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Abstract—Dealing with the insider threat in networked en-
vironments poses many challenges. Privileged users have great
power over the systems they own in organizations. To mitigate
the potential threat posed by insiders, we introduced in previous
work a preliminary architecture for the Autonomic Violation
Prevention System (AVPS), which is designed to self-protect
applications from disgruntled privileged users via the network.
We also provided insight on an architecture extension and how
well the AVPS can scale. This paper extends the scalability
model of our previous work and presents additional results. We
conducted a series of experiments to assess the performance of
the AVPS system on three different application environments:
File Transfer Protocol (FTP), database, and Web servers. Our
experimental results indicate that the AVPS introduces a very
low overhead despite the fact that it is deployed in-line. We also
developed an analytic queuing model to analyze the scalability of
the AVPS framework as a function of the workload intensity. We
show model results for a varying number of applications, users,
and AVPS engines.
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I. INTRODUCTION

Defeating the insider threat is a very challenging problem
in general. An insider is a trusted person that has escalated
privileges typically assigned to system, network, and database
administrators; these users usually have full access and can
do almost anything to the systems and applications they
own. Users with escalated privileges within an organization
are trusted to deal with and operate applications under their
control. This trust might be misplaced and incorrectly given to
such users. It is extremely difficult to control, track or validate
administrators and privileged user actions once these users
are given full ownership of a system. The recent disclosure
by Wikileaks of U.S. classified embassy foreign policy cable
records provides a perfect example of an insider attack [1] [2].
In this disclosure, an insider with unfettered access to data at
his classification level was able to access data over a secure
network using laptops that had functional DVD writers. Our
approach to mitigate the insider threat allows for users or
groups of users to be treated differently despite having the
same classification level [3]. The approach limits and controls
network access through an in-line component that checks
access to specific applications based on policies that can be
as specific or granular as needed.

In our prior work, we introduced a framework that self-
protects networks in order to mitigate the insider threat [3].
The framework, called AVPS (Autonomic Violation Preven-
tion System), controls and limits the capabilities provided to
administrators and privileged users in organizations. AVPS
concentrates entirely on detecting and preventing usage policy
violations instead of dealing with viruses, malware, exploits,
and well-known intrusions. In our implementation, the AVPS
monitors events and takes actions for conditions that occur, as
specified by Event-Condition-Action (ECA) commonly used
in security-centric systems and autonomic computing [4].

Our most recent work [1] significantly extends our earlier
work [3] and presents a scalable AVPS architecture and
supports its design with experimental results and a theoretical
queuing modeling. We presented the results of experimental
evaluations of the AVPS architectures as well as the anal-
ysis of its performance overhead on three different types
of application servers: FTP, database, and web server. We
specifically measured the average throughput, average transfer
time, average CPU utilization, and provided 95% confidence
intervals for all three measurements. We also used a queuing
theoretic analytic model to predict the scalability of the AVPS
for different workload intensity values for these three types of
applications. It is also worth noting that the previous design
of the AVPS architecture considered scalability, manageability,
application integration, ease of use, and the enforcement of
separation of duties. This paper extends our previous work [1]
in that it presents extra scalability cases where application,
users, and the number of AVPS engines vary. We present an
architecture and an explanation for each case.

There has been prior work in this area at the application,
host, and network levels [5] [6] [7] [8] [9]. The previous
methods have applied self-protecting capabilities by either
considering single applications on the host or more towards
vulnerabilities, malware, exploits and traditional threats.

The rest of the paper is organized as follows. Section II
discusses related work. Section III presents some of the major
challenges and requirements faced in the design of AVPS. The
next section presents a scalable architecture for the AVPS
framework. Section V presents an experimental evaluation
and a thorough performance and scalability analysis of AVPS
for all three different cases. Finally, Section VI presents the
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conclusion, final remarks, and future work.

II. RELATED WORK

There has been substantial work in scalability analysis and
performance enhancement of network security. We discuss
specifically some of the major work related to intrusion
prevention systems, firewalls and Snort respectively.

In [10], the authors create a framework that can enhance
inline intrusion prevention systems performance by utilizing
future commodity hardware to the fullest. In [11] the authors
of the NIST SP800 stress on scalability as an extremely
important part of any deployment of inline intrusion prevention
system to be successful. In [12], the authors design a network
intrusion prevention system that combines the use of software-
based NIPS and a network board processor. Their focus on
a method for boosting system performance resulted in a 45%
improvement in performance allowing speeds to reach 1Gibt/s.
In [13], the authors presented a system called Gnort that
utilizes a GPU to offload pattern matching computations. The
system was able to achieve a maximum throughput of 2.3
Gbit/s, in a real world scenario and outperformed conventional
Snort by a factor of two. The authors in [14] point out
some challenges and scalability issues that might arise when
it comes to intrusion detection systems. In [15] the authors
present “Para-Snort, a structure for a multithreaded Snort for
high performance Network Intrusion Detection Systems and
anti-virus on a multi-core IA; they also analyze the perfor-
mance impact of load balancing and multi-pattern matching.

On the firewall side, the authors of [16] implemented a
scalable packet classification architecture resulting in a fire-
wall that achieves a classification throughput of 50 million
packets/s.The authors in [17] present a fast and highly scal-
able approach for discovering anomalies in firewall policies
and resolving them. The results of their heuristic algorithm
achieved from 40% to 87% improvement in the number of
comparisons overhead.

The authors in [18] designed and tested a multithreaded
Snort that uses flow pinning as a major optimization tech-
nique to improve Snort performance and achieve significant
speedups. In [19], the authors present a mechanism to split
traffic into different Snort sensors; the system is adaptive and
is able to adjust the splitting of policies in order to reduce load
disparity among sensors. The authors of [20] compared the
performance and accuracy of Suricata and Snort and showed
that Snort had a lower system overhead than Suricata utilizing
a single core. At the same time, Suricata indicated that it
was more accurate in the environment where multi-cores were
available. In [21], the authors compared the performance of
Snort NIDS under both windows 2003 and Linux and showed
that Snort used on a Linux machine with a small NAPI (New
API) budget would yield a substantial performance gain for
Snort over Windows under all different malicious traffic loads.
On the other hand, Windows showed better performance for
Snort under moderate normal traffic load conditions.

III. CHALLENGES AND REQUIREMENTS

The following major challenges play a primary role in the
success of the AVPS framework: scalability in production en-
vironments, support for encrypted network traffic, integration
with multiple types of application servers on the network, and
ease of deployment in large production environments. This
paper mainly addresses scalability and performance issues and
sheds some light on all four challenges. Security mechanisms
usually pose additional demands on system resources and may
compromise system performance. In some cases, the use of
security mechanisms has been abandoned due to the need to
run systems efficiently. Thus, it is important to understand
security-performance tradeoffs [22].

Scalability is an absolute requirement for production en-
vironments. The AVPS solution is an in-line solution that
intercepts every single packet that traverses the local area
network that is destined to an application server. Therefore,
it could become a focal point and a possible bottleneck. The
primary goal of our solution is to scale with growing network
and application demands. The AVPS architecture should allow
for horizontal scaling to cope with high-volume environments.
This requirement is further discussed in more detail in the
following sections.

Encryption is another important challenge in the design of
our solution. SSH and SSL are widely used in local area
networks for information retrieval and administration of ap-
plications and devices. The AVPS performs packet inspection
on some or all (depending on the application) packets that
pass through it. This poses a challenge that is handled in our
solution through one of the following methods: (1) decrypting
the traffic that passes through the AVPS and then re-encrypting
it for delivery to its destination using viewSSLd [23] or
netintercept [24] for example, (2) completely off-loading
the encryption/decryption requirements to external hardware-
based devices that sit before and after the AVPS, or (3) decrypt
the traffic by having a legitimate man-in-the-middle host that
decrypts and re-encrypts the traffic and delivers it to the
destination [25]. This paper does not discuss encryption in
any further detail.

Application server integration is also extremely important.
With the wide range of applications deployed in production
environments, the AVPS framework must be capable of in-
terpreting and understanding requests and responses that it
intercepts. The AVPS is based on intercepting, not necessarily
inspecting, every single packet initiated by a host that is
delivered from and to an application. This makes application
integration completely possible and achievable. Policies de-
ployed on the AVPS are customizable to the desired granularity
level and types of attributes (e.g., from very generic, such as IP
or user level, to very specific, such as IP, user, application type,
request, and response). Thus, it is completely up to the AVPS
owner to specify the granularity of what should be inspected
and what should be ignored.

Finally, the successful deployment of AVPS in large en-
vironments is crucial. The AVPS solution should be easy
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to deploy and maintain and should be capable of handling
heavy traffic loads. Current environments have hundreds if
not thousands of servers with networks that are capable of
handling and processing 100 to 1000 Mbps of traffic. A
solution that handles thousands of servers through a handful
of clustered AVPS compute nodes is part of the architecture
discussed in the remaining sections of this paper.

IV. SCALABLE AVPS ARCHITECTURE

For the AVPS to achieve its goal of solving the insider
threat problem, it must be placed in-line between clients and
internal application servers. This way, the AVPS is capable
of intercepting every single packet that flows from clients to
applications and back in order to take the correct actions when
a rule in a policy is matched.

A. The AVPS Architecture
Figure 1 depicts the architecture of the AVPS framework.

Performance and high availability are extremely important
since the AVPS is located between the clients and the ap-
plication servers. Traffic coming from a pool of M clients
goes through a load balancer that handles incoming requests.
The load balancer forwards the traffic to one of N AVPS
engines that process and inspect the incoming traffic. The
AVPS engines compare traffic policies that contain rules and
actions on how to handle traffic. The policies are stored on
a database/multiple databases local to the AVPS engine or
on an external database shared by all AVPS engines. Events
are stored on a centralized database or multiple databases.
Actions are taken on traffic once a rule in a policy has been
matched. Examples of possible AVPS actions include drop-
ping, blocking, or replacing traffic as it traverses the engine
on its way to application servers. Let there be K different types
of applications servers (e.g., FTP server, database server, Web
server).

Figure 2 depicts a flowchart that shows the traffic processing
steps taken by the AVPS engine. Traffic is first collected by the
machine that runs the AVPS engine. Then, traffic is received
by a layer 2 bridge that is responsible for handling incoming
and outgoing traffic. The layer 2 bridge flow traffic contains
layers 2 and 3 traffic for processing.

Traffic is then forwarded to the normalization and process-
ing module where packets are broken down into pieces that
can be matched against rules. Traffic is then matched against
policies and rules that are pre-loaded into memory. If there
is a rule match, an event or action is generated. If an event
or action occurred, it is logged into a database. If the traffic
results in an unauthorized action, the traffic will be dropped,
blocked or replaced. If the action is authorized, the system
starts the cycle again from the traffic collection process. If the
process is terminated, the system halts and does not perform
any further action.

B. Advantage of Using the AVPS
As an example of the advantage of using the AVPS architec-

ture, consider a scenario with multiple database servers scat-
tered over a large geographically distributed network. Assume

Fig. 1: Architecture of the AVPS framework.

Fig. 2: Steps of the AVPS engine.

that a top secret table is replicated in every database server and
that we want to have fine access control to this table. Using
conventional access control methods, we would be able to limit
specific users or roles from accessing the table. This would
require manually setting these controls on every database
server. This approach has several drawbacks: (1) Manually
setting access controls into each server is time consuming
and might have a high error rate. (2) This method requires
an administrator to know all of the DB servers that live on
the network; newly installed DB servers or even covert ones
may be missed. (3) The DB owner actually does the changes
with no oversight, which contradicts the separation-of-duties
concepts. (4) Last but not least, it would be almost impossible
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with traditional access control methods to limit access for
a specific population of administrators or privileged users,
coming from a specific location on the network, accessing the
information at a specific time and targeting a specific table.
The AVPS would also be a viable solution to better control
actions and secure access to and from cloud Infrastructure As a
Service (IAAS), Software As a Service (SAAS), and Platform
As a Service (PAAS).

In recent work, we showed how the AVPS can automatically
generate low level Snort rules from high-level rules [26]. Each
high-level rule may generate more than one low level rule. The
automatic rule generation takes place offline so that it does
not impact performance. The new rules are then automatically
loaded into the main memory of the Snort engine used to
implement the AVPS. This substantially lowers the amount
of time required to to manually configure rules and mitigates
the drawback mentioned in the example above. In addition
to automatic low level rule generation, we used supervised
learning (Support Vector Machines (SVM) in our case) to learn
new high-level rules [27].

The AVPS is also tamper resistant. It enforces a separation-
of-duties policy, i.e., the primary application system owner
has no control over the AVPS policies [3]. The AVPS can be
deployed to carry insider and regular user traffic or to only
carry insider traffic. The proper deployment depends on how
the network is setup and on how the network is segmented.

Emerging technologies, such as new network TAPs (e.g.,
Network Critical V-line TAP [28]), that can handle 1/10 Gpbs
traffic and allow in-line functionality without introducing a
single point of failure, make systems such as the AVPS
possible to implement without fault-tolerance concerns.

C. AVPS vs. Other Solutions

Our prior work [3] distinguishes the AVPS from other
systems such as IPS, Firewalls, Host based IPS and Network
Admission Control/Network Access Control (NAC). We use
Intrusion Prevention Systems (IPS) and Intrusion Detection
Systems (IDS) in this paper interchangeability. The only dif-
ference between the two is that IDS is considered a passive net-
work monitoring system and IPS is considered an active/inline
network monitoring system. Traditional IDS/IPS systems tend
to concentrate on users that do not have access to the system
and try to exploit, hack, or crack into it. Other enhanced
IPS/Firewall systems such as IBM Proventia [29] or Cisco
ASA [30] do have enhanced context-aware security but lack
insider threat defeating capabilities. The AVPS, on the other
hand, is designed with the insider threat in mind. Moreover, as
indicated previously, the AVPS uses self-learning techniques
to learn high-level rules that are automatically translated into
low level Snort rules.

V. PERFORMANCE ASSESSMENT OF THE AVPS

This section presents an experimental evaluation of the
AVPS in a controlled environment. We describe the experi-
mental testbed, analyze the results, and present a scalability
analytical model based on the M/M/N//M queuing model [31].

A. Experimental Testbed

The experiments conducted in this paper measure the impact
of a rule that exists in the engine’s main memory and is used
to match a specific network pattern while the traffic flows in an
in-line fashion through the AVPS. While we understand that
a growing number of rules in policies may have an overall
performance impact, we have not seen this to be an issue
in our system when performance profiling [32], fast pattern
matching [32], and other Snort [33] [32] [34] tweaks are
performed, using third party plug-ins such as Barnyard [35],
and the adequate CPU and main memory resources, and
number of AVPS engines re available at the time the AVPS
solution is deployed. The experiments conducted in this paper
do not cover the effects of a growing number of rules over
time due to the various factors that need to be considered and
tested separately, we plan to conduct further testing for this in
the future.

We based our experiments on three different applications:
FTP, database, and Web server. The specification of the
environment and the experimental testbed is shown in Figure 3.

In this environment, the client requests services from ap-
plication servers, which respond to the requests. All traffic
between client and server is monitored and inspected by
the AVPS. A controlling host controls the environment and
collects the results of the experiments (see Figure 3).

Apache JMeter 2.4 [36] was used on the client to conduct
both FTP and Web experiments. We measured the average
throughput and average transfer time in both cases. For the
database experiment, mysqlslap [37] was used to measure the
average response time.

On the AVPS we used Snort-inline 2.8.6.1 [38]. Snort is
highly used in academic IDS/IPS research experiments. Other
tools are also used in academic research (e.g., Bro [39] and
EMERALD [40]). We used Linux iptables [41], a firewall
package installed under RedHat, Fedora, and Ubuntu Linux,
in conjunction with Snort in-line to filter packets as they come
into the AVPS and leave. We used MySQL 5.1 [42] to store
events and event packet captures. We used BASE [43] to query

Fig. 3: Experimental environment.
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the DB and display the events in the browser.
We configured three different application servers: (1) vsftpd

2.3.2 FTP server [44], (2) MySQL 5.1 DB [42], and (3)
Apache 2 Web server [45].

We customized the Snort configuration file to meet the
AVPS requirements. All default rules that come with Snort
were disabled and our own policies were added inside lo-
cal.rules. We configured Snort to output events into a MySQL
database.

The client and server are connected directly to the AVPS
as shown in Figure 3. All three machines are also connected
via a second network card to a switch. The controlling host is
also connected to the switch to control and collect the results
from all three machines.

B. Experimental Results

In this section we show the results of experiments using
the testbed described above. For each application server type,
we conducted two types of experiments. The first consisted
of manually submitting 10 requests to the application server.
This was used to measure the average file transfer time,
query response time, and throughput. The second consisted of
automatically submitting 30 requests to the application server,
in sequence with no think time. This process was used to
measure the average, minimum, and maximum CPU utilization
of the AVPS engine. All results include 95% confidence
intervals.

The manual experiments considered the following four
scenarios: (1) No AVPS, client and application servers are
connected to a 1000-Mbps switch. (2) Client and server are
connected to the AVPS but the engine is disabled, traffic is
only being bridged. (3) The AVPS is enabled and no rules
match the traffic (either because no policies are loaded or
because the loaded policies do not trigger a violation). (4) The
AVPS is enabled, detects a violation on all rules checked, and
generates an alert, which is stored in a database. However, the
AVPS is configured not to block the traffic. It should be noted
that case (4) above is the one that generates the largest possible
overhead because all rules generate a violation, an unlikely
event in practice, and traffic flowing through the AVPS is not
decreased due to blocking offending requests. Thus, all results
presented in what follows for scenario (4) represent a worst-
case performance scenario.

The automated experiments were used to measure average
and maximum CPU utilization of the AVPS engine and
consider the following four scenarios: (1) Same as scenario (2)
above. (2) Same as scenario (3) above. (3) Same as scenario
(4) above. (4) Same as scenario (4) above but the AVPS is
configured to block the traffic. Case (3) above is also a worst-
case performance scenario for the reasons outlined above. Case
(4), the blocking case, is the ideal operational situation. In
that case, blocked traffic does not contribute to network and
application server load.

1) FTP Results: The FTP results are discussed in what
follows. Table I shows the measured results for the average
throughput (in KB/sec) and average transfer time (in msec) for

10 manually submitted requests using JMeter for four different
file sizes: 100 KB, 1 MB, 10 MB and 100 MB.

In the case where we check against a rule (case (4) in the
manual experiments), we loaded into memory the following
rule that alerts when user “appserver” tries to log into a specific
FTP server.

alert tcp any any → FTPserver any (classtype:attempted-
user; msg:“Snortinline Autonomic FTP event”;content:
“appserver”;nocase;sid:2;)

The elements of the rule above are (a) alert: notify the user
of a violation, (b) tcp: the protocol used, (c) Any: the IP
address, (d) → is the direction, (e) classtype: is the category
for the type of rule, (f) msg: the description of the rule, (g)
nocase: the pattern is not case sensitive, and (h) sid : unique
Snort id. The syntax of Snort rules is described in [34].

From Table I, we see that the differences in the four
scenarios in average throughput and average transfer time for
any of the various file sizes are either statistically insignificant
at the 95% confidence level (e.g., for 100 KB and 1 MB files)
or are very small (e.g., less than 1.8% different for 10 MB and
100 MB files). This means that there is little or no difference
between the case when the AVPS process is disabled (case
(2)) and the case where the AVPS engine is enabled and all
rules checked generate a violation, but traffic is not blocked
(case (4)). This is expected behavior since the AVPS does
not inspect packets that contain file data being transferred. It
only inspects the initial administration and request commands.
Thus, the AVPS has no or very little impact on throughput and
transfer time.

For the CPU measurements discussed below, we used the
automated submission scenario. We load into memory the
following rule that blocks a user when he/she tries to access
a specific FTP server using “appserver” by replacing it with
“*********”.

alert tcp any any → FTPserver any (classtype:attempted-
user; msg:“Snortinline Autonomic FTP block”; content: “
appserver”; nocase;replace:“*********”;sid:2;)

Table I shows the measured average CPU utilization of the
AVPS engine for 30 automated requests with zero think time
using JMeter for four different file sizes: 100 KB, 1 MB, 10
MB and 100 MB.

Table I shows that the CPU utilization is negligible in most
scenarios except for when the AVPS is enabled, matching,
and not blocking violations for large files (i.e., 100 MB). In
this case, we see an average 6.12% CPU utilization. This is
considered the worst case but is still considered very small
and has almost no effect on the traffic traversing or being
processed. If we consider the blocking situation (the default
action in an ideal AVPS deployment), we see that the CPU
utilization drops to an average of 0.12%, a negligible overhead.
This is expected because in this case, data packets are blocked
and are not processed any further.
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File Size → 100 KB 1 MB 10 MB 100 MB
Average throughput (KB/Sec) with 95% confidence intervals

No AVPS, switching 327.0 ± 7.0 2811.9 ± 48.0 9834.2 ± 38.5 13395.3 ± 90.1
AVPS process not on 331.1 ± 5.3 2754.7 ± 35.6 9984.4 ± 56.3 13539.5 ± 95.0
AVPS process on but not matching 330.0 ± 6.0 2754.9 ± 45.5 9756.8 ± 29.4 13257.5 ± 57.5
AVPS matching and policy applied 332.6 ± 4.7 2746.4 ± 34.4 9841.2 ± 77.3 13300.8 ± 78.9

Average transfer time (msec) with 95% confidence intervals
No AVPS, switching 307.2 ± 6.9 365.3 ± 7.2 1043.2 ± 4.2 7647.6 ± 51.6
AVPS process not on 302.8 ± 5.1 372.3 ± 4.8 1025.9 ± 6.0 7566.4 ± 52.4
AVPS process on but not matching 304 ± 5.8 372.7 ± 6.5 1049.6 ± 3.2 7725.2 ± 33.3
AVPS matching and policy applied 301.3 ± 4.4 373.4 ± 4.7 1041.1 ± 8.1 7701.2 ± 45.0

Average CPU utilization (%) with 95% confidence intervals
AVPS - bridging only 0.02 ± 0.01 0.04 ± 0.03 0.05 ± 0.01 0.05 ± 0.00
AVPS enabled, not matching 0.02 ± 0.01 0.3 ± 0.06 1.44 ± 0.20 2.11 ± 0.06
AVPS enabled, matching, not block-
ing

0.20 ± 0.06 0.79 ± 0.17 3.90 ± 0.51 6.12 ± 0.17

AVPS enabled, matching, blocking 0.09 ± 0.02 0.12 ± 0.02 0.10 ± 0.02 0.12 ± 0.03

TABLE I: FTP results

2) Database Server Results: For the database server exper-
iments we built a database of customers, orders, and order
items and developed three different queries. Query Q1 returns
the list of all items of all orders submitted by all customers for
a total of 51,740 records. Query Q2 returns one record with
the number of customers in a geographical region. This query
needs to scan 50 customer records. Finally, query Q3 returns
the dollar amount of all orders placed by customers in a given
geographical region. While this query returns only a number,
it needs to do significant work on the database to obtain the
result.

Table II shows the measured average response time (in sec)
for 10 manually submitted queries using mysqlslap for the
three different queries and for the four scenarios described
above.

For the case in which rules generate a violation alert but no
traffic is blocked, we loaded into memory the following rule
that alerts when a user tries to access “companyxyz” database
located at a specific DB server.

alert tcp any any → DBserver any (classtype:attempted-
user; msg:“Snortinline Autonomic DB event”;content: “
companyxyz”;nocase;sid:2;)

We can see from Table II, that the worst case appears
in Q1, which returns 51740 records. For Q1 the differences
between no AVPS and AVPS matching is almost 5 msec, or
13% additional overhead. We consider the extra time to be
small given the large number of records returned. In fact,
the overhead is approximately 0.08 µsec per record returned.
For queries Q2 and Q3 we can see almost no overhead given
that both only return one record. In fact, for Q3, there is no
statistically significant difference at the 95% confidence level
between the no AVPS and AVPS matching cases. For Q2, the
difference in response time is small and equal to 1.2 msec.

It is important to note that the largest component of the
response time is the transfer time over the network and not
processing time at the DB server. We measured Q1, Q2, and
Q3 directly at the server and we found that Q1 takes14 msec to

Query → Q1 Q2 Q3
Average response time (msec) with 95% confidence interval

No AVPS, switching 31.6± 0.24 10 ± 0.31 10.6± 0.39
AVPS process not on 32.4± 0.24 10.2 ± 0.2 10.8± 0.57
AVPS process on but
not matching

36.4± 0.24 11 ± 0.31 10.6± 0.24

AVPS matching and
policy applied

36.2± 0.57 11.2 ± 0.2 11.2± 0.37

Average/Maximum CPU utilization (%)
AVPS - bridging only 0.024/0.15 0.045/0.23 0.007/0.04
AVPS enabled, not
matching

0.43/1.51 0.01/0.05 0.058/0.3

AVPS enabled, match-
ing, not blocking

1.57/4.75 0.152/0.43 0.23/0.71

AVPS enabled, match-
ing, blocking

0.220/1.49 0.262/1.14 0.221/1.05

TABLE II: DB results

execute, and Q2 and Q3 take virtually zero seconds to execute.
The difference in execution time between Q1 and the other two
queries lies on the fact Q1 has to output a very large number of
records. Thus, the average transfer time for case (4) for query
Q1 is 22 msec obtained by subtracting the average response
time at the client (i.e., 36 msec) from the server execution
time of 14 msec.

As before, the CPU utilization experiments use the au-
tomated submission process. In the cases where we block
against a rule, we load into memory the following rule that
blocks a user when he/she tries to access the “companyxyz”
database located at a specific database server by replacing it
with “**********”.

alert tcp any any → DBserver any (classtype:attempted-
user; msg:“Snortinline Autonomic DB block”; content:“
companyxyz”; nocase;eplace:“**********”;sid:2;)

Table II shows the measured average and maximum (after
the “/”) CPU utilization of the AVPS engine for 30 automated
requests with zero think time using JMeter for queries Q1, Q2,
and Q3. The minimum CPU utilization was zero in all cases.

In Table II, we notice that the average CPU utilization does
not fully reflect the actual CPU utilization due to the very
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File Size → 518 KB
Average throughput (KB/sec) with 95% confidence interval

No AVPS, switching 43038 ± 1675
AVPS process not on 33861 ± 902
AVPS process on but not matching 23385 ± 372
AVPS matching and policy applied 17938 ± 677

Average transfer time (msec) with 95% confidence interval
No AVPS, switching 6.1 ± 0.23
AVPS,process not on 7.7 ± 0.21
AVPS process on but not matching 11.1 ± 0.18
AVPS matching and policy applied 14.6 ± 0.47

Average CPU utilization (%) with 95% confidence interval
AVPS - bridging only 0.03 ± 0.04
AVPS enabled, not matching 0.24 ± 0.45
AVPS enabled, matching, not blocking 0.54 ± 1.04
AVPS enabled, matching, blocking 0.15 ± 0.11

TABLE III: Web results

low amount of time that it takes to process a request over
the network. The maximum CPU utilization provides a better
view of the actual utilization encountered. We can see again
that the worst case occurs with a maximum CPU utilization of
4.75% for Q1 when the AVPS is matching but not blocking.
This overhead is considered very small and almost negligible
given the number of records returned. The other queries have
a maximum of 1.14% utilization, which is extremely low and
can almost be completely ignored. In the case of blocking (last
row), we see extremely low overhead for the worst case (Q1)
that has a maximum of 1.49% utilization. Again, in an ideal
environment a blocking policy would be in place.

3) Web Server Results: The results of the experiments in
a Web server environment are shown in Table III, which
presents the average throughput (in KB/sec) and the average
transfer time (in msec) for 10 manually submitted requests
using JMeter for a Web page of 518 KB. In the cases where we
check against a rule but do not block, we loaded into memory
the following rule that alerts when a user tries to access the
page “notallow.html” located at a specific webserver.

alert tcp any any→ Webserver any (classtype:attempted-user;
msg:“Snortinline Autonomic web event”;
content:“notallow.html”;nocase;sid:2;)

Table III indicates that the average throughput is reduced by
56% when the AVPS is running, matching, and not blocking
as compared with the case of no AVPS. The response time
difference in that case (see Table III) increases 2.28 times.
However, the increase in time units is only 8.2 msec for a
large web page (i.e., 518 KB). This increase in response time
is hardly noticeable by a human being. It should be noted that
in the Web case, the AVPS has to inspect every single packet
of a Web page.

Table III indicates that the CPU utilization results for the
web case are equally low as in the previous cases.

C. Scalability Analysis

The previous section showed experimental results obtained
with our implementation of the AVPS. In this section, we use

a queuing theoretical model to examine the scalability of the
AVPS under a variety of configurations not contemplated in the
implementation due to resource limitations. Some examples
of these configurations include many clients, many AVPS en-
gines, and different mixes of workload. The input parameters
for our queuing model, in particular the execution time and
overhead of running applications protected by the AVPS, were
obtained from the experiments described previously.

We assume that there are M clients that submit requests
that are initially processed by one of N AVPS engines, which
then send the requests to an application server (AS) (e.g., FTP
server, database server, Web server). Each client pauses for
an exponentially distributed time interval, called think time,
before submitting a new request after a reply to the previous
request has been received. The average think time is denoted
by Z. See Figure 4 for a depiction of the model.
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Fig. 4: AVPS analytic model.

We also assume that the average time to process a request,
not counting time waiting to use resources at the AVPS and the
application server, is exponentially distributed with an average
equal to x̄.

We can use the results of the M/M/N//M queue (see [46])
to obtain the probabilities pk of having k requests being pro-
cessed or waiting by either the AVPS or the application server.
The M/M/N//M queue models a variable service rate finite-
population of M request generators that alternate between
two states: (1) waiting for a reply to a submitted request and
(2) thinking before submitting a new request after receiving a
reply to the previous request.

The probabilities pk are then given by

pk =

{
p0 (x̄/Z)k M !

(M−k)! k! 0 ≤ k ≤ N
p0 [x̄/(N Z)]k M ! NN

(M−k)! N ! N < k ≤M
(1)

where

p0 =

[
N∑

k=0

(
x̄

Z
)k

M !

(M − k)!k!
+

M∑
k=N+1

(
x̄

N Z
)k

M ! NN

(M − k)!N !

]−1

(2)
We can now compute the average number, N̄ , of requests
being processed or waiting to be processed by the AVPS +
application server system as

N̄ =

M∑
k=1

k pk (3)
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and the average throughput X0 as

X0 =

N∑
k=1

k

x̄
pk +

M∑
k=N+1

N

x̄
pk. (4)

The average response time, R, can be computed using Little’s
Law [31] as R = N̄/X0.

The workload intensity of such a system is given by the
pair (M,Z). An increase in the number of clients M or a
decrease in the think time Z imply in an increase in the rate
at which new requests are generated from the set of clients. As
the processing time x̄ increases, contention within the system
increases and requests tend to spend more time in the system
instead of at the client. In the extreme case, pM ≈ 1 and
pk ≈ 0 for k = 0, · · · ,M −1. This is when saturation occurs.
When that happens, N̄ →M , X0 → N/x̄, and R = N̄/X0 →
M x̄/N . In other words, the response time grows linearly with
M at very high workload intensities.

In the following sections, we provide the results for three
different scenarios:

• Multiple clients (M > 1) accessing a specific application
server (FTP, DB or Web) via a single AVPS (N = 1).

• Multiple clients (M > 1) accessing a specific application
server (FTP, DB or Web) via multiple AVPS engines
concurrently (N = 1, 2, 3, 4, 5).

• Multiple clients (M > 1) accessing a mixture of applica-
tion servers (FTP, DB or Web) via multiple AVPS engines
concurrently (N = 1, 2, 3, 4, 5).

We use the x̄ values obtained in our measurements from
Section V-B to analyze the scalability of the AVPS for an
FTP server, database server and web server under the same
conditions shown in the previous sections (see Table IV). Note
that the values of x̄ used here correspond to the worst-case
scenario in the automated tests, i.e., case (3) in which all rules
generate a violation and an alert but traffic is not blocked.

1) Specific Application and N = 1: Figure 5 depicts the
architecture of this scenario, which discusses the performance
results for the number of clients, M , varying from 1 to 30
and each client accessing a single application/element (i.e.,
FTP/100 MB file) via one AVPS engine.

Server type x̄
FTP Server 100 KB 0.360 sec

1 MB 0.513 sec
10 MB 1.050 sec

100 MB 8.100 sec
DB Server Q1 41.6 msec

Q2 14.8 msec
Q3 15.6 msec

Web Server 518 KB 12.1 msec

TABLE IV: Average service time x̄ obtained from mea-
surements for the FTP Server, DB Server and Web Server
Applications.

Figure 6 shows the average file transfer time, R, when the
number of clients varies from 5 to 30 for an average think
time equal to 10 sec. The AVPS is enabled, matching packets

Fig. 5: Single application with one AVPS engine

against the policy, but not blocking bad transfers. If blocking
were enabled, the transfer time would be reduced since some
files would not be transferred. As expected, for each file size,
the average transfer time increases with the file size. For large
files (e.g., 100 MB) and for this value of the think time,
the system is close to saturation and the average transfer
time increases almost linearly with the number of clients, as
discussed above. For example, R = 233 sec for M = 30. This
value is very close to 30× x̄ = 30× 8.1 = 243 sec. For half
the number of clients, R is 111.5 sec, which is almost half
the value for M = 30. But, even in this worst case, the FTP
server with the AVPS system scales linearly with the number
of clients.

Before saturation is reached, the increase in average transfer
time is more than linear, as can be seen for example in the 10
MB file size case. For example, the value of R for M = 30
is about 3.4 times higher than for M = 15. However, as M
increases way past M = 30 for 10-MB files, the system will
saturate and the transfer time will increase linearly with M .

Figure 7 shows the average response time, R, for the result
of queries Q1, Q2, and Q3 defined in Section V-B for an
average think time equal to 0.1 sec. As before, the number of
clients varies from 5 to 30. The number of records returned by
queries Q1-Q3 are 51740, 1, and 1, respectively. Q3 is a much
more complex query and requires more database processing
time. Thus, its average response time is slightly higher than
that for Q2, even though both queries return the same amount
of data. The graph indicates that for 30 clients and for Q1,
the system is very close to saturation and the average transfer
time is very close to be proportional to M . In fact, R = 1.148
sec ≈ 30× x̄ = 30× 0.0416 = 1.248 sec. Queries Q2 and Q3
do not return enough records to push the system to saturation
and therefore we see a more than linear increase in transfer
time as a function of M for the values shown in the graph.

Figure 8 shows the average transfer time R for a 518-
KB Web page and for an average think time equal to 1 sec.
As before, the number of clients varies from 5 to 30. The
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Fig. 6: Average file transfer time vs. number of clients for
various file sizes. The average think time is 10 sec.

Fig. 7: Average database query result transfer time vs. number
of clients for three different queries. The average think time
is 0.1 sec.

graph indicates that the increase in transfer time is negligible
between 5 and 30 clients. While R increases linearly with
the number of clients, the rate of increase is mainly due
to increased congestion at the Web server and not to AVPS
overhead, which is small (8.2 msec) and hardly noticeable by
a human being.

2) Specific Application and N=1-5: Figure 9 depicts the
architecture of this scenario. The performance results dis-
cussed here are for 1 to 30 clients accessing a single applica-
tion/element (e.g., FTP/100 MB file) via 1 to 5 AVPS engines.

Figure 10 shows the average file transfer time when the
number of clients, M , varies from 5 to 30 for an average
think time equal to 10 sec, for a 100-MB file transfer, and
for a number of AVPS engines, N , varying between 1 and
5. The AVPS is enabled, matching packets against the policy,
but not blocking bad transfers. If blocking were enabled the
transfer time would be reduced since some files would not be
transferred. As expected, the average transfer time decreases
substantially, and in a non-linear way, with the increase in the
number of AVPS engines, especially for a higher number of

Fig. 8: Average web transfer time vs. number of clients for a
518-KB Web page. The average think time is 1 sec.

Fig. 9: Single application mode architecture with multiple
AVPS engines

clients. This is due to the fact that more clients generate more
contention at the AVPS. The addition of more AVPS engines
reduces contention. For example, for M = 30 the response
time decreases by 83% as one goes from one to five AVPS
engines. For any value of the number of clients, there is a value
N∗ of the number of AVPS engines that does not produce any
significant reduction in response time because contention has
already been eliminated. At that point, the response time must
be equal to the service time x̄. For the case shown in Figure 10,
this value is x̄ = 8.1 sec (see Table IV for the average service
time for 100-MB files). For example, for M = 5, N∗ = 3 and
for M = 10, N∗ = 5.

The curves of Figure 10 can also be used to determine
the adequate number of AVPS engines for a desired average
response time. For example, for 25 clients, 2 AVPS engines
would be required for the average response time not to exceed
100 sec.

Figure 11 shows the average response time for queries of
type Q1 defined in Section V-B for an average think time equal
to 0.1 sec and the number of AVPS engines N varying between
1 and 5. As before, the number of clients varies from 1 to 30.
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Fig. 10: Average file transfer time vs. number of AVPS engines
for a 100-MB file. The number of clients varies from 1 to 30.
The average think time is 10 sec.

The results are very similar to those of the FTP case. All curves
must eventually converge to 41.6 msec (see Table IV for the
average service time for queries of type Q1) when N = N∗.
For example, N∗ = 3 for M = 5 and N∗ = 4 for M = 10.
The average response exhibits an 87% reduction for 30 clients
as the number of AVPS engines increases from 1 to 5.

Fig. 11: Average query Q1 response time vs. number of AVPS
engines for various values of the number of clients. The
average think time is 0.1 sec.

Figure 12 shows the average transfer time, R, for a 518-KB
Web page, for an average think time equal to 1 sec, and for
the number of AVPS engines N varying between 1 and 5. As
before, the number of clients varies from 1 to 30. The graph
indicates that all curves (1-30 clients) almost converge to the
value of 12.1 msec (see Table IV for the average service time
for a 518-KB Web page transfer) when a second AVPS engine
is added into the system. Thus , N∗ = 2 for all values of the
number of clients in this case. For 30 clients, the reduction in
response time is about 33% as an additional AVPS engine is
added.

3) Mixed Application and N = 1, · · · , 5: Figure 13 depicts
a scenario in which users access any of the three applications.

We discuss here the performance results of a scenario in
which 1 to 30 clients access multiple applications (e.g., FTP,

Fig. 12: Average Web page transfer time vs. number of AVPS
engines for various values of the number of clients for a 518-
KB Web page. The average think time is 1 sec.

Fig. 13: Mixed application scenario with multiple AVPS
engines.

DB, and Web) with multiple files sizes and query types for a
number of AVPS engines varying from 1 to 5.

Figures 14, 15, and 16 show, respectively, the results of
three different experiments:

• The average file transfer time when the number of clients
varies from 1 to 30 for an average think time equal to 10
sec, the file transfer is for a mix of 100 KB, 1MB, 10
MB and 100 MB files, and the number of AVPS engines
N varies between 1 and 5.

• The average query response time for a mix of Q1, Q2
and Q3 queries when the number of clients varies from 1
to 30 for an average think time equal to 0.1 sec, and for
a number of AVPS engines N varying between 1 and 5.

• The average transfer time for a mix of FTP downloads of
files of size 100 KB, 1MB, 10 MB, 100 MB, queries of
type Q1, Q2, Q3 and a 518-KB Web page. The number
of clients varies from 1 to 30 for an average think time
equal to 5.16 sec and the number of AVPS engines N
varying between 1 and 5.

In all three cases, the AVPS is enabled, matching packets
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against the policy, but not blocking bad transfers. If blocking
were enabled the transfer time would be reduced since some
files would not be transferred.

Similar to previous results, the average transfer time de-
creases substantially with the increase in N . We notice,
as expected, that when the number of clients increases the
performance gain increases when additional AVPS engines are
used. As before, there is a point after which additional AVPS
engines do not improve performance.

Fig. 14: Average FTP transfer time vs. number of AVPS
engines for a mix of 100 KB, 1 MB, 10 MB, and 100 MB file
downloads. The number of clients varies from 1 to 30. The
average think time is 10 sec.

Fig. 15: Average query response time vs. number of AVPS
engines for a mix of Q1, Q2 and Q3. The number of clients
varies from 1 to 30. The average think time is 0.1 sec.

VI. CONCLUSION AND FUTURE WORK

This paper presented a scalable AVPS framework to defeat
the insider threat. The AVPS is an inline mechanism that
inspects traffic between insider clients and servers. The AVPS
uses low level rules in the form of ECAs, implemented as
Snort rules in our prototype. An offline process uses super-
vised learning to learn high-level rules that are automatically
converted into one or more low level rules.

The paper also presented a performance evaluation assess-
ment for three different application servers. The performance

Fig. 16: Average transfer time vs. number of AVPS engines for
a mix of different applications (FTP, DB, and Web requests).
The number of clients varies from 1 to 30. The average think
time is 5.16 sec.

assessment measured average transfer times, average through-
put, and CPU utilization as well as 95% confidence intervals
for all three measurements.

The experiments showed that: (1) The impact on the aver-
age transfer time and throughput for FTP transfers is either
negligible at the 95% confidence level or very small (i.e.,
less than 1.8%). (2) The response time impact on database
queries is heavily dependent on the number of records returned
by the queries. For queries that return a very large number
of records (e.g., over 51,000), the response time increase is
13% on average. However, this amounts to only 0.08 µsec
on average per record returned. (3) When a Web server is
accessed through the AVPS system, the response time for a
large Web page (e.g., 518 Kbytes) increases by 8.2 msec, an
amount hardly noticeable by a human being. (4) The average
and maximum CPU utilization of the AVPS engine are very
small in all cases tested, not exceeding 7%.

We also presented an M/M/N//M queuing analytical scala-
bility model for three different cases with a varying number of
applications, users, and AVPS engines and generated average
response times curves for all different cases. The scalability
and performance model showed that the AVPS framework can
easily scale horizontally to achieve the desired performance
level. The model also showed that for each number of clients,
there is an optimal number of AVPS engines that totally
eliminates congestion and minimizes response time. Using
more than that number of AVPS engines does not improve
performance any further.

Our results also showed that there is very low overhead
incurred when the AVPS is in-line between the clients and
the application servers. We used worst-case scenarios in our
analysis by considering situations in which all checked rules
trigger a violation and generate an alert, but do not block
incoming traffic. Blocking traffic in violation situations, which
is the normal operational approach, reduces the load on the
network and on the AVPS engine and improves performance.

We are currently looking at model based architectures,
typically used in self-optimizing systems, and the effects of
rule complexity on the overall performance of the system.
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[5] G. Jabbour and D. Menascé, “Policy-Based Enforcement of Database
Security Configuration through Autonomic Capabilities,” in Proc. Fourth
Intl. Conf. Autonomic and Autonomous Systems. IEEE Computer
Society, 2008, pp. 188–197.

[6] ——, “The Insider Threat Security Architecture: A Framework for an
Integrated, Inseparable, and Uninterrupted Self-Protection Mechanism,”
in Proc. 2009 Intl. Conf. Computational Science and Engineering-
Volume 03. Vancouver, Canada: IEEE Computer Society, 2009, pp.
244–251.

[7] M. Engel and B. Freisleben, “Supporting autonomic computing func-
tionality via dynamic operating system kernel aspects,” in Proc. 4th
Intl. Conf. Aspect-oriented Software Development. Chicago, IL, USA:
ACM, 2005, p. 62.

[8] Y. Al-Nashif, A. Kumar, S. Hariri, G. Qu, Y. Luo, and F. Szidarovsky,
“Multi-Level Intrusion Detection System (ML-IDS),” in Intl. Conf.
Autonomic Computing, 2008. Karlsruhe, Germany: IEEE, 2008, pp.
131–140.

[9] R. He, M. Lacoste, and J. Leneutre, “A Policy Management Framework
for Self-Protection of Pervasive Systems,” in 2010 Sixth Intl. Conf.
Autonomic and Autonomous Systems. Cancun, Mexico: IEEE, 2010,
pp. 104–109.

[10] V. Paxson, R. Sommer, and N. Weaver, “An architecture for exploiting
multi-core processors to parallelize network intrusion prevention,” in
Sarnoff Symposium, 2007 IEEE. Princeton, NJ: IEEE, 2007, pp. 1–7.

[11] K. Scarfone and P. Mell, “Guide to intrusion detection and prevention
systems (idps),” NIST Special Publication, vol. 800, no. 2007, p. 94,
2007.

[12] K. Xinidis, K. Anagnostakis, and E. Markatos, “Design and imple-
mentation of a high-performance network intrusion prevention system,”
Security and privacy in the age of ubiquitous computing, pp. 359–374,
2005.

[13] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. Markatos, and
S. Ioannidis, “Gnort: High performance network intrusion detection
using graphics processors,” in Recent Advances in Intrusion Detection.
Boston, MA, USA: Springer, 2008, pp. 116–134.

[14] S. Shaikh, H. Chivers, P. Nobles, J. Clark, and H. Chen, “Towards
scalable intrusion detection,” Network Security, vol. 2009, no. 6, pp.
12–16, 2009.

[15] X. Chen, Y. Wu, L. Xu, Y. Xue, and J. Li, “Para-snort: A multi-thread
snort on multi-core ia platform,” in Parallel and Distributed Computing
and Systems. ACTA Press, 2009.

[16] G. Jedhe, A. Ramamoorthy, and K. Varghese, “A scalable high through-
put firewall in fpga,” in Field-Programmable Custom Computing Ma-
chines, 2008. FCCM’08. 16th International Symposium on. Palo Alto,
California, USA: Ieee, 2008, pp. 43–52.

[17] H. Gobjuka and K. Ahmat, “Fast and scalable method for resolving
anomalies in firewall policies,” in Computer Communications Workshops
(INFOCOM WKSHPS), 2011 IEEE Conference on. Shanghai, China:
IEEE, 2011, pp. 828–833.

[18] B. Wun, P. Crowley, and A. Raghunth, “Parallelization of snort on a
multi-core platform,” in Proceedings of the 5th ACM/IEEE Symposium
on Architectures for Networking and Communications Systems. Prince-
ton, NJ, USA: ACM, 2009, pp. 173–174.

[19] M. Alam, Q. Javed, M. Akbar, M. Rehman, and M. Anwer, “Adaptive
load balancing architecture for snort,” in Networking and Communica-
tion Conference, 2004. INCC 2004. International. Lahore, Pakistan:
IEEE, 2004, pp. 48–52.

[20] D. Day and B. Burns, “A performance analysis of snort and suricata
network intrusion detection and prevention engines,” in ICDS 2011, The
Fifth Intl. Conf. Digital Society. Gosier, Guadeloupe, France: IARIA,
2011, pp. 187–192.

[21] K. Salah and A. Kahtani, “Performance evaluation comparison of snort
nids under linux and windows server,” Journal of Network and Computer
Applications, vol. 33, no. 1, pp. 6–15, 2010.
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