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Abstract—The fast paced evolution of malware has demon-
strated severe limitations of traditional collection and analysis
concepts. However, a majority of the anti-malware industry
still relies on such ineffective concepts and invests much effort
into temporarily fixing most obvious shortcomings. Ultimately
fixing outdated concepts is insufficient for combating highly
sophisticated future malicious software, thus new approaches
are required. One such approach is AWESOME, a novel
integrated honeypot-based malware collection and analysis
framework. The goal of our collection and analysis system is
retrieval of internal malware logic information for providing
sufficient emulation of protocols and subsequently network
resources in real time. If protocol emulation components are
trained sufficiently, a larger setup could even allow for malware
analysis in an isolated environment, thus offering side-effect
free analysis and a better understanding of current and emerg-
ing malware. In this paper, we present in-depth information
on this concept as well as first practical results and a proof of
concept, indicating the feasibility of our approach. We describe
in detail many of the components of AWESOME and also
depict how protocol detection and emulation is conducted.
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I. INTRODUCTION

Cyber crime has become one of the most disruptive threats
today’s Internet community is facing. The major amount
of these contemporary Internet-based attacks is thereby at-
tributed to malware, which is usually organized within a bot-
net in large-scale scenarios. Such botnet-connected malware
is on their part utilized for infecting hosts and instrument-
ing them for various malicious activities: most prominent
examples are Distributed Denial of Service (DDoS) attacks,
identity theft, espionage and Spam delivery [6][24][39].
Botnet-connected malware can therefore still be considered
a major threat on today’s Internet.

Due to the ongoing spread of IP-enabled networks to
other areas we expect the threat posed by botnet-connected
malware to increase and moreover reach further domains
in public and private life. Thus, there is a fundamental
need to track the rapid evolution of these pervasive malware
based threats. Especially timely intelligence on emerging,
novel threats is essential for successful malware defense
and IT early warning. This requires both, acquisition and
examination, of current real-world malware samples in suf-
ficient quantity and variety, commonly acquired through

meticulous analysis of the most recent samples. The evo-
lution of malware over time has led to the development
of intensive obfuscation and anti-debugging mechanisms,
as well as a complex and multi-staged malware execution
life cycle [37]. Each phase may include numerous measures
aimed at maximizing installation success and reliability. In
order to comprehensively analyze the full life cycle, the
malware under analysis must have unhindered access to all
requested resources during runtime. While this could easily
be achieved by allowing full interaction with the Internet,
this is not a viable approach in setups, which are forced to
consider liability issues.

In this paper, we introduce AWESOME [1], which is
short for: Automated Web Emulation for Secure Operation
of a Malware-Analysis Environment. It is a novel approach
for integrated honeypot-based malware collection and anal-
ysis. The overall goal of AWESOME is to capture and
dynamically analyze novel malware on a large scale. To
identify trends of current and emerging malware, we aim
to cover the entire execution life cycle. That is, we want to
track malware communicating via both known and unknown
(C&C) protocols in an automated way within a controlled
environment. In order to minimize harm to third parties,
malware should by default have no Internet access during
analysis. The whole procedure intends to trick a sample into
believing it is running on a real victim host with full Internet
access.

II. BACKGROUND AND RELATED WORK

A. Malware Life-Cycle

Due to the predominant economic motivation for mali-
cious activities backed by organized cyber crime also the
sophistication of malware and the respective propagation
methods continuously evolved, hence increasingly imped-
ing malware defense. Thereby, the invested effort and the
achieved result must be in a reasonable relation for a
professional attacker. Thus, we experience the phenomena
of a moving target. That is, cyber criminals chose their
targets and attack vectors according to the best economic
relation and an ongoing paradigm shift towards client-side
and targeted attacks has been witnessed in recent years [6].
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Widely spread malware is most effectively managed
within a botnet, therefore, a newly compromised host is
still to become a botnet-member. Many findings from recent
research indicate an ongoing specialization of the various
groups in the underground economy offering ”Malware
as a Service” and ”pay per install” schemes including
elaborated models for pricing, licensing, hosting and rental
[9][18][24][26]. This often includes professional mainte-
nance, support and service level agreements for the pur-
chasable malware itself as well as innovations in the main-
tenance of infected victim hosts.

Therefore, there is

1) one group specializing on the development of the
actual malware,

2) a second group deals with the operation platform and
the distribution of malware (i.e., to establish botnets)
and

3) a third group focuses on suitable business models.

As a result, also the actual malware itself evolved with
respect to obfuscation techniques and anti-debugging mea-
sures. Thus, current malware checks for several conditions
before executing its malicious tasks, such as hardware re-
sources of the victim host, Internet connectivity or whether
it is executed within a virtualized environment [16][34][46].

With respect to the facts outlined previously and findings
of related work [9][37] we model the execution life cycle
of today’s (autonomous spreading) malware as depicted in
Figure 1 [5]. Particular stages within this life cycle may
differ depending on the malware type and are accordingly
addressed in separate work (e.g., the life cycle of Web-based
malware has been analyzed in [40]). A common setting
consists of three phases:

1) Propagation and exploitation
Within this initial phase a worm spreads carrying a
malicious payload that exploits one or multiple vulner-
abilities. In this context, a vulnerability encompasses
also the human using social engineering techniques
thus possibly requiring user interaction. Furthermore,
a vulnerability may be OS based (e.g., a flaw in a
network service) or - more commonly - application
based. The latter includes specifically vulnerabilities
in browsers, their extensions (such as Adobe’s flash),
Email clients (e.g., attachment, malicious links, Emails
containing malicious script code, etc.) and other online
applications such as instant messaging clients.
The malicious payload of the worm may instrument
a variety of attack vectors reaching from (classical)
buffer and heap overflows to recent return oriented
programming techniques [47], while evading appropri-
ate countermeasures such as address space layout ran-
domization (ASLR), data execution prevention (DEP)
and sandboxing [30]. After successfully exploiting a
vulnerability, a shellcode is placed on the victim host,

which gets then extracted and executed, including
decryption and deobfuscation routines when necessary.

2) Infection and installation
As a result of executing the injected shellcode, a
binary is downloaded and placed on the victim host.
This binary typically is a so-called dropper, which
contains multiple malware components. It is supposed
to disable the security measures on the victim host,
to hide the malware components and to obfuscate
its activities before launching the actual malware. It
is synonymously referred to as downloader, which
has the same features except that it does not contain
the actual malware but downloads it from a remote
repository resulting in a smaller size [37]. As there
is an emerging trend that multiple cyber criminals
instrument a single victim host for their malicious
purposes also several droppers may be installed (in
parallel) within this step.
Once the dropper is executed it extracts and in-
stalls further components responsible for hardening
and updating tasks. That is, they prepare the system
for the actual malware using embedded instructions.
These tasks include, e.g., disabling security measures,
modifying configurations and contacting a remote site
for updates ensuring that the actual malware is exe-
cuted after every reboot and impeding its detection
and removal. After the update site has verified the
victim host as ”real“ and probably worth getting com-
promised, it provides the dropper components with
information on how to retrieve the actual malware
(e.g., via an URL) and updated configurations, when
necessary. Again, this may include multiple binaries
each representing a different botnet.
Once downloaded, the malware is executed by the
dropper component installing its core components.
Finally, these core components remove all other (non-
vital) components resulting from previous stages and
the malware is operational.

3) Operation and maintenance
Initially, the malware launches several actions, which
are intended to directly gain profit from the victim
in case the attacker loses control over the compro-
mised host later on. Therefore, the malware harvests
valuable information such as credit card numbers and
all kinds of authentication credentials and sends it
as an encrypted file to a remote server under the
control of the attacker. Next, the malware attempts
to establish a communication channel to the attackers
command and control (C&C) infrastructure awaiting
further instructions. These may include commands to
launch different malicious actions but also mainte-
nance operations such as retrieving updates, further
propagation or even to terminate and remove the
malware.
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Figure 1. Today’s multi-staged, complex malware life-cycle.

The various steps of the outlined, complex malware life
cycle include many checks and measures to increase the
resilience of the various features each intended to maximize
the success of the malware installation, ensuring a reliable
operation and to protect the cyber criminals from being
tracked down. Thus, the reasons for this complex life cycle,
especially the use of droppers in an intermediate step, are
apparent:

• The dropper components evade discovery of system
compromise. Also, the adversary has no need to dis-
tribute the core malware components in the first phase
thereby impeding the successful collection and thus
detection and mitigation of the malware.

• In addition, he can distribute the malware more selec-
tive and targeted.

• Finally, the attacker can ensure, that the victim host

is real (i.e., not a honeypot or virtualized analysis
system) and that it is worth being compromised (e.g.,
by checking available resources).

Among others, this implicates, that for a comprehensive
analysis of a given malware it must receive all resources
that it requests during its life cycle, since it may behave
different or refuse to execute at all otherwise.

B. Combating Malware

One major issue that makes malware analysis a very
challenging task, is the ongoing arms race between malware
authors on the one hand and malware analysts on the other
hand. That is, while analysts use various techniques to
quickly understand the threat and intention of malware,
malware authors invest considerable effort to camouflage
their malicious activity and impede a successful analysis.
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Figure 2. Amount of malware sample submissions to virustotal.com over a recent randomly chosen period.

While in past decades an explosive spread of identical
malware has been observed, nowadays malware is mostly
created utilizing creation kits. As a result, we experience
a diffusion of malware variants, which are designed to be
difficult to identify and analyze. Accordingly, a vast amount
(i.e., hundreds of thousands) of new malware shows up
per day. This is illustrated in Figure 2, which outlines the
number of malware samples submitted to Virustotal based
on a randomly chosen recent period.

Thereby the correlation between the total number of sam-
ples and the unique ones is notable, since they correspond to
each other. This suggests that the majority of new malware
can be attributed to be just new variants of already existing
malware. That is, while most of the malware samples are
unique (i.e., have different file hashes) they are in fact not.
But since they are considered to be unique all of them need
to be analyzed.

Only once analyzed and the threat posed by a given
malware sample is estimated a corresponding anti-virus (AV)
signature (i.e., a characteristic byte sequence) can be created.
As a result, the vast amount of new malware introduces the
need for automation of the entire malware estimation process
(i.e., collection and analysis).

Advanced large-scale malware collection and analysis
infrastructures, such as [2][10][15], can satisfy the require-
ments for automated tracking of malware, but suffer from
several limitations:

1) Despite being executed within an isolated environ-
ment, samples must be supplied with requested net-
work services during analysis. Otherwise, the ability
to achieve high-quality results is impeded, potentially
causing different malware behavior, refusal of exe-
cution or even blacklisting of the collector’s address
space.
While certain services can be offered using sinkholing
techniques, existing approaches are purely network-
based, and reactions to malware-initiated connection
attempts remain static during runtime. Predefined

commonly-used services are offered by these infras-
tructures to the malware; however, other requests can
not be handled accordingly.

2) High-interaction (HI) honeypots pose, aside from their
complexity and maintenance issues, high operational
risks. These is often inadequately addressed. While
there are many methods of mitigation, the remaining
risk is still higher than with low-interaction (LI) hon-
eypots, resulting in ethical questions and possibly even
legal and liability issues for the operating organization.

3) Existing approaches separate collection and analysis,
thus forfeiting the system context (i.e., file handles,
requests, sockets) of the victim host. While such
separation is not necessarily a limitation (it may not
be mandatory to gain qualitative analysis results), we
argue that this loss of information hinders analysis and
may degrade analysis results or prevent analysis of
certain malware altogether.

C. Logic Analysis Using Virtualization

Like modern intrusion detection systems, protocol de-
tection and sinkholing frameworks should not be limited
to knowledge about traffic passing through the network.
Instead, such systems should incorporate information on the
involved systems as well. The tracking of library functions
using API-hooks in user or kernel space is one possibility
to do so and very popular in malware analysis [27][31][50].

System call tracing has long been known as a solution
for profiling and detecting software behavior [17]. While
access to privileged operations are usually implemented in
the same way on most modern operating systems (OS)
(figure 3), not all OSes offer an interface for system call
auditing. For operating systems without such an interface, a
monitoring functionality has to be implemented by hand,
requiring complex and extensive modifications to guests’
internal system call handling mechanisms [7].

Hooking of library functions allows finer-grained tracking
of a sample’s activities than system call tracing. However,
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if implemented within the same context of execution as
malware is run in, API-hooking is equally susceptible to
detection and circumvention by adversaries but requires
fewer changes to the operating system’s internal mechanisms
[7]. Thus, this method of behavior analysis is preferred in
most sandboxes [27][31][50].

Start

prepare
Arguments

execute
System Call

perform
privileged Ops

Check 
Return Value
or Response

De-obfuscation
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Figure 3. Privileged operations, such as network or disk operations, cannot
be executed in user space. Software uses system calls to perform these
operations in kernel space.

Due to possibilities offered by virtualization techniques,
system call tracing became more popular again. Initially,
Tal Garfinkel and Mendel Rosenblum proposed the use
of Virtual Machine Introspection (VMI) to extract certain
information from a virtual machine (VM) [21]. VMI can
also be used to create and enforce behavioral policies [17].
Process activity and the state of a guest’s (virtual) hardware
components may be used for analysis, too.

We can utilize VMI to extract internal information from
a process, monitor and control its behavior. If a program
exhibits unexpected behavior or uses system calls or library
functions, which are outside of the programs specifications,
an intrusion can be assumed.

III. APPROACH

A. Basic Concept

To identify the services and protocols required in the next
step of the execution life cycle of a sample, we intend to har-
vest information on internal malware logic during execution.
In contrast to purely network-based approaches, our method
also operates at the binary level, directly interacting with

the malware’s host system. Therefore, it aims to integrate
network-based analysis and binary analysis, as in [48].

As depicted in Figure 4, the presented AWESOME ap-
proach [1] is based on an HI honeypot and a virtual machine
introspection framework. We enhance our architecture with
a transparent pause/resume functionality, which is instru-
mented to determine and, if needed, interrupt the program
flow. Hence, we enable the extraction and alteration of
program logic and data within the victim environment during
runtime. This is specifically valuable for extracting protocol
information and cryptographic material embedded within
malware in order to determine the protocol type and intercept
encrypted communication.

After checking, extracted information is forwarded to a
service handler (SH) and sinkholing service in order to
maintain full control over all interactions between the mal-
ware and the outside world. For handling unknown traffic as
well, finite state machines (FSM) are automatically derived
from the observed traffic and used for service emulation.
An important goal of automating of the whole collection
and analysis process is to handle large amounts of malware
while allowing scalability.

B. Added Value

The system context of the malware collection facility
persists and is also used in the subsequent analysis. The
capabilities resulting from the merge of collection and
analysis is similar to the approach used in HI honeypots.
Thus, it is more closely aligned to real-world scenarios than
LI honeypots. In addition, we achieve increased transparency
during analysis due to the use of VMI. We consider this to
be a benefit, since we argue that VMI based analysis is more
likely to remain undetected by malware.

Compared to other techniques, VMI requires no trusted
support components, which could be compromised [14] in-
side the sample’s context of execution. Hence, the approach
is more likely to observe the entire malware execution life
cycle.

We are able to extract and inject data as well as in-
structions from or into the memory of the infected virtual
machine (VM) during runtime (for example, in order to tap
and manipulate encrypted C&C traffic). Since our approach
does not depend on analysis components within the VM,
we believe it to be more secure while also expecting better
overall performance. Moreover, we are able to control any
interaction between malware and third party systems. Thus,
our architecture can fulfill legal and liability constraints.

Since our approach is applied directly at the instruction
level, we are aware of the actions initiated by the malware,
thus allowing us to provide matching services and even to
service novel communication patterns. Subsequently, the risk
resulting from HI honeypot operation is minimized.
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Figure 4. General design of the presented approach.

IV. DESIGN AND IMPLEMENTATION

The AWESOME approach [1] utilizes the following com-
ponents:

• For malware collection, a modified ARGOS HI honey-
pot [41] is used.

• Malware analysis is conducted based upon Nitro [38],
a KVM-based framework for tracing system calls via
VMI. In particular, we determine whether a given action
initiated by the currently-analyzed malware requires
Internet access and thus apply a complex rule-set to
the tracing component.

• Our service provisioning component manages all
malware-initiated attempts to request Internet resources.
Malicious attempts are handled via an appropriate
sinkholing service spawned by Honeyd [44], and un-
known traffic patterns may be handled utilizing Script-
Gen [33].

While most popular LI honeypots have proven to be
efficient for malware collection, their knowledge-based ap-
proach has also drawbacks regarding the quantity and di-
versity of the collected malware [51]. With respect to our

primary goal (to handle unknown malware), we chose to
apply the taint-map-based approach of ARGOS, since it
allows the detection of both known and unknown (0-day)
attacks. In addition, it is independent of special collection
mechanisms. Moreover, it can cooperate with the KVM
based VMI framework Nitro. Hence, several components
were modified:

1) The victim VM’s RTC is detached from the host’s
clock, since ARGOS is more time-consuming than
traditional approaches and thus detectable by an ab-
normal latency and timing-behavior;

2) Once the taint-map reports tainted memory being ex-
ecuted, we activate the analysis functionality provided
by the VMI framework; and,

3) Simple interpretation and filtering of system calls and
their parameters is conducted directly within hypervi-
sor space, while more complex analysis is performed
via the VMM in the host environment [19].

The entire process consists of three parts (collection, analy-
sis, and service provisioning) and is structured as described
below. The steps are repeated iteratively throughout the
entire life cycle of the malware.
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A. Malware Collection

As a HI honeypot, ARGOS requires much effort in
deployment and maintenance. Furthermore, one of the main
drawbacks of ARGOS is its poor performance, which is
among others related to the overhead caused by the taint
mapping technique. To overcome this limitation, we deploy
a two stage malware collection network (i.e., a hybrid
honeypot system similar to the ones described in [3][28][49])
as outlined in Figure 5.

We take advantage of our existing honeyfarm infrastruc-
ture ([4][20]). This malware collection network consists
of various honeypots and honeypot-types. Especially, client
honeypots play an increasingly important role since the
approach of this honeypot type covers the detection of state
of the art attack vectors thus enabling client honeypots to
capture current malware that may have not been collected
using server honeypots.

The honeyfarm utilizes a large-scale network telescope
(in particular a /16 darknet) serving the various honeypots.
We use this infrastructure in order to filter noise and known
malware (in particular everything that can be handled by
the LI honeypots or their vulnerability handling modules
respectively). The so collected binaries (which we consider
to be mostly shellcode containing URLs and droppers) are
stored in the central repository. Based on the file-hash known
files are distinguished from novel ones. Only novel attempts
are forwarded to the ARGOS HI honeypot, which then does
the further processing. By doing so we minimize the load
on ARGOS and thus justify its operation.

B. Malware Analysis

Dynamic malware analysis utilizing virtualization can be
detected and thus evaded by environment-sensitive malware
[16][19][34][46]. Hence, our goal is to achieve a reason-
ably transparent dynamic malware analysis without claiming
the approach to be completely stealthy. However, we also
consider VMI as the most promising available approach to
evade malware’s anti-debugging measures due to its minimal
footprint. Thus, in order to provide the best chance at
evading detection while still gaining the benefits of VMI,
we have chosen Nitro since it offers several advantages
regarding performance and functionality in comparison to
other publicly available tools such as Ether (see [38]).

As Nitro is based on KVM, we have - in addition to
guest portability - full virtualization capability, thanks to the
host CPU’s virtualization extensions. Thus, we can expect
reasonable performance.

During the analysis process, we expect a malicious binary
to be shellcode or a dropper rather than the actual malware
binary. This initially retrieved binary is then decoded and
usually contains a URL pointing at the resource used for
deploying the next stage of the malware. In the second
iteration, execution of this binary continues after it has been
downloaded and the VM has been resumed. The resulting

system call trace is then examined for routines related to
connection handling (e.g., NTConnectPort). If present, we
transparently pause execution of the VM and forward related
traffic to the service provisioning component. The following
sections outline the methods for dynamic malware analysis
in more detail.

1) Subroutine Logic Analysis: Based on the executed
system call’s associated parameters and the memory of the
calling process, certain information can be extracted directly
from a thread. Traditional semantics checking may prove to
be efficient for detecting known subroutines and protocol
implementation [42].

Promising candidates for detection are operations and
checks performed on the expected peer’s response as well
as common library functions and routines [50]. A sample’s
code could be checked for well-known standard algorithms,
like routines used to generate symmetric checksums and
cryptographic hash functions imported from libraries such
as the de-facto standard implementations in OpenSSL or
GnuTLS.

If the library function or algorithm being used can be
detected, the logical next step is to extract input data. A
function should perform sanity checks on its parameters, and
on data returned from called functions. Operating systems
APIs for use by customers are usually documented; thus,
their expected input and return values are known.

Based on this information, the information returned by a
function can be analyzed. Such data might be a checksum or
signature against which a response was checked or simply
a string or sequence of bytes.

The currently decoded part of malware can be analyzed.
Sequences of system calls can then be used to reveal more
and more deobfuscated parts of malware. Sometimes, it may
be easier to not immediately start analysis, but continue
execution and wait for a pre-known event to occur. In the
case of network communication, analysis may be delayed
until malware has sent a packet, and it leaves the virtual
machine’s (VM) network interface.

2) Delayed Analysis Triggering: Current virtualization
solutions try to keep the software layer between physical
hardware and the VM as slim as possible in order to improve
overall performance. Auxiliary components like network
interfaces, however, exist purely in software. To increase
the quality of results, subsystems of the VMM and virtual
hardware could be used as additional information sources.
System call tracing could be used to activate secondary
analysis functionality integrated within emulated hardware.

When using hardware assisted virtualization, certain phys-
ical devices can be forwarded to a guest exclusively. Ignoring
this feature, the emulation code for virtual network interfaces
(VIFs) can be extended to hold or trigger analysis compo-
nents. In the case of qemu, code related to delayed analysis
checking could reside, for instance in the virtual network
interface (nic.c), as shown in Figure 6.
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Figure 5. Scheme of the two-stage malware collection network.

Compared to immediate analysis upon execution of a sys-
tem call, delayed analysis may ensure that malware executes
a little bit more of its functionality, finishing execution of its
privileged operation (e.g., opening a socket and connecting
to a remote host) and returns to ring 3. Malware will
normally fall back into a wait state (waiting for a peer’s
response) after sending a packet, resulting in more code
being deobfuscated.

3) System Call Sequence Based Behavior Identification:
The approach used for tracing system calls implies that
evaluation is possible not just for a single system call and
its associated memory, but for series of system calls. As
proposed in [17][25][29][43], the behavior of a program
or its deviation from its standard behavior can be detected
based on series of system calls.

As only relatively short runs of system calls are needed
for profiling algorithms, it is possible to detect segments of
code instead of complete applications. Behavior detection
can also be used to identify state machines present in
malware, if context information is examined during analysis.
In conjunction with fuzzing techniques, the state machine
used in a command and control protocol could also be
explored this way.

4) Latency and a Virtual Machine’s Real Time Clock:
Together, all these analysis steps and operations require a
great deal of processing time and a rather sophisticated
analysis subsystem. Complex parsing can be done within

the hypervisor; however, this would slow down the whole
system considerably. As such, the hypervisor should be kept
as slim as possible and trigger functionality located within
the userland part of the VMM [38].

While being trapped inside hypervisor, a system call and
the VM issuing it will remain stalled. Once analysis contin-
ues outside the hypervisor, the VM will resume execution.
The guest system should remain paused while it is accessed
by external analysis components, to keep the guest in a
consistent state. The VM should preferably not be able to
detect that it is halted; it should retain its internal clock and
run detached from the host’s real-time clock.

C. Service Provisioning

Malware-driven outbound requests are evaluated to pre-
vent harm to third party systems. For these checks, we rely
upon existing measures, such as IDSs or a web application
firewall. We are aware that such measures will not be
sufficient to tell benign and malicious flows apart in every
case; thus, we may build on existing approaches. such
as [32]. We assume that a purely passive request (e.g., a
download) does not cause harm to a third party. It is thus
considered to be benign and handed over to the external
service handler (SH, see Figure 4).

Since the external SH has Internet access, it resides in
a dedicated network segment separated from the analysis
environment. If a given request cannot be determined to
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Figure 6. The gray area contains the system call tracing logic and will set a flag if a matching system call has been encountered. The red area holds the
analysis components, which are activated only if the flag has been set.

be benign, it is redirected to the internal service handler.
The sole task of these SHs is to fetch, prepare and provide
information for the service emulator (SE). The SE launches
the requested service in order to deliver the appropriate
payload supplied by the SH.

Afterwards, execution is transparently resumed. Since
these services can be extremely heterogeneous, the SE is
based on Honeyd. It is a very flexible and scalable tool,
which is able to emulate or spawn arbitrary services, given
that a protocol template exists.

The creation of templates for novel protocols is a much
more challenging task. Therefore, we instrument ScriptGen,
which can derive FSMs from observed traffic, however,
it could be replaced by other tools implementing similar
approaches [8][12][35].

Each FSM represents the behavior of a given protocol at
an abstract level while not depending on prior knowledge or
protocol semantics. Based on the generated FSMs, service
emulation scripts for the SE can be derived. By integrating
such a tool into our approach, we aim toward adding ’self-
learning capabilities’ to the service provisioning element.
Obviously this requires (at least) one-time observation of a

given communication between the honeypot and the external
system. Hence we need a (supervised) back-channel for
learning about novel protocols. Once a corresponding com-
munication has been recorded and the appropriate FSM has
been generated, we are able to handle the new protocol as
well. While the need for a back-channel is a clear limitation,
we consider it to be a reasonable trade-off. The following
sections describe the techniques for traffic redirection in
more detail.

1) Connection Redirection Techniques: When packets
leave a collection or analysis system and the protocol being
used has been identified, the respective packet or connection
should be forwarded to an appropriate SH within the analysis
environment. The SH can either be hosted remotely in the
analysis and collection network or locally. Depending upon
the approach employed for trapping a sample’s actions,
redirection of generated traffic can happen in different ways,
as shown in Figure 7.

DNS can be used to redirect a connection, if malware
relies on using the domain name system to resolve the IP of
its peer. The traditional approach is to redirect connections
on a per-packet level using network address translation
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(NAT), as not all malware will rely on DNS. Network
based approaches deploy packet rewriting either on the local
virtualization host, or the gateway. In a honeyfarm, the
honeywall [11] would redirect these connections as they pass
through.

2) Socket Modification at a Binary Level during Runtime:
A novel approach to traffic redirection is to rewrite a newly-
created socket upon creation in memory, as can be seen in
Listing 1. Based on specific system calls, analysis compo-
nents cannot just extract the parameters used for setting up a
new socket or connection. As manipulation of these param-
eters is possible at runtime, these can be replaced, assuming
the location and the format of the expected parameters is
known.

While this approach might be more complex than the
traditional network-based approach, it offers some interest-
ing advantages, depending on where the destination related
data is replaced or manipulated. Using this approach, IPSec
authentication header functionality might be bypassed rela-
tively easily. Therefore, the SH could use a standard IPSec
implementation without the need to modify or disable AH
integrity checking.

Listing 1. A network related function, for instance the connect command
as shown here, could upon execution be rewritten.

Trapped API C a l l :
CALL, c r 3 : 0 xe936000 p i d : 1672 ,
CONNECT( i p : 1 8 4 . 1 7 0 .X. Y, p o r t : 3 1 2 7 ) ;

Execu ted API C a l l :
CALL, c r 3 : 0 xe936000 p i d : 1672 ,
CONNECT( i p : 1 0 . 0 . 1 . 2 5 4 , p o r t : 3 1 2 7 ) ;

Redirecting a socket at the binary level also reduces side
effects occurring due to in-depth analysis. For instance,
network-based connection redirection, classification and log-
ging may lead to changed timing behavior; this change of
behavior could be detected by malware, lead to connections
timing out, or cause certain protocols to stop functioning.
Socket redirection at the binary level also allows local
system information to be changed more easily.

Naturally, protocol redirection by rewriting socket param-
eters at runtime is only possible, as long as malware used the
operating systems interfaces. If malware would circumvent
the operating system, execute completely in kernel mode, or
run on a higher privilege level than the kernel, this would no
longer be possible. As malware first has to gain the access
to these restricted locations sections through system calls,
the attempt to do so could in turn be detected. Additional
research should be done in this area to investigate further
advantages.

As described in section IV-B2, system calls can also be
used for initiating delayed analysis functionality in subcom-
ponents of the virtual machine. As network traffic passing

through VIFs can be evaluated and manipulated, connection
redirection could also be implemented in this location.

All further network related operations should subse-
quently be performed and handled by the relevant SH, as
described in the next subsection.

D. Protocol Sinkholing

For sinkholing several advanced approaches exist on
which we can base on. For example Truman1 (The Reusable
Unknown Malware Analysis Net) and INetSim (Internet
Services Simulation Suite) simulate various services that
malware is expected to frequently interact with. To this end,
common protocols, such as HTTP(s), SMTP(s), POP3(s),
DNS, FTP(s), TFTP, IRC, NTP, Time and Echo are sup-
ported. In addition, INetSim provides dummy TCP/UDP
services, which handle connections at unknown or arbitrary
ports. Hence these approaches can interact with a given
malware sample to a certain level.

Trumanbox [22] enhances the state of affairs by transpar-
ently redirecting connection attempts to generic emulated
services. To this end, it uses different information gath-
ering techniques and implements four different modes of
operation, which allow the application of different policies
for outgoing traffic. Thus, Trumanbox can provide different
qualities of emulation and addresses issues in protocol
identification, transparent redirection, payload modification
and connection proxying.

In addition, several work has been conducted in the
context of malware analysis to address the issues of de-
tecting, observing and intercepting malicious (C&C-) traffic
[10][39][23][45] resulting in publicly available tools.

Hence we concentrate on the issue of handling unknown
traffic patterns, such as C&C protocols, within our service
provisioning element by instrumenting ScriptGen [33] .

In order to ensure defined test conditions, we chose to
build our own malware, since this provides full control
over all test parameters thus assuring reproducibility [5]. To
this end, we base upon the source code of the Agobot /
Phatbot family and compile it using a custom configuration.
We chose Agobot, since it is one of the best known bot
families and widely used. In addition, it provides a variety
of functions. For the sake of easiness, we use unencrypted
IRC as the C&C protocol. We deploy a minimal botnet
consisting of only one infected host and one C&C server. In
addition, we use a third host, which is responsible for the
service emulation part. Our resulting test setup consists of
three distinct machines:

1) The victim host resides on a machine running Mi-
crosoft Windows XP SP2. Traffic is captured on this
host using WinDump v3.9.5 (the Windows port of
tcpdump) based on WinPcap v4.1.2. This host is
infected with our malware in order to capture the

1http://www.secureworks.com/research/tools/truman/ 10.06.2013
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Figure 7. A connection could be redirected within virtual hardware, or the system call itself could be rewritten(1). The packets could be redirected using
NAT, either by the virtualization host(2) or the honeywall(3).

malware initiated network traffic as a reference for
real C&C traffic.

2) The C&C server resides on a machine running Mi-
crosoft Windows XP SP3 and is updated to the latest
patch level. This is necessary, since this host is also
used to build our customized version of Agobot. For a
successful build of Agobot, a full featured Microsoft
Visual C++ environment including the latest Visual
Studio service pack and the latest platform SDK is
required. The main purpose of this host is to act as the
C&C server. Therefore, we use UnrealIRCd, a well-
known IRC daemon widely used by botmasters. There
are several customized versions, which are optimized
for botnet usage (e.g., designed to serve a vast number
of bots). However, for our simple test case the latest
standard version (UnrealIRCd 3.2.9) is sufficient.

3) The service emulator runs a standard installation of
Ubuntu Server 11.10 32bit. Its main task is to process
the recorded traffic dump using ScriptGen and to
generate a service emulation script out of the resulting
FSM, which is then used by Honeyd. To this end, this
host is equipped with Honeyd and the dependencies
of ScriptGen (i.e., python 2.7, python-dev, cython,
python-numpy, python-pcapy, python-setuptools and
the nwalign package). Finally, this machine replaces
the original C&C server by running Honeyd with the
previously created script.

The overall test procedure of our experiment consists of
the following steps, which are described in the sections
below.

First, we deploy our botnet using a real IRC daemon as
C&C server. We launch several commands to generate and
record distinct traffic patterns between the infected machine

and the C&C server.
Second, we derive FSMs out of this recorded traffic, which

are then used to generate a Honeyd service emulation script
incorporating the abstract protocol behavior.

Finally, we replace the original C&C server with the
service emulation host running Honeyd and the generated
script. We launch different commands to evaluate, whether
the created script can emulate sufficient responses to fool
our bot.

1) Generation of C&C Traffic: First, on the C&C host,
we build our custom version of Agobot. Beside some
other basic settings, we instruct the bot to connect to our
C&C server and join a channel using the respective login
credentials and a randomly generated nick. Thereby the nick
consists of a random combination of letters prefixed by the
string ”bot-” in order to generate data, which is variable on
the one hand, but has a significant meaning on the other
hand. In addition, we build the bot in debug mode in order
to be able to track its activities. The IRC daemon is setup
accordingly.

Listing 2. An excerpt of a FSM-recorded conversation.
=== I tem 201
{ <CONV TCP 80
s r c : ( ’ 1 9 2 . 1 6 8 . 1 . 1 ’ , 64459)
d s t : ( ’ 1 9 2 . 1 6 8 . 1 . 2 ’ , 80)>

[MSG d : I l : 1 2 7 ]
[MSG d :O l : 4 9 ]
[MSG d : I l : 1 7 8 ]
[MSG d :O l : 3 9 ]
[MSG d : I l : 2 6 2 ]
[MSG d :O l : 3 9 f : Cc ]

}



43

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Listing 3. Part of the definition of a FSM
. . .
<S [TCP : 3 1 3 3 7 : ] f : 6 k i d s : 1 l a b e l l e n :158 new : 3 >
{ <TR REG f : 6 ,\ # r :1> |F |
<S [TCP : 3 1 3 3 7 : 1 ] f : 2 k i d s : 1 l a b e l l e n : 6 new : 4 >
{ <TR REG f : 2 ,\ # r :13> |F | | Mf | | F | | Mf | | F | | Mf | | F | | Mf | | F | | Mf | | F | | Mf | | F |
<S [TCP : 3 1 3 3 7 : 1 | 1 ] f : 2 k i d s : 1 l a b e l l e n : 1 6 new : 0 >
{ <TR NULL f :2>
<S [TCP : 3 1 3 3 7 : 1 | 1 | 1 ] f : 0 k i d s : 0 l a b e l l e n :1054 new : 2 >
{ . . .

Next, we execute our customized Agobot on the victim
host, which connects back to the configured C&C server
and attempts to enter the programmed channel awaiting
further commands. On the victim host we record the traffic.
Thereby we set additional parameters to avoid a limitation of
the recorded packet size, since important information may
be truncated otherwise. In order to command the bot we
launch a conventional IRC Client, connect as botmaster to
our C&C Server and join the previously configured channel
as well. We instruct the bot to execute a given command by
performing a query. Thereby we use a full stop as command
prefix.

After login to the bot (.login User password) we instruct
it to perform some harmless actions, such as displaying sta-
tus information (.bot.about, .bot.sysinfo, .bot.id, .bot.status).
Thereby we launch a diverse set of commands in order
to obtain representative data. In particular, we use specific
commands, such as .bot.sysinfo, several times, since they
also query random and regularly changing values (e.g.,
uptime).

Furthermore, we also send some dummy commands and
random strings intended to insert ”noise”. This is afterwards
used to examine the result, i.e., none of these commands
should appear in the resulting script. We perform a number
of such sessions using randomly chosen commands in an
arbitrary order. In doing so, we simulate a number of distinct
bots, since the bot generates a different nick for every
session. Finally, the recorded traffic of these conversations
is filtered to remove traffic produced by other applications
running in background.

2) Traffic Dissection and FSM Generation: On the ser-
vice emulation host we dissect the previously recorded traffic
dump and extract the used ports within the communication.
Since ScriptGen is port based, this analysis is necessary to
determine for which ports a corresponding FSM needs to be
generated. As a result, we receive a list of identified ports
and generate a FSM for each port. Therefore, we apply the
existing functions implemented by ScriptGen:

First, a simplified FSM is built by parsing the traffic dump
file for the corresponding data-link type and reassembling
the packets and the respective conversations. A conversation

is composed of messages, whereas a message is the longest
set of bytes going in the same direction. Thus it is the
starting point to build the FSM. The rebuild of the resulting
conversations is based on the unique tuple of source- and
destination-address and the corresponding ports, as can be
seen in Listing 2. Thus there is no check, whether a given
port actually corresponds to the expected protocol but one
FSM per port is built.

It outlines the mentioned unique tuple (source- /
destination-address, source-/destination port) along with the
messages, where
d is the direction from the server perspective (I: incoming,
O: outgoing),
l is the length of the payload in bytes and
f describes the set flags (if any). In this example ”Cc”
refers to ”client close”.

Next, functionality to attach data contained in the traffic
dump to an eventually existing FSM are called. In addition,
these functions could be used to infer content dependencies
between known conversations and an existing FSM. The
output is a serialized, updated FSM (see Listing 3) serving
as input to our converter, which implements the Region
Analysis and builds the actual FSM based on the chosen
thresholds for macroclustering and microclustering.

It contains information about the used protocol, the ob-
served states and edges as well as the respective transitions,
where
S is the self-identifier (i.e., the protocol and port) followed
by the path,
f is frequency of the state,
kids describes the number of transitions the state has,
label len is the length of the state labels,
new is the amount of conversations and
TR (Type Region) describes the identified region type. A
region can thereby be NULL describing a transient state,
i.e., a state with an outgoing NULL transition. That is, a
state that immediately leads to a new future state after label
generation without expecting a client request.

In addition, a region can be identified as Fixed (containing
repeatedly the same data), Mutating (containing varying
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data) or as REG (i.e., a regular expression). In turn, a region
described via a regular expression may consist of several
regions having varying characteristics. This is optionally
indicated via corresponding flags, such as ”F” (fixed region)
or ”Mf” (mutating region).

Listing 4. For a given path the corresponding strings and regular
expressions representing the incoming and outgoing messages as identified
by ScriptGen are extracted.

<<< Incoming
> Fixed r e g i o n
0000 50 41 53 53 20 31 32 33 PASS 123
0008 0D 0A . .
%r eg e xp : ’PASS\\ 123\\\ r\\\n ’
<<< Incoming
> Fixed r e g i o n
0000 4E 49 43 4B 20 62 6F 74 NICK b o t
0008 2D −
> Mu t a t i n g r e g i o n
C o n t e n t c a n d i d a t e
. . .
> Fixed r e g i o n
0000 77 w
C o n t e n t c a n d i d a t e
. . .
> Fixed r e g i o n
0000 0D 0A 55 53 45 52 20 62 . . USER b
0008 6F 74 2D ot−
. . .

>>> Outgoing ( l e n : 16)
0000 50 49 4E 47 20 3A 35 44 PING : 5D
0008 38 42 34 37 34 34 D A 8B4744 . .
0010
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Finally, every generated FSM is inspected and basic
information such as port, IP address and the identified
protocol is extracted for further processing (e.g., a rule-
based decision, whether the FSM for the respective port
should be enabled in the service emulator). We incorporate
the described functionality for traffic dissection and FSM
generation into a small Python script.

3) FSM Traversal and Script Building: In order to gen-
erate a service emulation script out of a given FSM, infor-
mation about its elements is required. Specifically, we need
to determine the total number of states and for each state

• all state labels (the messages sent by the server),
• the total number of edges (the number of possible

transitions towards the next state) and for each edge
– the respective edge label (the message representing

the client request triggering the transition)
Thereby we assume that the first seen state label represents
the initial message sent by the server (e.g., a service banner).
Thus it is defined as the default state. To this end, a
certain FSM is inspected by traversing through its paths,
which are derived from the identified regions, as depicted
in Listing 4. Based on this information the sequence of
regular expressions and the respective strings to respond with
is reassembled. We find, that we can recognize our previ-
ously exchanged messages, i.e., the launched commands and
their according responses. In particular, we conclude, that
ScriptGen is able to map also variable values correctly. For
instance, it identifies ”USER bot-” and ”NICK bot-” as fixed

regions while defining single letters and their combinations
as mutating regions. This matches our configuration instruct-
ing the bot to use a variable nick consisting of random
letters prefixed by ”bot-”. Thus, ScriptGen abstracts the
protocol semantics correctly in this example. The output of
the FSM traversal is then included in the service emulation
script file. To this end, the static part of the script is
created in a first step consisting of a header and some
basic functions for echoing fake messages. For basic data
exchange we rely upon basic functionality of Honeyd. In a
second step, we created a modified version of the traverse
function as originally implemented in ScriptGen so that it
now traverses through a given FSM path and extracts the
regular expressions of the exchanged messages.

Listing 5. A (simplified, primitive and reduced) FSM generated by
AWESOME.

# S t a t e S0 )
S0 )

i f [ [ $ =˜ / ’ PASS \\$PASS\\\ r\\\n ’ ] ] ;
then

echo −e ”OK”
e l s e

echo −e ”ERROR”
s t a t e =” S2 ”

f i
; ;
# S t a t e S2 :
S2 )

i f [ [ $ =˜ / ’ NICK\\ b o t\\−un tuv\\\ r\\\nUSER
\\ b o t\\−un tuv\\ 0\\ 0\\ \\ : b o t\\−un ’ ] ] ;

then
echo −e ” ˆ@ˆ@ˆ@ˆ@ˆ@ˆ@”

e l s e
echo −e ”ERROR”
s t a t e =” S3 ”

f i
; ;
# S t a t e S3 :
# t r a n s i e n t s t a t e ( i m m e d i a t e l y l e a d s t o a new
# f u t u r e s t a t e w i t h o u t e x p e c t i n g a c l i e n t r e q u e s t )
S3 )

# t h e r e f o r e no r e s p o n s e i s g e n e r a t e d
# −> t r a v e r s e d i r e c t l y t o S4
s t a t e =” S4 ”

; ;
. . . o m i t t e d
# S t a t e S9 :
S9 )

i f [ [ $ =˜ / ’USERHOST\\ b o t\\−un tuv\\\ r\\\n ’ ] ] ;
then

echo −e ” : $IP 302 bot−un tuv : bot−un tuv =+”
e l s e

echo −e ”ERROR”
s t a t e =” S10 ”

f i
; ;
# S t a t e S10 :
S10 )

i f [ [ $ =˜ / ’ JOIN\\ \\#$CHANNEL\\#\\ $PASS\\\ r\\\n ’ ] ] ;
then

echo −e ” : $IP 302 bot−un tuv : bot−un tuv =+”
e l s e

echo −e ”ERROR”
s t a t e =” S11 ”

f i
; ;

4) Results: As a result of the steps described above a
service emulation script is generated and can be used with
Honeyd. Thereby the regular expressions intended to cover
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a given class of requests are of special interest.
After replacing the original C&C server with the service

emulation host we launched different commands to evaluate,
whether the created script can emulate sufficient responses.
By interacting with the emulated IRC service we found
that it is capable of generating appropriate responses to
a set of very basic requests. However, slight deviations
of these basic requests cause the emulated service to not
respond at all thus leading to insufficient emulation. We
believe, that this is related to the limited amount of traffic,
that we have generated for this experiment. In fact, the
size of the generated traffic dump file is less than 100kB,
which seems clearly insufficient for ScriptGen to learn all
interactions properly. While we were able to demonstrate
that generating service emulation scripts using the ScriptGen
approach is essentially possible, further experimentation will
be necessary to produce more accurate results.

Further experimentation is necessary and we are con-
fident, that a larger amount of traffic will produce more
accurate results. However, we found that generating service
emulation scripts using the ScriptGen approach is essentially
possible, an example is depicted in Listing 5. Specifically,
we believe, that the basic assumption of ScriptGen (i.e., an
exploit performs a limited number of execution paths) can
be applied to our use case of service emulation for C&C
traffic, since a bot performs a limited number of commands
as well. Thus we conclude that the application of ScriptGen
within the service provisioning component of our presented
approach is feasible.

V. DISCUSSION AND FUTURE WORK

From a conceptional perspective the main limitation of our
approach is that it can only capture samples of autonomous
spreading malware due to the use of a taintmap. The server
based approach with taintmaps, i.e., passively waiting for
incoming exploitation attempts, implies that this type of
honeypot can not collect malware, which propagates via
other propagation vectors such as Spam messages or drive-
by downloads.

With respect to the outlined paradigm shift in attack
vectors we will need to consider such propagation vectors
as well in future. However, since this is a sensor issue, this
limitation may be overcome by integrating corresponding
honeypot types (i.e., client honeypots) into our approach.
This is left for future work. Moreover, due to the ongoing
spread of IP-enabled networks to other areas (e.g., mobile
devices and SCADA environments) our approach will be
required to integrate malware sensors covering these attack
vectors as well in future.

Beside the necessary further experiments to improve the
accuracy of service emulation for C&C traffic, enhancements
in malware analysis need to be tested. In particular, the
interaction between all stated components will be evaluated,
once all of them are readily deployed. At the time of writing

the evaluation of system calls produced by Nitro needs to
be finished and measures for checking malware initiated
outbound attempts need to be evaluated. In a next step, we
will test the use case of tracking and intercepting encrypted
C&C protocols as well as making use of malware calling
library functionality to perform subroutine analysis.

When it comes to malware analysis itself, multiple paths
of execution could be traversed. The state of a virtualized
guest could be saved at multiple times during execution and,
later on, the analysis environment could revert the guest to
different states saved during processing. Traversal of multi-
ple paths of execution would allow automated fuzzing to take
place during analysis. Multiple possibly valid responses may
be tried, if few candidates exist. Additionally, unknown state
machine versions used for C&C traffic may be explored.

Future work will also include the completion and evalu-
ation of the service emulator and the measures to prevent
harm to third party systems.

VI. CONCLUSIONS

In this paper, we have presented a novel approach for
integrated honeypot-based malware collection and analy-
sis, which extends existing functionalities. Specifically, it
addresses the separation of collection and analysis, the
limitations of service emulation, and the operational risk of
HI honeypots.

The key contribution of the approach is the design of
the framework as well as the integration and extension of
the stated tools. While this is an ongoing research activity
and thus still under development, several modifications to
ARGOS and Nitro have already been implemented and
successfully tested, indicating the feasibility of our approach.

System call tracing alone is a rather finite source of infor-
mation for malware analysis, as relatively little information
worth analyzing is transferred between a system call routine
and the caller. System call parameters, such as path names
or URIs, are extremely valuable in certain situations, but
to make full use of all available information, the virtual
machine’s memory has to be analyzed too. Static analysis
tools can subsequently process deciphered binary samples
in memory and no longer have to deal with unpackers
or loaders, and thus handle polymorphic and metamorphic
software with relative ease.

By tracking a binary using a series of system calls,
more and more pieces of malware can be revealed and
evaluated. This results in an outcome very much desired
by malware researchers; the longer malware operates, the
more information can be extracted from malware with less
overhead for dealing with obfuscation [13][36][38].

Cryptographic key material and parameters used for estab-
lishing and maintaining a secure tunnel between peers would
be extremely useful in protocol emulation. These values can
be extracted or even replaced within the guest’s memory.
While replacing such data automatically at runtime may be
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challenging, it would allow emulation of an encrypted peer
using valid and trusted key material.

While the service provisioning element raises several
technical issues regarding protocol identification, connection
proxying, transparent redirection, payload modification as
well as detection, observation and interception of malicious
(C&C-) traffic, most of these issues can be addressed based
on existing work. We referred to related research in this
area and focused on the issue of handling unknown traffic
patterns, such as C&C protocols.

To this end, we presented a proof of concept implemen-
tation leveraging the output of ScriptGen for use within the
service provisioning component of our presented approach.
Using this proof of concept, we evaluated the feasibility
of using ScriptGen for generating service emulation scripts
intended to spawn an emulated C&C service. We setup
a minimal botnet using customized malware in order to
generate the corresponding C&C traffic. Out of this recorded
traffic we derived FSMs, which were then used to generate a
service emulation script incorporating the abstract protocol
behavior.

REFERENCES

[1] Martin Brunner, Christian M. Fuchs, and Sascha Todt. Awe-
some - automated web emulation for secure operation of a
malware-analysis environment. In Proceedings of the Sixth
International Conference on Emerging Security Information,
Systems and Technologies (SECURWARE 2012), pages 68–
71, Rome, Italy, August 2012. International Academy, Re-
search, and Industry Association (IARIA), XPS. ISBN: 978-
1-61208-209-7. Best Paper Award.

[2] M. Apel, J. Biskup, U. Flegel, and M. Meier. Early warning
system on a national level - project amsel. In Proceedings
of the European Workshop on Internet Early Warning and
Network Intelligence (EWNI 2010), January 2010.

[3] M. Bailey, E. Cooke, D. Watson, F. Jahanian, and N. Provos.
A hybrid honeypot architecture for scalable network monitor-
ing. 2006.

[4] M. Brunner, M. Epah, H. Hofinger, C. Roblee, P. Schoo, and
S. Todt. The fraunhofer aisec malware analysis laboratory -
establishing a secured, honeynet-based cyber threat analysis
and research environment. Technical report, Fraunhofer
AISEC, September 2010.

[5] Martin Brunner. Integrated honeypot based malware collec-
tion and analysis. Master’s thesis, 2012.

[6] BSI. Die lage der it-sicherheit in deutschland 2011. Bunde-
samt fuer Sicherheit in der Informationstechnik, May 2011.

[7] David M. Buches. Fast system call hooking on x86-64 bit
windows xp platforms, April 2010.

[8] J. Caballero, P. Poosankam, C. Kreibich, and D. Song. Dis-
patcher: enabling active botnet infiltration using automatic
protocol reverse-engineering. In Proceedings of the 16th ACM
conference on Computer and communications security, CCS
’09, pages 621–634, New York, NY, USA, 2009. ACM.

[9] Juan Caballero, Chris Grier, Christian Kreibich, and Vern
Paxson. Measuring pay-per-install: the commoditization of
malware distribution. In Proceedings of the 20th USENIX
conference on Security, SEC’11, pages 13–13, Berkeley, CA,
USA, 2011. USENIX Association.

[10] D. Cavalca and E. Goldoni. Hive: an open infrastructure for
malware collection and analysis. In proceedings of the 1st
workshop on open source software for computer and network
forensics, 2008.

[11] Jay Chen, John McCullough, and Alex C. Snoeren. Universal
honeyfarm containment. Technical Report CS2007-0902,
New York University and University of California, San Diego,
9500 Gilman Dr., La Jolla, CA 92093, USA, September 2007.

[12] W. Cui, V. Paxson, Nicholas C. Weaver, and Y H. Katz.
Protocol-independent adaptive replay of application dialog. In
In The 13th Annual Network and Distributed System Security
Symposium (NDSS, 2006.

[13] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: malware
analysis via hardware virtualization extensions. In CCS ’08:
Proceedings of the 15th ACM conference on Computer and
communications security, pages 51–62, New York, NY, USA,
2008. ACM.

[14] M. Dornseif, T. Holz, and C.N. Klein. Nosebreak - attack-
ing honeynets. In Information Assurance Workshop, 2004.
Proceedings from the Fifth Annual IEEE SMC, june 2004.

[15] M. Engelberth, F. Freiling, J. Göbel, C. Gorecki, T. Holz,
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