodes with detours after u.

Function extend-multiple-hops(path, i) denotes the more
specific case where the first hop is extended via to(i). Above,
it corresponds to z = yn ∧m ≥ 1 ∧ a1 = i.

Note that if the value of to(i) changes, then all subsequent
values of to and from are no longer valid, and they are thus
removed by the command of the action. Also, if g is chosen
to become to(i), then g cannot already be pointing at u with
g.from. This is necessary for the safety properties presented
in the detailed proof.

The following action obtains a new value of from(i+1),
or attempts to improve if it already exists. Note that this does
not apply to from(1). Thus, from(i+1) is the neighbor that
completes the return of detour i.

|to| ≥ i ∧ u ∈ g.to ∧ g 6= from(i+ 1) ∧
from-consistent(g, u, i) ∧
clockwise(from(1, i) : g, to(1, i)) ∧
|from| > i⇒ between(to(i), g, from(i+ 1)) →

from := from(1, i) : g;
to := to(1, i);

The above action checks that if g is the neighbor to become
from(i + 1), then the values of u and g are consistent.
This is done with function from-consistent(g, u, i) explained
further below. It also checks that the correct clockwise order
is maintained. Finally, if from(i + 1) is already defined,
i.e., if |from| > i, then g is between to(i) and the current
from(i+1), i.e., it occurs earlier in the clockwise order than
the current from(i+ 1).

Similar to above, all values of to and from after from(i+
1) are no longer valid, and they are thus removed by the
command of the action.

Function from-consistent(g, u, i), where g is u’s neigh-
bor, and g = from(i), is defined as follows. If i = 1, then g
is the node previous to u in the barrier, and thus it must be
that

u.path = extend-one-hop(g.path, 1).

On the other hand, if i > 1, then the path of g is actually an
extension of that of u, and thus

g.path = extend-multiple-hops(u.path, i).
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Thus,

from-consistent(g, u, i) =
(i = 1 ∧ (u.path = extend-one-hop(g.path, 1)))

∨
(i > 1 ∧ (g.path = extend-multiple-hops(u.path, i))).

The last three actions are sanity actions. That is, they check
that the local state of the node is correct and also consistent
with respect to that of its neighbors. Otherwise, the state of
the node is reset to an appropriate value.

The first of the three sanity actions is as follows.

¬(|to| ≤ |from| ≤ |to|+ 1) ∨HC(path) > L ∨
(|from| = 0 ∧ path 6= ∅) ∨ ¬clockwise(from, to)
→

from := ∅; to := ∅; path = ∅;

The above action ensures that the lengths of the from
and to variables are consistent, and also that they correspond
to points that are clockwise around the sensing circle of the
node. Also, it ensures that the path has a length of at most L,
and there cannot be a path if there is no from(1) node. If any
of these is not true, the local variables are reset to an empty
value.

The next action ensures that if from(i) has a value,
then the local information is consistent with that of neighbor
from(i).

|from| ≥ i ∧ ¬(u ∈ from(i).to ∧
from-consistent(from(i), u, i)) →

from := from(1, i− 1);
to := to(1, i− 1);

The above action first checks that from(i) is defined, and
if so, it checks if node from(i) is pointing towards u with,
and if so, that the path at node u is consistent with that of its
neighbor from(i).

In the last action, the value of to(i) and the path of the
neighbor it points to are coordinated. The neighbor must have
a path that is worse than that of u. In addition, if a detour has
completed, then the first node of the detour must point back
at u.

|to| ≥ i ∧ g = to(i) ∧ ¬(path ≺ g.path ∧
(|from| > i⇒ to(i).from(1) = u)) →

from := from(1, i);
to := to(1, i− 1);

VI. CORRECTNESS OVERVIEW

For terseness, the detailed proof of correctness of the
protocol is deferred to the appendix.

The fairness in the execution model allows the actions of
nodes to not be executed for an arbitrary (but finite) amount
of time. In practice, all nodes operate at about the same speed,
and thus, the proofs are based in the commonly used notion
of an execution round.

An execution round starting at a state s0 in an execution
sequence s0, s1, . . . , is the minimum prefix of this execution
sequence such that every action in every node either is disabled
at each state in the round, or is enabled at some state in the
round and is either executed or disabled at a later state in the
round.

The proof follows the following overall steps. First, due to
the sanity actions, from any arbitrary initial state, within O(1)
rounds the following will hold and continue to hold at every
node.

(|to|+ 1 ≥ |from| ≥ |to| ≥ 0) ∧
clockwise(from, to) ∧HC(path) ≤ L

I.e., variables satisfy what is depicted in Fig. 3(c).
Because the initial state is arbitrary, the path stored at each

node may not be consistent with that of its neighbors. The
next step is to show that it will. To this end, an ordered pair
of neighboring nodes (g, u) is said to be i-joined, i ≥ 1, if

u ∈ g.to ∧ g = u.from(i).

It must be shown that within O(1) rounds, for all i and for all
i-joined pairs (g, u), from-consistent(g, u, i) will hold and
continue to hold.

Next, although the upper bound L on the hop count is
enforced, the bound L is not necessary to break loops. A
loop exists if by following the from(1) variables there is a
node that can be reached twice. Loops are broken quickly,
because the hop counts must be consistent (differ by exactly
one) between nodes, or otherwise all variables are reset to nil
and empty values. The total order � on paths prevent new
loops to be formed.

Within O(1) rounds, it can be shown that there is no
sequence of nodes (u0, u1, . . . , un) such that u0 = un and
i-joined(uj , uj+1, 1), for each j, 0 ≤ j < n. That is,
following the from(1) values from one node to another does
not lead to a loop.

The following step is to show that all nodes only contain
abbreviated paths that have as their first entry a non-fictitious
entry point along the left border. The path with a fictitious
first entry and with the smallest hop count will not match the
path of its from neighbor, and thus will reset its values. Thus,
within O(L) rounds all path values with fictitious first entries
disappear.

Next, due to the total order of �, the nodes along the
top barrier will overcome any other path value in the system,
thus completing the top barrier in O(L) rounds. The remaining
barriers will be constructed similarly in top-down order. If the
total number of barriers is B, then within O(BL) rounds all
the barriers will be constructed, and the values of the variables
of each node will cease to change.

VII. COMPLETING THE PROTOCOL

The protocol presented in Section V organizes the sensors
into disjoint breach-free barriers, but it does not organize them
into a schedule. However, each sensor node must know the
number of its barrier (counting from top to bottom) to be able
to turn its sensing feature at the right time.

To accomplish the above, the nodes at the right barrier can
organize themselves in a simple sequence from top-to-bottom.
The steps required to do so are overviewed in this section. The
simple proofs of correctness are left to the reader.

First, each node needs to know if the construction of its
barrier has completed. To do so, a boolean variable, built, is
added to indicate if this is the case. The following two actions
need to be added to each node u.
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right-border → built := (|from| ≥ 1)

¬right-border → built := (|to| ≥ 1 ∧ to(|to|).built)

Above, right-border is true if node u overlaps the right
border of the area. The fact that the barrier has been built
propagates from the node on the right border back to the node
on the left border. If u is on the right border, then its barrier
is complete provided it is part of a barrier, i.e., if from(1) is
defined. If it is not on the right border, then the last element
of array to points to the next node along the barrier (other
elements of to point to detour nodes). Thus, if this last element
thinks the barrier is complete then node u also will consider
the barrier complete.

Next, if its barrier is built, each node must determine the
order of its barrier in the schedule. The topmost border is first
in the schedule, followed by the next border down. For this
purpose, four additional variables are added to each node u:

order : an positive integer, indicating the order of u’s barrier
in the schedule.

depth : the depth of the barrier of u (i.e., distance from the
top of the area.

prev : the depth of the barrier that is previous (right above)
the barrier of u.

src : the source of the information for the previous barrier.
This is the neighbor of u from whom u learned about
the previous barrier. This could be either a neighbor
on the same barrier as u that intersects the previous
barrier, or u has a neighbor that directly intersects the
previous barrier. If there is no previous barrier, src =
u.

The depth of the barrier of u is determined by the location
of the left-most node of the barrier, i.e., the node whose sensor
range overlaps the left border. Recall that this information is
present in the first item of the path variable. Hence, depth is
simply defined as the first value in path.

There are two tasks. The first task is to improve the choice
for the previous barrier. That is, there could be a barrier that is
in between node u’s barrier and what u believes should be the
previous barrier. The second task is to ensure that the values
of the four variables are consistent.

For the first task, the following action is added to each
node u.

(depth > g.depth > prev) ∧ built ∧ g.built →
order := g.order + 1;
prev := g.depth;
src := g

This action chooses g as the source of the information if its
depth is between the depth of the former previous barrier and
the depth of the barrier of u.

Next, the values of the four variables must be consistent.
If they are inconsistent, then they are reset using the following
commands.

src := u;
prev := 0;
order := 1;

With these commands, u assumes that it is the first barrier. It
will remain this way until it improves. Let us refer to those
three commands as reset-src;

There are three different cases when reset-src should be
executed, depending on the value of the source.

• The first is when the source is u itself, but its values
are inconsistent. Let us refer to this case as bad-u, and
is defined as follows.

src = u ∧ ¬(built ∧ prev = 0 ∧ order = 1)

• The second is when the source is either the left or
right node on the same barrier. Let us refer to this
case as bad-from-to, and is defined as follows.
src ∈ {from(1), to(|to|)} ∧
¬(src.src 6= u ∧ src.built ∧ built ∧

src.order = order ∧
(src.prev = prev < depth))

• The last one is when the source is not on the same
barrier as u, denoted by bad-other, and is defined as
follows.
src.depth 6= depth ∧
¬(src.built ∧ built ∧ src.src 6= u ∧

(src.depth = prev < depth) ∧
src.order + 1 = order)

Thus, to each node u, the following action is added.

bad-u ∨ bad-from-to ∨ bad-other → reset-src

VIII. CONCLUSION AND FUTURE WORK

In this paper, a distributed and stabilizing version of the
best-performing centralized heuristic for breach-free barriers
is presented. Also, an additional feature is developed that
allows the barriers to organize themselves into a sleep-wakeup
schedule without centralized support.

The execution model used is based on shared memory.
However, a message passing implementation is straightforward
using the techniques described in [23] due to the low level
atomicity of the actions, that is, each action refers to variables
of only a single neighbor at a time.

The stabilization time of O(B · L) rounds is an upper
bound on the worst-case behavior of the system when all
variables have an arbitrary initial value. A more detailed
analysis may reveal an even lower upper bound, such as O(L).
This investigation is left for future work. Also, on average,
it is expected that the system will recover much faster than
this from a few random faults. This could be analyzed via
simulations, which are also deferred to future work.

APPENDIX

Some basic stabilization properties are presented first. For
a property P to hold within O(1) rounds, it must be shown
that if P holds before each action, then it will continue to
hold after the action is executed. In addition, there must be
an action that once executed it makes P true. Hence, once P
becomes true, it continues to be true.

Theorem 2: Let S1 be the following safety predicate.

(|to|+ 1 ≥ |from| ≥ |to| ≥ 0) ∧
clockwise(from, to) ∧
HC(path) ≤ L
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Predicate S1 will hold and continue to hold after O(1) rounds.
Proof:

Step 1:
Assuming that S1 holds before each action, it is shown

next that it will continue to hold after the action is executed.
First action: If the action executes, from = {g} and to =

∅, which trivially satisfies the last two conjuncts of S1. From
the action’s guard, HC(g.path) < L, and thus, after extending
it by one hop, HC(path) ≤ L holds. Thus, S1 continues to
hold.

Second action: If the action executes, then after the action
|to| + 1 ≥ |from| ≥ |to|. The path is not affected, so
HC(path) ≤ L continues to hold. Also, the guard of the
action ensures that the new values of from and to will be
clockwise. Hence, S1 continues to hold.

Third action: If the action executes, then |from| = i +
1 ∧ |to| = i, which satisfies S1. Also, the guard of the action
ensures that the values are clockwise. The path variable is not
affected. Hence, S1 continues to hold.

Fourth action: The empty values assigned by the action
trivially satisfy S1.

Fifth action: The fifth action only shortens from and to,
with |from| = |to|, and hence, all three conjuncts of S1
continue to hold after the action.

Sixth action: Similar to above, the action only shortens
from and to, and hence, S1 continues to hold.
Step 2:

There must be an action that forces S1 to become true if
it does not hold before the action. This action is the fourth
action. If any of the conjuncts of S1 does not hold, then the
action is able to execute. Due to fairness, it will execute in
one round, and thus force S1 to become true.

Theorem 3: Within O(1) rounds,

(∀i, v, w : i-joined(v, w)⇒ from-consistent(v, w, i))

holds and continues to hold.
Proof: Let S2 be the above predicate. The same two

steps as above will be used but now for S2. Note that
if i-joined(v, w, i) is false for some specific values of
i, v, and w, then it is not required to be proven that
from-persistent(v, w, i) holds. The only case where the
implication can be falsified is in the case where the left-hand
side is true and the right-hand-side is false. Thus, let us focus
on when an action turns the left-hand side true (in which case
it must also set the right hand side true), or when an action
makes the right-hand-side false (in which case the left-hand
side must also be set to false).
Step 1:

Assuming that S2 holds before each action, it will be
shown that it will continue to show after the action is executed.

First action: This action eliminates all the join relations in
which node u is included. However, it does establish a new
one, 1-joined(g, u). In this case, the new value of path, i.e.,
extending by one hop the path of g, is what S2 demands. Thus,
S2 holds after this action.

Second action: This action also removes join relations since
it shortens to and from. It has the potential to add a new one

due to giving a new value to to(i). However, this is only done
if g is not pointing back at u with g.from. Hence, no new
join relation can be created, and thus S2 is preserved.

Third action: Similar to the second action, this action also
removes join relations since it shortens to and from. It has
the potential to add a new one due to giving a new value to
from(i+1), thus creating an i-joined(g, u) link. This new link
satisfies from-consistent(g, u, i) due to the guard. Hence, S2
holds.

Fourth, fifth, and sixth actions: Executing these actions can
only eliminate join relations, and hence S2 continues to hold.
Step 2:

There must be an action that forces S2 to become true
if it does not hold before the action. Consider any triple
(v, w, i) such that S2 does not hold. This implies that the left-
hand-side, i-joined(v, w) is true, while the right hand side,
from-persistent(v, w, i) is false. If within O(1) rounds the
left-hand-side becomes false, then there is no proof obligation.
Assume otherwise. Then, the guard of action 5 is true with
w = u and v = u.from(i). In this case, when the action
executes, the pair (v, w) is no longer i-joined, and S2 holds
and continues to hold for the triple (v, w, i).

Observation 2: Within O(1) rounds, there is no se-
quence of nodes (u0, u1, . . . , un) such that u0 = un and
joined(uj , uj+1, 1), for each j, 0 ≤ j < n. That is, following
the from(1) values from one node to another does not lead
to a loop. Furthermore, this continues to hold.

The above observation follows from the value of path
decreasing, with respect to ≺, at every hop when the from(1)
values are followed (as indicated by Theorem 3), and from the
antisymmetry of ≺.

Observation 3: Within O(1) rounds, any execution will
reach a state where S1∧ S2 holds, and this continues to hold
for all remaining states of the execution.

Recall that all variables can have an arbitrary value in the
initial state. Throughout the rest of this section, let us assume
a state as indicated in Observation 3 has already been reached.
Next, it must be shown that all nodes will have a path variable
whose initial position on the left border corresponds to that of
a real node on the border, i.e., no fictitious initial nodes will
exist in the path variables.

Lemma 2: After O(L) rounds, for any node u, if the first
value in its path variable is x, then there exists a node on the
left border with depth x.

Proof: Consider any value y such that there is no sensor
node on the left border with this depth, and there is at least
one node whose path contains (y, h) for some h. It must be
shown that all paths with a value of y must disappear.

First note that no new fictitious y can be introduced into
the system, since any new path of a node is derived from that
of its neighbors.

Let us denote a path value as a y-path if it begins with
a depth of y. The first pair in a y-path is of the form (y, h),
where h is the hop count. Let hmin be the smallest value of
h in a y-path. It is argued next that hmin must increase.

Let u have (y, hmin) in its path. Because of Theorem 3,
from-consistent(u.from(1), u, 1) must be false and con-
tinue to be false. This is because this requires the path of
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u.from(1) to be (y, h′) where h′ < hmin. Thus, either u
changes from(1) using the first action, or action 5 will set
from to empty (note that by definition from(1, 0) is the
empty sequence). In the former, the neighbor of u must have a
path that does not start with y, or has y and a hop count greater
than or equal to hmin. Thus, u loses the y value or increases its
hop count. In the latter, |from| = 0, in which case eventually
u chooses a new from(1) and the same argument applies for
a higher hop count. It is also possible that action 4 sets the
path to empty, in which case node u also loses its y value.

Thus, (y, hmin) will disappear. Since the hop count in
(y, h) has a maximum value of L, then within O(L) rounds
all paths values starting with y will disappear.

The main result is presented next, i.e., that the barriers are
actually constructed. The first step is showing that the top-most
barrier gets constructed, and all the values of its nodes remain
stable. The building of the remaining barriers follow simply
by induction on the barriers.

Theorem 4: Within O(L) rounds, the from and to vari-
ables of the nodes in the top most barrier correctly follow the
sequence of nodes in the barrier until the rightmost node is
reached.

Proof: The proof is by induction over the nodes in the
barrier. Let the barrier nodes be u0, u1, . . . , un.

Base case: Consider node u0, which intersects the left
border. Let its depth be x. If any node has a path starting
with (x, 0), when action 5 executes in the node, the new path
will not have (x, 0).

The only node that can advertise (x, 0) is the virtual node
S. Thus, consider any node whose path begins with (x, 1).
If the node is not on the left border, then the path cannot
be consistent with its from(1) node (and if from(1) is not
defined then action 4 will set path to nil). Thus, action 5 will
set the path to nil. Thus, no node other than the left node can
have (x, 1) in its path.

Finally, consider the left-most node. It receives an adver-
tised path of (x, 0) from the virtual node S.

There are four cases to consider.

1) u0.from(1) 6= S and u0.path = (x, 1).
As long as this is the case, the path is not consistent since
no node other than S can advertise (x, 0). Thus, action 5
remains enabled until the above case changes.

2) u0.from(1) = S and u0.path is worse than (x, 1).
This is not possible since it is not from-consistent, and
violates Theorem 3.

3) u0.from(1) 6= S and u0.path is worse than (x, 1).
Action 1 remains enabled unless the case changes. Since
no node can advertise (x, 0) other than S, the only way
this case may change is by executing the first action,
which establishes the fourth case.

4) u0.from(1) = S and u0.path = (x, 1).
In this case, no node can offer a better path than S, u0 is
consistent with S, and from Theorems 2 and 3 the sanity
actions will not fire. Hence, this case remains true forever.

Thus, these three cases must eventually end up in case 4,
which remains true forever, as desired. Note that this will be
done in O(1) rounds.

Inductive Step: Assume the Theorem holds for
u0, u1, . . . , uh, show that it will hold for u0, u1, . . . , uh+1.

Let to(i) be the pointer at uh that is meant to point at
uh+1 (all pointers less than i at uh are fixed by the induction
hypothesis). It must be shown that eventually uh.to(i) = uh+1,
uh+1.from(i) = uh for the appropriate i, and uh+1.path =
extend-one-hop(uh, i).

Note that because uh+1 follows uh in the barrier, there
cannot be any node, whether in the barrier or not, that is
clockwise in between the last from value at uh and node
uh+1.

There are two cases to consider.
Case 1:

Node uh+1 does not appear earlier in the barrier. Hence, it
should eventually be the case that uh+1.from(1) should point
to uh.

There are two subcases.
Sub-case (a): uh.to(i) = uh+1 already.

In this case to(i) cannot change value. This is because,
from Theorems 2 and 3, the sanity actions will not fire. Also,
no other neighbor can be clockwise in between uh and uh+1,
as mentioned above. Hence, action 2 cannot change to(i).
Sub-case (b): uh.to(i) 6= uh+1.

From the induction hypothesis, the path at uh+1 is worse
than that of uh. Furthermore, as argued before there are no
nodes clockwise in between these two nodes. Hence, the
second action fires, which clears all the pointers equal or
greater than i.

If uh /∈ uh+1.from, then uh.to(i) is set to uh+1, as
desired. Note that this continues to hold because there cannot
be a node clockwise in between these two nodes.

If uh ∈ uh+1.from, this prevents to(i) to be set. However,
from this point forward, no value to(j), j > i, can point to
uh+1. This is because if to(i), to(i+1), etc., are set by action
2, then the nodes chosen appear clockwise after uh+1. Hence,
uh+1 cannot be set to any to(j), j > i. Thus, eventually action
5 in uh+1 executes and removes the from value pointing back
at uh. Then, nothing can stop action 2 at uh to set uh.to(i) =
uh+1, which is subcase (a).

Hence, since uh continuously points at uh+1, the first
action of uh+1 will set uh+1.from(1) = uh, as desired.
Case 2:

Node uh+1 does appear earlier in the barrier. Hence, it
must be shown that uh = uh+1.from(i), where i is the next
index at uh+1 that has not been used for earlier parts of the
barrier. Note that from(j) and to(j), where j < i, are fixed at
uh+1 due to the induction hypothesis. Similarly, to and from
up to i− 1 are fixed in uh from the induction hypothesis.

The first step is to show that eventually uh.to(i) = uh+1

holds and continues to hold. The proof up to this point is the
same as in Case 1, except that in Case 1 extend-one-hop
was used in action 2, while in Case 2 extend-multiple-hop
is used. Thus, it is assumed below that uh+1.from(i) = uh

holds and continues to hold.
Note that since both uh and uh+1 are both already in the

barrier (i.e. uh+1 = uj for some j < h+ 1). Hence, from the
induction hypothesis, their paths are fixed, and the path of uh

is an extension of the path of uh+1.
Also, as argued above there is no neighbor that is clockwise

in between uh and uh+1.
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Hence, if uh+1.from(i) = uh, then this will continue to
hold (sanity actions no longer fire, and from above, action 3
cannot choose a node better than uh).

If on the other hand, uh+1.from(i) 6= uh, then also from
the above, the guard of action 3 is enabled and continues to
be enabled until it fires, setting uh+1.from(i) = uh.

End of inductive step.

Thus, within O(L) rounds, the barrier up to the node at the
right border will be constructed. Although discussed earlier, it
is assumed that nodes at the right border are aware that they
are located on the border. Thus, these nodes have only the first
and fifth actions, they restrict from to only one value, and
they have no to variable. Thus, their path will be maintained
consistent with its from(1) neighbor, and they always choose
the best possible neighbor for from(1).

Thus, by induction, the theorem holds.

After the top barrier is constructed above, there might be
some from and to values that are dangling, i.e., that point to
nodes not on the barrier. These have to disappear to ensure
that the next barrier is constructed without interference from
the first barrier.

Theorem 5: Let x be the depth of the top-most barrier.
Within O(L) rounds, there are no nodes that are not in the top
barrier that contain a depth of x in their path. Also, the from
and to variables of nodes in the top barrier point exclusively
to the appropriate nodes in the barrier.

Proof: Consider any node u that is on the barrier. Assume
that some of its from or to variables, other than those used
for the barrier, have values. Let to(i) be the last value in to
pointing at a barrier node. Thus, from(i+1) points to a non-
barrier node, let us say, w.

If the path of w is consistent with u, then the value of
w.path should be a possible extension of u via detour i, i.e.,
w.path ∈ extend-multiple-hop(u, i). If it is not, then the fifth
action of u will remove all from and to values after to(i). If
it is, then u cannot remove from(i+ 1).

In this case, consider following the from(1) variables
(i.e., backwards), starting at w, and continuing as long as
the next node’s path is the extension by one hop of the
previous node. Eventually, a node is reached whose path is
not in extend-multiple-hop(u, i), and thus is not a one-hop
extension of the previous node. Thus, action 5 in this node
will execute at the node and remove its pointers. This will
also activate action 5 in the previous node, continuing in a
cascade of nodes until w is reached. Then, in node u, action
5 will reset all pointers after to(i).

Thus, at all nodes, eventually only those pointers used for
the barrier have a value.

Since the nodes not in the top barrier cannot receive a path
value corresponding to nodes in the top barrier, at this moment
the next barrier can be built independently of the previous one,
and thus, from induction, all barriers will be built.

Corollary 1: Within O(B · L) rounds, where B is the
number of barriers in the ceilings heuristic, the from, to, and
path variables of all nodes are aligned to these barriers, and
continue to be aligned unless a fault occurs in the system.
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