
109

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Terminal Virtualization Framework for Mobile Services

Tao Zheng, Song Dong
Orange Labs International Center

Beijing, China
e-mail: {tao.zheng | song.dong}@orange.com

Abstract - Terminal virtualization focuses on applying
Information Technology (IT) virtualization technology to the
terminals, and realizes the full or parts of terminal functions
extension or migration to other devices on the network, such as
resource reducing, information sharing, data synchronization, etc.
It is becoming increasingly clear that more and more features of
terminal virtualization and mobile computing on the edge will be
used in practice. However, some issues are raised with terminal
virtualization, such as security, privacy, Quality of Service (QoS),
efficient transmission, computation/functions offloading
management, etc. In this paper, after analyzing above issues, a
mobile terminal virtualization framework is proposed to solve
them. Then the implementation methods of the proposed
framework modules are presented in detail, which are based on
popular the terminal Operating System (OS) and some current
technologies. This framework provides a better transparent
experience to users from free handover on network to unified
sensors usage.

Keywords - terminal virtualization; mobile cloud computing;
computation offloading; QoS; Content Centric Networking (CCN);
fountain code; Quality of Experience (QoE).

I. INTRODUCTION

This paper extends our earlier work [1] presented at the
Eleventh International Conference on Networking and Services
(ICNS 2015).

With the explosive growth of mobile terminals in recent
years, user preferences have shifted from traditional cell
phones and laptops to smartphones and tablets. In recent years,
there are abundant applications in various categories, such as
entertainment, health, games, business, social networking,
travel and news, running at mobile terminals. The burden of
computation on the terminals has been raised rapidly and more
functions and sensors are required to be applied to them.
Mobile cloud computing and terminal virtualization are
proposed to handle these issues, which are able to provide tools
to the user when and where it is needed irrespective of user
movement, hence supporting location independence. Indeed,
“mobility” is one of the characteristics of a pervasive
computing environment where the user is able to continue ones
work seamlessly regardless of the movement.

Advances in the portability and capability of mobile
terminals, together with widespread Long Term Evolution
(LTE) networks and WiFi access, have brought rich mobile
application experiences to end users. Undoubtedly, mobile
broadband terminals, such as smart phones, tablets, wireless
dongles and some data-intensive apps have caused an
exponential increase in mobile Internet Protocol (IP) data usage,

and they use up the mobile bandwidth. The demand for
ubiquitous access to a wealth of media content and services
will continue to increase, as indicated in a report by Cisco [2]:
the Compound Average Growth Rate (CAGR) of global IP
traffic from mobile terminals is 57% from 2014 to 2019, which
is triple CAGR from fixed Internet.

In addition, the resource-constrained mobile terminals,
especially with limited battery life, have been a barrier to the
improvements of mobile applications and services. While new
smart phones with bigger screens, faster Central Processing
Units (CPUs), and larger storage are launched continually, and
the bandwidth of wireless networks has increased hundreds of
times from the second-generation wireless telephone
technology to the fourth-generation wireless telephone
technology in just a few years, the development of batteries has
lagged far behind the development of other components in
mobile terminals. In fact, faster CPUs, larger displays and
multimedia applications consume more battery energy. The
limitations of computation resources and sensors are other
stumbling blocks for services development. Mobile cloud
computing and terminal virtualization can help to resolve this
issue.

Mobile cloud computing and terminal virtualization have
been the leading technology trends in recent years. The
increasing usage of mobile computing is evident in the study
by Juniper Research, which states that the consumer and
enterprise market for cloud-based mobile applications is
expected to rise to $9.5 billion by 2014 [3]. Mobile cloud
computing/terminal virtualization is introduced to resolve the
conflicts mentioned above, where the cloud serves as a
powerful complement to resource-constrained mobile terminals.
Rather than executing all computational and data operations
locally, mobile cloud computing/terminal virtualization takes
advantage of the abundant resources in cloud platforms to
gather, store, and process data for mobile terminals. Many
popular mobile applications have actually employed cloud
computing to provide enhanced services. More innovative
cloud-based mobile applications like healthcare monitoring and
multiplayer online mobile games are also under development.

The objective of the paper is to introduce the concept of
terminal virtualization and study the related issues and research
status. On this basis, a proposal terminal virtualization
framework is finally presented and discussed on the
implementation. This framework provides a better transparent
experience to users through utilizing various techniques and
based on the current terminal OS.

110

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This paper is organized as follows. In Section II, we
introduce the concept and current status of terminal
virtualization. In Section III, capabilities and functions
extension are analyzed. In Section IV, a terminal virtualization
framework for mobile networks is presented. Implementation
method of the proposed framework in detail is presented in
Section V. Finally, Section VI summarizes the conclusions.

II. TERMINAL VIRTUALIZATION

Terminal virtualization helps to relieve the local resource-
constrained problem through offloading some tasks to the
cloud and utilizing capabilities and functions in the cloud. First,
the scope of terminal virtualization needs to be clarified. Then,
drivers and benefits are proposed. Finally, some challenges are
raised by terminal virtualization.

A. The scope of terminal virtualization

From the virtualization point of view, mobile cloud
computing can support a part of terminal virtualization scenario.
There are two scenarios as following.

 Full Virtualization Scenario

The requirement for full terminal virtualization mainly
comes from some enterprises. In these enterprises, employees
are buying their own terminals and want to connect to the
enterprise network so that they can do their work with greater
flexibility. However, the employees also do not want to give up
user experience and freedom at the cost of complex IT security
policies. In order to achieve this goal, terminal virtualization is
becoming a very attractive choice because it offers flexibility
and addresses the concerns over privacy of personal data while
also delivering the security requirements of the enterprise. On
the other side of the ecosystem, the terminal makers and
carriers will benefit from terminal virtualization because they
are able to more easily replicate the features found in various
terminals and also deliver more features at a lower cost.

Full terminal virtualization is not an ordinary schema for
public mobile customers. In general way, the terminal is sold
with a pre-determined OS and customers can use services
based on this OS.

 Partial Virtualization Scenario

Broadly speaking, mobile cloud computing can be as one
kind of partial terminal virtualization, a part of terminal
computation powers and functions can be virtualized into the
remote networked cloud. Terminals can get local experience
through running remote apps or some information located in
the remote cloud.

This scenario is more practiced and popular at present.
Some applications employ this method to add enhanced
functions or improve user experience. Even cloud phone
appears and is deeply merged with networking services for user
convenience. In this paper, we mainly focus on the partial
virtualization scenario.

B. Drivers and benefits of terminal virtualization

Terminal virtualization facilitated the fusion of mobile
terminal and cloud service that provides a platform wherein
some computing, storing and data abstraction tasks are
performed by the cloud and mobile terminal simply seeks an
access to them. In the following, we show the drivers and
benefits of terminal virtualization.

 Limitless Storage Space

Now, instead of memory cards for more space, the cloud
storage can provide limitless space for applications, even with
the help of terminal virtualization framework/middleware they
do not need to care about the location of the storage.

 Improved Processing Facility

The price of a mobile terminal is largely dependent on its
CPU’s speed and performance. With the help of terminal
virtualization, all the extensive and complex processing is done
at the cloud level, thereby enhancing the mobile terminal’s
performance without upgrading the terminal’s CPU.

 Save Radio Access Network (RAN)/Access Bandwidth
& Resources

With the tremendous increase in mobile bandwidth
consumers and user’s throughput, RAN/access resources have
become more valuable than before. When some functions and
computation tasks are offloaded into cloud, the result instead of
the original metrical is sent to the terminal, so the RAN/access
bandwidth can be saved for other use.

 Enhanced Battery Life

Terminal virtualization lends a very strong helping hand to
battery life of terminals. With most of the processing handled
by the cloud, the battery life is enhanced, thereby making the
most optimum use of the remaining recharge cycles.

 Improved User Experience

The above mentioned features will improve the end-user
experience substantially, especially the experience from low-
end terminals.

 Economic Factors

For the consumers, terminal virtualization can bring some
new functions and improved capabilities to the old terminal
without spending one penny. For operators, the benefits come
from saved network resources and flexible service deployment
by terminal virtualization.

 Reserving for Upcoming Technologies

Terminal virtualization is adapted to the tremendous pace
of development technologies and works most efficiently with
the upgrades. Through separating the implementation from the
function body, upcoming technologies can be easily introduced
to the terminals.

C. Challenges

In this section, we argue that some issues in terminal
virtualization have not been sufficiently solved satisfactorily.

111

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Energy-efficient Transmission

Wireless networks are stochastic in nature: not only the
availability and network capacity of access points vary from
place to place, but the downlink and uplink bandwidth also
fluctuates due to weather, building/geographical shields,
terminal mobility, and so on. Measurement studies [4] show
that the energy consumption for transmitting a fixed amount of
data is inversely proportional to the available bandwidth.

Computation/Data offloading can save energy only if heavy
computation is needed and a relatively small amount of data
has to be transferred. Energy efficiency can be substantially
improved if the cloud stores the data required for computation,
reducing data transmission overhead. Bandwidth allocation and
admission control mechanisms in cellular base stations and
access points may guarantee network connectivity to a certain
extent, but cannot eliminate the stochastic nature of wireless
links. An alternative approach is to dynamically adjust
application partitioning between the cloud and mobile
terminals according to network conditions, although it is
challenging to quickly and accurately estimate the network
connectivity with low overhead.

Energy-efficient transmission is also critical when
exploiting the cloud to extend the capabilities of mobile
terminals. Frequent transmissions in bad connectivity will
overly consume energy, making the extended capabilities
unattractive, as battery life is always the top concern of mobile
users. A solution called eTime [5] is to adaptively seize the
timing opportunity when network connectivity is good to pre-
fetch frequently used data while deferring delay-tolerant data.

 Security

There are several aspects of terminal virtualization security,
including antivirus, authentication, data protection, and digital
rights management. Security vulnerability can cause serious
problems, including property damage, cloud vendor economic
loss, and user distrust. Since mobile terminals are resource-
constrained, locally executed antivirus software can hardly
protect them from threats efficiently. A current solution is to
offload the threat detection functionality to the cloud.
Nevertheless, since a pure cloud antivirus relies on cloud
resources, it is difficult to deal with malware that can block the
terminal’s Internet connection.

Besides, authentication is critical for access to sensitive
information, such as bank accounts and confidential files. With
constrained text input on mobile terminals, users tend to use
simple passwords, making mobile applications more vulnerable
to authentication threats. To solve this issue, Chow et al. [6]
build up an authorization platform where users are identified by
their habits (e.g., calling patterns, location information, and
web access). The platform routinely records user behavior
information. When a server receives an authorization request, it
redirects the request to an authorization engine, which uses the
aggregated behavior information and an authorization policy to
decide whether to accept the request or not.

 Privacy

Since mobile terminals are usually personal items, privacy
must be considered when leveraging the cloud to store and
process their confidential data remotely.

A secure data processing framework [7] can be used into
terminal virtualization, where critical data are protected by the
unique encryption key generated from the user’s trusted
authority and stored in an area named Extended Semi-Shadow
Image isolated from the public domain. Even when storage is
breached in the cloud, unauthorized parties including the cloud
vendor cannot obtain the private data.

Another particular privacy issue for mobile users is the
leakage of personal location information in location-based
services. To address the issue, a method called “location
cloaking” [8] makes user location data slightly imprecise
before submitting them to the cloud . But the imprecise data
sometimes cannot provide relevant or satisfactory results to
users in certain applications. Therefore, location cloaking
should be adaptively tuned to balance the trade-off between
privacy and result accuracy.

 Real-time Requirements and Service QoS

When terminal virtualization and mobile computing are
applied, QoS will become more important. How to guarantee
the related data or stream to be transmitted in time determinates
the services’ failure or success.

While different applications offer different functionality to
end users, the primary service Key Quality Indicators (KQIs)
across the application’s customer facing service boundary for
end users of applications generally include service availability,
service latency, service reliability, service accessibility, service
throughput, and application specific service quality
measurements.

III. COMPUTATION OFFLOADING & FUNCTIONS EXTENSION

Terminal virtualization enables enhanced mobile
experiences that were previously impossible on resource-
constrained and function-constrained mobile terminals. Many
commercial mobile applications use the cloud to bring about
rich features. They usually employ a client-server framework
that consists of two parts, which run on the mobile terminal and
the cloud, respectively. Essentially, cloud computing helps
extend the capabilities and functions of mobile terminals in
some aspects.

A. Capabilities & Functions extension

Through terminal virtualization, the capabilities and
functions can be reallocated between terminal and cloud, as
shown in the following examples

 Computation-intensive Task

At present, many applications nowadays support
speech/picture/video recognition. The models for recognition
and high-quality synthesis must be trained with millions of
samples in thousands of examples. This computation-intensive
task is infeasible on a mobile terminal and should be offloaded
to the cloud.

112

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. The procedure of computation offloading

 Remote Sensors/Inductors

Because of the limitation from terminal itself (low-end
model lacking some sensors or inductors) or other conditions
(e.g., distance exceeding the maximum length of sensors),
some services cannot work well. However, these services can
work through getting and storing related information from
mobile cloud platform. From the terminal point of view, its
functions are extended.

 Application Portability

It allows for the rapid transfer of applications (which may
occur on the fly), providing the freedom to optimize, without
the constraints of the location and required resources of the
virtual appliances. The precise but extensible definition of the
services provided by the application platform is the key to
ensuring application portability.

B. Computation offloading Decision

To overcome resource constraints on mobile terminals, a
general idea is to offload parts of resource-intensive tasks to the
cloud (centralized server or other peers). Since execution in the
cloud is considerably faster than that on mobile terminals, it is
worth shipping code and data to the cloud and back to prolong
the battery life and speed up the application. This offloading
procedure is illustrated in Fig. 1. The application will be
separated to several computation units/tasks according to
functions or calling relations. Then some of the computation
units/tasks will be offloaded to could devices to be executed
remotely. At last, the executing results will be returned to the
terminal as if the total application is executed locally.

There are several technologies to realize the runtime
environment in the cloud, and the major differences between
offloading techniques lie in the offloading unit and partitioning
strategies.

 Client–Server Communication Mechanism

In the Client–Server Communication, process
communication is done across the mobile terminal and cloud

server via protocols, such as Remote Procedure Calls (RPC),
Remote Method Invocation (RMI) and Sockets. Both RPC and
RMI have well supported APIs and are considered stable by
developers. However, offloading through these two methods
means that services need to have been pre-installed in the
participating terminals.

Spectra [9] and Chroma [10] are the examples of systems
that use pre-installed services reachable via RPC to offload
computation. Hyrax [11] has been presented for Android
smartphone applications, which are distributed both in terms of
data and computation based on Hadoop ported to the Android
platform. Another framework based on Hadoop is presented
in [12], for a virtual mobile cloud focusing on common goals
where mobile terminal are considered as resource providers.
Cuckoo [13] presents a system to offload mobile terminal
applications onto a cloud using a Java stub/proxy model. The
Mobile Message Passing Interface (MMPI) framework [14] is a
mobile version of the standard Message Passing Interface (MPI)
over Bluetooth where mobile terminals function as fellow
resource providers.

 Mobile Agent

Scavenger [15] is another framework that employs cyber-
foraging using WiFi for connectivity, and uses a mobile code
approach to partition and distribute jobs. Using its framework,
it is possible for a mobile terminal to offload to one or more
agents and its tests show that running the application on
multiples in parallel is more efficient in terms of performance.
However, the fault tolerance mechanism is not discussed and
since its method is strictly about offloading on agents and not
sharing, it is not really dynamic. Also, its agents are all
desktops and it is unclear if Scavenger is too heavy to run on
mobile phones.

 Virtualization/Virtual Machine (VM) Migration

The execution cannot be stopped when transferring the
memory image of a VM from a source terminal to the
destination server [16]. In such a live migration, the memory
pages of the VM are pre-copied without interrupting the OS or
any of its applications, thereby providing a seamless migration.
However, VM migration is somewhat time-consuming and the
workload could prove to be heavy for mobile terminals.

VM migration is used by a majority of frameworks,
including Cloudlets [17], Maui [18], CloneCloud [19], and
MobiCloud [20]. Virtualization greatly reduces the burden on
the programmer, since very little or no rewriting of applications
is required. However, full virtualization with automatic
partitioning is unlikely to produce the same fine grained
optimizations as that of hand coded applications, although
rewriting each and every application for code offload is also
not practical. Maui actually does not rely on pure VM
migration as done in CloneCloud and Cloudlets, but uses a
combination of VM migration and programmatic partitioning.
However, in cases where the mobile terminal user is within
range of an agent terminal for a few minutes, using VM
migration may prove to be too heavyweight, as is pointed out
by Kristensen [15], which uses mobile agents in light of its
suitability in a dynamic mobile environment.

113

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Hierarchical structure of the framework

C. Applications

The following lists the current applications using terminal
virtualization concept, from functions extension to complex
computing tasks.

 Mobile Cloud Phone

Mobile cloud phone differs from other smart phones in that
it does not need to download and store apps and content on the
phone; it instead accesses personal information and runs
programs stored on remote network servers, via the cloud.

YunOS 3.0 [21], developed by Alibaba, debuts officially
with cloud-based service for movie, taxi and other reservations
on October 20th, 2014. It comes with the brand new service
Cloud Card, which runs entirely in the cloud and offers the user
the option to select movie tickets, taxi services and more.

 Cloud Storage and Video Adaption

Through terminal virtualization, some part of data that is
stored in the cloud instead of stored on the terminal can be
treated as local data. And video stored in cloud platform can be
adapted to appropriate format and code streaming fitting for the
terminal when the terminal requests this video.

 Image and Natural Language Processing

For this kind of applications, the complex computation jobs,
which are difficult for local operating OS, should be offloaded
to the cloud platform and the mobile terminal just holds some
interface functions. Image and voice recognition, search,
adaption, natural language translation, and Artificial
Intelligence (AI) machine conversation, etc., which belong to
this kind of applications, can be implemented on some low-end
phones with the help of computation offloading.

 Augmented Reality (AR)

Algorithms in augmented reality are mostly resource and
computation-intensive, posing challenges to resource-poor
mobile devices. These applications can integrate the power of
the cloud to handle complex processing of augmented reality
tasks. Specifically, data streams of the sensors on a mobile
device can be directed to the cloud for processing, and the
processed data streams are then redirected back to the device. It

should be noted that AR applications demand low latency to
provide a life-like experience.

IV. PROPOSED FRAMEWORK FOR MOBILE SERVICES

This section proposes a mobile terminal virtualization
framework based on mobile OS. The framework locates in the
middleware layer between OS kernel and applications, as
shown in Fig. 2, which proxies the calls between the apps and
the OS and provides the virtualization function to apps using
networks, remote cloud platforms and services through OS,
hardware and network.

A. The framework overview

The framework illustrated in Fig. 3 is composed of four
processing modules: application virtualization module,
computation virtualization module, storage virtualization
module and network virtualization module, and a management
module.

In the framework, processing modules are in charge of
receiving and responding the callings from applications to OS.
Management module is used to manage the framework,
including security management, configuration management,
network and cloud service monitoring, etc.

B. Component Modules

As shown in Fig. 3, the processing modules are able to
choose the best method to process the calling according to the
current status of mobile network bandwidth, local resources,
terminals hardware limitation and remote cloud resources.
Meanwhile, the framework provides local calling responses to
the applications and shields the actual calling responses.

 Application Virtualization Module

This module is in charge of processing the functions
extension of applications. When the application accesses the
terminal’s hardware, for example one kind of sensor, this
module will check if it is available. If not, this module is
responsible for finding a same remote available sensor in the
cloud to satisfy the application’s demand and providing the
response with the result from the remote sensor to the
application.

Figure 3. The functions of processing modules

114

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Computation Virtualization Module

This module takes charge of monitoring the terminal’s
computation resource and analyzing the computation request
from applications. When the computation resource is
constrained (for example, the CPU usage is more than 85%) or
some applications with sophisticated computing power are run
(for example, virtual reality service, language processing, etc.,
it can be configured in advance), this module will offload some
computation tasks to the remote cloud server and provide the
processing result to the applications.

 Storage Virtualization Module

This module is in charge of monitoring the terminal’s
storage resource and providing the remote cloud storage to
applications. Through this module, the local applications can
use cloud storage provided by different Service Providers (SPs),
such as Baidu, Tencent, Huawei, etc., as using a local storage.
At the same time, this module monitors the speed and status of
the remote cloud storages and provides the best one to
applications.

 Network Virtualization Module

This module is in charge of monitoring the terminal’s
network status and providing the best one or binding different
network accesses to increase the data throughput according to
the applications’ demand.

 Management Module

The management module is responsible for managing the
framework. The security function including network security
and resources security is an important function in this module.
Other management functions include all kinds of configuration
management, for example, some resources and offloading
thresholds, and remote resource monitoring, for example, all
kinds of cloud services, network status.

V. FRAMEWORK IMPLEMENTATION

We are implementing an early-phase prototype based on
Android OS according to the proposed framework in our lab.
The following part discusses the implementation of the
modules, where network virtualization module and the storage
virtualization module are relatively easier to be implemented
than other three modules in the framework.

Figure 4. The overview of network virtualization function

A. Network Virtualization Implementation

Network virtualization means that services and applications
just make the networking call and do not have to be concerned
with the details of network environment, e.g., the network type
(WiFi/3G/4G), the network failure and recovery, how to use
multiple network paths (priority/traffic offloading) .

The network virtualization module employed a method [22]
to implement the network access independence, for example,
using multiple access paths simultaneously, switching between
access paths according to the current network environment, and
recovering the access path automatically. A local proxy in
terminal and a remote proxy in network cooperate to
implement the functions of network virtualization module. And
the applications and services are able to automatically adapt the
change of network and are not affected by it.

The system overview is illustrated in Fig. 4. It is composed
of terminal local proxy and remote proxy. A local proxy built
in the terminal is responsible for relaying the conversation
between applications and network. The remote proxy
exchanges Data packets with the local proxy through the
Transmission Control Protocol (TCP) or User Datagram
Protocol (UDP) based tunnel established over multiple
heterogeneous links in the content centric way.

The remote proxy fetches the content from the outer server
in the Internet to satisfy the terminal’s request. The main
reason for using two proxies is that the tunnel between the two
proxies can help Content Centric data stream penetrate the
network.

The working environment can be IPv4 or IPv6. In IPv6
network, the remote proxy can be assigned with different IPv6
addresses including unicast address, multicast address and
anycast address. Given the unicast address, the terminal
establishes the tunnel with the single specific remote proxy.
The multicast addressing refers to the configuration where the
terminal can set up the tunnels concurrently connecting the
collection of remote proxies. The anycast addressing makes the
terminal build the tunnel to the nearest remote proxy among
several candidates.

Since the service session in the scheme is identified with
the Uniform Resource Identifier (URI) that is independent of
the IP addresses associated with the different connections to the
network, the terminal can keep the ongoing session alive as
long as the content identifier is invariant. The dynamics due to
the connection switching in the mobile scenario is only visible
in the tunnel running over the TCP or UDP sessions managed
by the local proxy.

CCN is an alternative approach to the architecture of
networks, which was proposed by Xerox PARC within the
Content Centric Networking (CCNx) [23] project. From the
network perspective, in CCN, network entities in ordinary
network are replayed by data entities.

Unlike state-of-the-art multi-path approaches such as Multi-
Path Transmission Control Protocol (MP-TCP), CCN can help
us to hide some network control implementing details with the
help of the ‘connection-less’ nature of CCN. In the network
virtualization solution, we utilize the CCN concept rather than

115

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CCN protocol, thus it is not necessary to consider the change of
network access paths through fountain codes to encapsulate
data packets.

The service session coupling with the remote proxy avoids
the problem of Domain Name System (DNS) resolution
potentially confronted with the multi-homed terminal. Since the
remote proxy acts as the agent of the terminal for content
acquisition, the terminal has no need for DNS resolution except
to forward the request message to the remote proxy. The update
on the access router is additionally not mandatory anymore
because the conversion between IP address and URI is
executed in the sense of application layer.

In this solution, fountain codes are used to transport data
packets between two proxies. The reasons of choosing fountain
codes as the encapsulation technology are shown as follows.
Fountain codes are rateless in the sense that the number of
encoded packets that can be generated from the source message
is potentially limitless. Regardless of the statistics of the
erasure events on the channel, the source data can be decoded
from any set of K’ encoded packets, for K’ slightly larger than
K. Fountain codes can also have very small encoding and
decoding complexities and automatically adapt the change of
multiple access paths to avoid the implementation of path
control details [24].

In this module, the source hosts simply transfer as many
packets with the different coding schemes as possible to the
destination hosts without concerns over the reordering induced
in various paths. It increases the data throughput and avoids the
complicated reconciliation between the multiple paths.

The local proxy and remote proxy, fountain encoding and
decoding had been implemented in our lab. The test-bed is
illustrated in Fig. 5. Because there is no mobile data access in
the lab, we chose two WiFi interfaces and Access Points (AP)
to simulate two access paths. On this test-bed, we tested
various combinations of two access paths and handover
between them. The data delivery between the laptop and
Internet cannot be interrupted during the transition among these
scenarios. The test result validated the feasibility and validity
of network virtualization solution.

Figure 5. The test-bed for network virtualization

Figure 6. The flowchart of storage virtualization function

B. Storage Virtualization Implementation

The storage virtualization module adds online storage
services/cloud platforms into the system storage as a directory,
which can be accessed by the applications like a local one.
When the directory is accessed, the storage virtualization
module will automatically exchange the data with the online
storages/cloud platform. Another issue we need to be
considered is security, including the storage location security
and the transport security. The detail implementation of
security is discussed in part E in Section V.

The flowchart of storage virtualization function is shown in
Fig. 6.

When the system storage APIs are called, the usage of local
storage will determine whether to call the remote storage APIs.
If the remote storage is called, the confidentiality data will be
stored in the remote safe platform through secure transmission
mode (refer to part E) and the data without security
requirement will be transported to some online storages
through Internet, such as Baidu, Huawei online storage services.

C. Application Virtualization Implementation

To implement application virtualization, some operating
system calls accessing local hardware need to be intercepted
and rewritten. The functions to access online hardware resource
will be added into the application virtualization module.

For example, some kinds of sensors are supported by
Android OS, which are defined in APIs. The sensors include
accelerometer sensor, gravity sensor, gyroscope sensor, light
sensor, linear acceleration sensor, magnetic field sensor,
proximity sensor, rotation vector sensor, temperature sensor
and pressure sensor. The last two sensors are relatively rare in
most of the terminals. So, the remote sensors can be used to get
some information for the applications as local calls through the
application module.

116

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Changed sensor framework in application virtualization module

Fig. 7 shows the new sensor framework for terminal
virtualization. In this framework, the original Sensor Hardware
Abstraction Layer (HAL) is rewritten. Some new functions are
added to the new HAL, including determining if remote sensor
services should be accessed, sending the request to remote
sensors and receiving the response and updating information.
The new block, remote sensor manager, is the interface
between the local system and remote sensor services. It is
responsible for exchanging the sensor information, including a
remote sensor list for the local system, and the terminal’s
Global Position System (GPS) information for remote sensor
services to acquire the terminal’s position and remote sensor’s
information corresponding to the terminal's position.

D. Computation Virtualization Implementation

In the computation virtualization module, we plan to take
different approaches according to the type of tasks. For
example, for the tasks requiring sophisticated computing power
defined in advance, RPC/RMI method will be used; for the
independent tasks undefined in advance, virtual machine
migration will be used.

Offloading the computation tasks to remote execution can
be a solution to go over the limitations of mobile terminal’s
computing power and can be seen as a way for extending
terminal battery. Remote execution leverages the high
computation capacity of the server to extend the poor one of
the terminal and battery through energy savings. Similarly,
thanks to the increased memory of the remote server, it is

possible to provide a large set of applications to the mobile user,
which are difficult to be run on the terminals.

However, computation offloading is energy efficient only
under various conditions. It is vital to look at what happened in
context. So, the computation offloading algorithm is very
important in the computation virtualization module.

Maui [18] and CloneCloud [19] can be considered as
solutions. In Maui, Microsoft’s researchers presented a fine-
grained solution to reduce programmers work by partitioning
the application code automatically, deciding at runtime which
methods should be offloaded to be remotely executed. Maui
formulates the problem as an Integer Linear Programming
(ILP). A comparison of the energy consumption of three
applications (face recognition application, video game and
chess game) pointed out that energy savings from 27% up to
80% can be achieved. However, this approach works only on
Microsoft Windows OS and requires only one server serving
each application, which is not scalable to handle many
applications.

In CloneCloud, a more coarse-grained offloading approach
is proposed that offloading is performed by a modified Dalvik
VM automatically. Meanwhile, this approach requires pre-
processing on the client side, which can also lead to excessive
network traffic from the cloud network to the terminal.

These two approaches do not provide QoE guarantees for
mobile users in case of computation offloading. Moreover, the
impact of mobile environment in the matter of quality of radio
interface according to the position of the end user in the cell
has not been considered in these solutions.

A solution named Mobile Application’s Offloading (MAO)
algorithm was proposed [25], which considers a combination of
multiple constraints including CPU, State of Charge (SoC) of
the battery, and bandwidth capacity. MAO also evaluates the
performance of CPU intensive and I/O interactive applications.
The objective is to focus on job offloading, which is a
convenient way to achieve energy consumption optimization if
certain constraints are satisfied.

The specificities of MAO algorithm with respect to other
two offloading algorithms are points out by Table I. “Network
Conditions” refers to the fluctuated quality of the radio
interface and “User Mobility” refers to the position of the end
user within the cell. Compared with Maui and CloneCloud,
MAO considers all five aspects, such as QoE, user mobility
and SoC of battery. So, it is more applicable to mobile terminal
with limited battery.

TABLE I. COMPARISON OF COMPUTATION OFFLOADING ALGORITHMS

Aspects QoE
satisfaction

Network
Conditions

User
Mobility

CPU SoC

Maui No Yes No Yes No

CloneCloud No Yes No Yes No

MAO Yes Yes Yes Yes Yes

117

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. The updated MAO algorithm flowchart

Based on the MAO algorithm, we added one aspect, the
CPU load, and embodied QoE as Round-Trip Time (RTT) to
the server and access network bandwidth. The updated
flowchart is shown in Fig. 8.

E. Security Function Implementation in Management
Module

Because the terminal virtualization needs to transport some
vital information, such as VM, part of application, users’
identification related, security issues are very important to
avoid exposing it to the network directly.

To implement the security function in the management
module, the data communication should to be encrypted to
ensure integrality and confidentiality.

Therefore, considering these characteristics in this security
case, a solution based on public-key cryptography is proposed
[26], also known as asymmetric cryptography.

In this solution, the cloud platform is employed as the
server-side to implement the key management and server-side
encryption/decryption function.

When the terminal communicates with the server with
security transport, the specific steps are described below. Fig. 9
and Fig. 10 show the steps of the security function.

Uplink (from the terminal to the server)

Step 1: the server in the cloud platform generates public
key and private key and sends the public key to the Operation
Administration and Maintenance (OAM).

Step 2: when the terminal needs to communicate safely
with the server, the terminal gets the public key of the server
from OAM. Then the terminal first generates a MD5 [27] of
the sending information for the server to validate the integrality
of it. Next, the terminal encrypts the sending information and
MD5 digest using the public key of the server.

Step 3: the terminal sends the encrypted packet to the
server through the network.

Step 4: the server decrypts the packet received using its
private key;

Step 5: the server generates its own MD5 of the decrypted
information and compares it with the MD5 received from the
terminal to determine the integrality of the packet received. If
the two MD5s are equal, the information received is reliable.
Otherwise, the information has been tampered and should be
discarded and retransmitted.

Figure 9. The uplink steps of the security function

118

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. The downlink steps of the security function

Downlink (from the server to the terminal)

Step 1: the terminal generates public key and private key
after it boots and sends the public key to the OAM.

Step 2: when the server needs to communicate safely with
the terminal, the server gets the public key of the terminal from
OAM. Then the server first generates a MD5 of the sending
information for the terminal to validate the integrality of it.
Next, the server encrypts the sending information and MD5
digest using the public key of the terminal.

Step 3: the server sends the encrypted packet to the
terminal through the network.

Step 4: the terminal decrypts the packet received using its
private key;

Step 5: the terminal generates its own MD5 of the
decrypted information and compares it with the MD5 received
from the server to determine the integrality of the packet
received. If the two MD5s are equal, the information received
is reliable. Otherwise, the information has been tampered and
should be discarded and retransmitted.

VI. CONCLUSION AND FUTURE WORK

Terminal virtualization has overlapped with some areas,
such as mobile peer-to-peer computing, application partitioning,
and context-aware computing, but it still has its own unique
challenges. There is still a long way to go before terminal
virtualization is widely used.

In this paper, we try to build up a unified framework to
cover all aspects of terminal virtualization using current
technologies and platforms. We analyze some aspects of
current terminal virtualization, highlight the motivation for it,
and present its functions, applications and some challenges.
And on this basis, we proposed a terminal virtualization
framework for mobile services. In this framework, four
processing modules and one management module are
employed to handle the resource requests from apps and shield
the details for accessing cloud services. Then we gave some
implementation details of these modules.

In the future work, we shall consider analyzing the
performance of the prototype in this framework, and give some
improved recommendations on the performance.

REFERENCES

[1] T. Zheng and S. Dong, “Terminal Virtualization for Mobile Services,”
ICNS 2015, pp. 31-37.

[2] “Cisco Visual Networking Index: Forecast and Methodology, 2014–
2019,” http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/ip-ngn-ip-next-generation-network/white_paper_c11-
481360.html, May 2015.

[3] “Mobile Cloud Applications & Services,” Juniper Research, 2010.

[4] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani,
“Energy Consumption in Mobile Phones: a Measurement Study and
Implications for Network Applications,” Proc. ACM IMC, 2009, pp.
280-293.

[5] P. Shu, F Liu, H. Jin, M. Chen, F. Wen, and Y. Qu, “eTime: Energy-
Efficient Transmission between Cloud and Mobile Devices,” Proc. IEEE
INFOCOM, 2013, pp. 195-199.

[6] R. Chow et al., “Authentication in the Clouds: a Framework and Its
Application to Mobile Users,” Proc. ACM Cloud Computing Security
Wksp. 2010, pp. 1-6.

[7] D. Huang, Z.Zhou, L. Xu, T. Xing, and Y. Zhong, “Secure Data
Processing Framework for Mobile Cloud Computing,” Proc. IEEE
INFOCOM, 2011, pp. 614-618.

[8] R. Cheng, Y. Zhang, E. Bertino, and S. Prabhakar, “Preserving User
Location Privacy in Mobile Data Management Infrastructures,” Proc.
Wksp. Privacy Enhancing Technologies, 2006, pp. 393-412.

[9] J. Flinn, S. Park, and M. Satyanarayanan, “Balancing performance,
energy, and quality in pervasive computing,” Proc. IEEE ICDCS 2002,
pp. 217-226.

[10] R. Balan, M. Satayanarayanan, S. Park, and T. Okoshi, “Tactics-based
remote execution for mobile computing,” Proc. ACM Mobisys, 2003, pp.
273-286.

[11] E. E. Marinelli, “Hyrax: cloud computing on mobile devices using
MapReduce,” Masters Thesis, Carnegie Mellon University, 2009.

[12] G. Huerta-Canepa, and D. Lee, “A virtual cloud computing provider for
mobile devices,” Proc. ACM MCS 2010, article No. 6.

[13] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: a computation
offloading framework for smartphones,” Proc. ACM Mobisys, 2010, pp.
59-79.

[14] D. C. Doolan, S. Tabirca, and L.T. Yang, “Mmpi a message passing
interface for the mobile environment,” Proc. ACM Mobisys, 2008, pp.
317-321.

[15] M. Kristensen, “Scavenger: transparent development of efficient cyber
foraging applications,” Proc. IEEE PerCom, 2010, pp. 217-226.

[16] C. Clark, et al., “Live migration of virtual machines,” Proc. of the 2nd
conference on Symposium on Networked Systems Design &
Implementation, USENIX Association, 2005, vol 2, pp. 273-286.

[17] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case for
VM –based Cloudlets in Mobile Computing,” IEEE Pervasive
Computing, vol. 8, no. 4, 2009.

119

International Journal on Advances in Security, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[18] E. Cuervo et al., “Maui: Making Smartphones Last Longer with Code
Offload,” Proc. ACM MobiSys, 2010, pp. 49-62.

[19] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic Execution Between Mobile Device and Cloud,” Proc. ACM
EuroSys, 2011, pp. 301-314.

[20] D. Huang, X. Zhang, M. Kang, and J. Luo, “MobiCloud: Building
Secure Cloud Framework for Mobile Computing and Communication,”
Proc. IEEE SOSE, 2010, pp. 27-34.

[21] http://www.yunos.com, YunOS, November 2015.

[22] T. Zheng and D. Gu, “Traffic Offloading Improvements in Mobile
Networks,” ICNS 2014, pp. 116-121.

[23] http://www.ccnx.org, CCNx, November 2015.

[24] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital fountain
approach to reliable distribution of bulk data,” Proc. ACM SIGCOMM
'98, pp. 56-67.

[25] A. Ellouze, M. Gagnaire, and A. Haddad, “A Mobile Application
Offloading Algorithm for Mobile Cloud Computing,” Proc. IEEE
MobileCloud 2015, pp. 34-40.

[26] http://www.merkle.com/1974/, R. C. Merkle, November 2015.

[27] http://en.wikipedia.org/wiki/MD5, November 2015.

