
An Adaptive and Dependable Distributed Monitoring Framework

Teemu Kanstrén, Reijo Savola

VTT Technical Research Centre of Finland

Oulu, Finland

{teemu.kanstren,reijo.savola}@vtt.fi

Sammy Haddad, Artur Hecker

Telecom ParisTech

Paris, France

{sammy.haddad,artur.hecker}@enst.fr

Abstract — This paper discusses several relevant aspects of

performing monitoring in the context of software-intensive

systems. The focus is especially on cases where the observed

system is distributed, and the monitoring system needs to be

secure, dependable and capable of adapting to a number of

dynamic scenarios during the system evolution. Based on the

analysis of monitoring needs in this type of domain, a set of

core requirements for providing a monitoring framework for

these domains is defined. To address these requirements, a

high-level reference architecture for a monitoring framework

is presented. These requirements and reference architecture

provide a basis for designing different monitoring systems.

Keywords – monitoring, framework, security assurance,

adaptation, dependability.

I. INTRODUCTION

Collecting data about different aspects relevant to the be-
haviour, configuration and deployment of a software-
intensive system during its lifetime is important for many
different purposes. Together with the different partners in the
CELTIC BUGYO Beyond project, we have collected and
analysed a set of core requirements from the viewpoint of
building a monitoring framework (MFW) for continuous
monitoring of security assurance-related information. Addi-
tionally, we have analysed a set of existing MFWs for differ-
ent domains with similar requirements. Based on this set of
requirements, we present a high-level architecture for a
MFW and discuss how it addresses the different require-
ments. This paper is an extension of our previous work [1],
updated with the latest evolution in our research.

There are many potential application domains of opera-
tional measurement, including supporting software (SW)
quality assurance activities such as testing and debugging
that require collecting data about system behaviour for anal-
ysis [2]. Quality assurance can also be associated with moni-
toring different aspects of an operational system, such as the
quality of service in a telecommunications network [3],
compliance of dynamic systems with their requirements [4]
and the security compliance of the system [5]. The monitor-
ing functionality can also be used to provide automated ac-
tions such as restarting failed services and sending failure
notifications [6]. In the case of some systems, the data col-
lection itself is the main purpose and goal of the system. For
example, scientific experiments can require collecting large
amounts of data for research purposes [6,7].

Although the measurement systems target different do-
mains, they all share the goal of capturing information (mon-
itoring) about different properties that are important to the

functionality and security of the observed system. From the
information monitoring perspective, they all thus share the
same set of core requirements. In addition, each application
of a MFW can also have its own set of specific requirements
such as optimization for real-time processing [2] or high-
performance capture of large data sets over large networks
[6]. In this paper, we focus on the core set of requirements
and classify these to five different categories: intrusiveness,
security, dependability, scalability and runtime-adaptation.
These categories of requirements represent different view-
points of the monitoring functionality.

First, monitoring typically disturbs the observed system
to some extent (commonly referred to as a probe effect), af-
fecting its reliability and dependability. Intrusiveness needs
to be minimized. Second, in many cases the collected infor-
mation provides sensitive information about the observed
system and its behaviour and thus this information needs to
be protected from any unauthorized access (security). Third,
to enable best possible use of the information, the MFW de-
sign should be highly dependable in order to assure that the
data is available even in case of failures in the observed sys-
tem in order to allow for analysis of the issues based on the
captured information. Fourth, it is important for the MFW to
be scalable for use in different types of observed systems,
where the scale of distribution can vary greatly. As many
modern systems evolve during their lifetime or exhibit high
dynamics in their structures, the MFW should also support
runtime adaptation to account for the measurement needs,
the evolution of the observed system and the MFW itself.

We start by defining a core set of requirements that we
have synthesized for these types of systems and present high-
level reference architecture as a basis for a MFW to address
these requirements. The main contribution of this paper is the
identification and analysis of core requirements relevant for
building a dependable, secure and adaptive distributed moni-
toring framework, and providing a reference architecture that
addresses these requirements.

The rest of this paper is structured as follows. In Section
II, we present a number of existing MFWs for different pur-
poses and domains. In Section III, we synthesize a common
set of requirements based on the review of requirements in
the domains these frameworks have been applied to as well
as the requirements we have collected and analysed together
with different partners in the BUGYO Beyond project. In
Section IV, we present a high-level MFW design to address
the requirements. Finally, conclusions end the paper.

80

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. BACKGROUND AND RELATED WORK

In this section, we present the background concepts relat-
ed to the discussion in this paper and a number of existing
MFW designs for specific domains including a discussion on
their relation to our work presented in this paper.

A. Background Concepts

Runtime monitoring is defined here as the act of collect-
ing information about a system during its operation. A MFW
is a system that performs the collection (and possible pro-
cessing) of this information and provides it to interested cli-
ents who make use of this information. The raw information
is typically detailed in nature and thus is mainly used by oth-
er SW components to perform further processing of the data,
such as visualizations for human users or issuing system
control commands for automated adaptation based on algo-
rithmic analysis. Additionally, a MFW can also provide
higher-level events describing observations made of the ob-
served system by local processing nodes (e.g. service fail-
ure). These events can also describe information about the
MFW itself, such as the evolution of the system infrastruc-
ture (e.g. the addition, removal or reconfiguration of a MFW
element). These basic concepts apply on different scales,
from embedded SW to networked systems of systems, where
only the scale of the component and its interconnection
mechanisms change.

The basic (measurement) information about a system is
captured by a probe. A probe is defined here as a SW or
hardware (HW) component capable of performing a specific
measurement on the observed system. These can be either
commercial-off-the-shelf (COTS) or custom-made compo-
nents. These probes are linked to the MFW to provide the
monitoring data to be processed by the MFW components
and its client applications. The MFW implements the infra-
structure to capture the data over the different observed sys-
tem elements. In different types of systems, the MFW infra-
structure is thus also different, such as spread over the net-
work in distributed systems or distributed over the compo-
nents of an embedded SW. In this paper, we focus on moni-
toring of distributed systems, although we note that the prin-
ciples can for the most part be applied at different scales
provided that the system is designed using proper architec-
tural properties (e.g. see [8] for embedded SW).

Specific types of probes can be identified and used de-
pending on the needs of systems. For example, Wang et al.
[4] define four types of probes:

 Instrumented probes with analysis – probes embedded in
a system which process raw data before outputting it.

 Instrumented probes without analysis – probes embed-
ded in a system which directly provide captured raw da-
ta.

 Intercepting probes with analysis – external probes (e.g.
network analyzer HW) that provide some analysis of the
raw data as output.

 Intercepting probes without analysis – external probes
that provide the raw data as captured.

Together these probes provide the raw measurement data
to fulfil the system measurement needs. A mediator compo-
nent is then used to provide information access to clients.

B. Related Work

In this section we describe a number of existing meas-
urement frameworks presented in the literature, and discuss
their relation to our work presented in this paper.

The current study presents a part of the CELTIC
BUGYO Beyond project results. This project follows up on
the CELTIC BUGYO Project. During the BUGYO project, a
preliminary version of MFW dedicated to security assurance
was designed and implemented [5]. The main challenge of
this framework was to provide a solution to the problem of
data collection related to the security-enforcing mechanisms
of the observed system. In this previous work, the measure-
ment architecture was not deeply investigated and it was
expected to be installed in an ad hoc manner. We partly ex-
tend this work but take a new and more systematic approach
to defining the requirements for a MFW and its practical
deployment, with a particular focus on addressing the dy-
namic aspects present in real systems. This MFW was de-
scribed to consist of three types of components with the fol-
lowing roles. A component called probe agent controls a
specific type of a probe, a MUX agent provides multiplexing
of data over subnet boundaries, and a server agent handles
centralized processing of the monitoring data and interfacing
with a client system. The observed data is not sampled at a
high frequency or in great amounts and thus they do not op-
timize the communication infrastructure but rather focus on
using XML-based protocol formats. One main weakness of
this MFW was the fact that it was not adaptive and could
only run on a fixed architecture. For the rest of this paper, we
adopt the agent terminology from this previous work and the
associated agent types (basic MFW components).

A MFW for capturing large amounts of scientific exper-
imentation data is presented in [7]. It is aimed at capturing
massive amounts of data from sensor electronics located next
to the Large Hadron Collider (LHC) detectors with high-
performance, scalability and dynamic monitoring require-
ments controlled by a flexible and configurable GUI. The
fundamental feature here is the routing of many sorts of data
(from simple parameters to histograms or event fragments).
They use Common Object Request Broker Architecture
(CORBA) [9] as the protocol between the MFW components
to support standards-based implementation on different plat-
forms. A separate data stream is used to pass the high-
volume data through the MFW system, and a separate chan-
nel is used to pass control requests and events related to the
MFW. This aims to provide high-performance data capture
with specialized data streams.

A similar MFW (called MonALISA) for capturing data
about scientific experiments is described in [6]. Its first pur-
pose was the analysis and processing of large-scale data-
intensive grid applications. Their targeted challenge is to
provide a MFW able to manage monitoring aspects related to
storage, networks and a large number of running applications
in near real time. The design of MonALISA is inspired by
the Jini [10] architecture where each agent in the framework

81

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is described and registered as dynamic services. The Mo-
nALISA design is divided into three layers, each with a spe-
cific functionality. The first layer provides dynamic registra-
tion and discovery of all MFW components. The second
layer consists of the monitoring services, where each pro-
vides data and events of a defined type, and the others can
subscribe to these data types. The third layer is called the
proxy layer and it handles the communication of the MFW
components over network filters (e.g. firewalls), providing
access control to the monitoring data and to the management
of the MFW components.

A monitoring framework for Voice-over-IP (VoIP) traf-
fic is presented in [3]. The main goal of this framework is to
allow high-speed, real-time and efficient (in terms of CPU
use) analysis of communications traffic. In this framework,
data, i.e. packets, are collected and processed at the kernel
level using a plugin-based server architecture with Session
Initiation Protocol (SIP) [11] and Real-Time Transport Pro-
tocol (RTP) [12]. A set of filters is defined for the different
plugins to define which data has to be processed by each
plugin. The plugins can then in turn be configured to process
the filtered data according to their functionality. A library of
functions is provided to implement common data processing
functions and an easy configuration and update mechanism
is provided for the plugins.

A MFW for web service requirements is presented in [4].
The data to be monitored is inferred from the web-service
specification (WSDL) of the observed system. A set of con-
straints over the observed data and events is used to describe
the allowed values and event sequences. This includes fre-
quency, interval and ordering of events. Some of their probes
provide basic values while others process values before pass-
ing them forward. Probes are generated based on the WSDL.

A MFW focusing on embedded real-time systems is in-
troduced in [2]. It focuses on high-performance requirements
in a single (non-distributed) embedded system. It defines a
custom binary protocol and a set of optimized services for
capturing high-frequency data from a running system, focus-
ing on minimizing its use of the observed system resources
(e.g. memory and CPU load). It provides a set of services to
enable the implementation of features to monitor different
aspects of the system (e.g. task scheduling).

The GEMOM (Genetic Message Oriented Secure Mid-
dleware) EU FP7 Project has developed an adaptive security,
resilience and Quality-of-Service (QoS) MFW [13,14] for
distributed information systems. The data communication is
arranged by a publish/subscribe mechanism, and separate
modules handle authentication and authorization functionali-
ty. Specific QoS, resilience and security properties can be set
for the different data processed by the GEMOM system,
allowing for customization of authorization and authentica-
tion for different elements.

From the design factors of the abovementioned meas-
urement frameworks, we apply the following MFW design
patterns for the purposes of the framework discussed in this
study:

 Specific adaptation layer for measurement targets
[5].

 Repository of available probes for specific meas-
urement targets [2].

 Simple interface to integrate custom probes into the
overall measurement system [2, 3].

 Usage of widely supported protocols [7].

 Configurability of operational probes [7].

 Optimized communications related to expected
measurement data communication patterns [5,7].

 Usage of separated dedicated communication chan-
nels [7].

 Customization of different aspects of the MFW
based on module composition [3].

 Provide a registry that is dynamically updated to re-
flect available measurements and probes [6].

 Use specific components to handle connection and
processing over network subdomains [5,6].

 Describe the measurements with a common set of
properties [4,6].

 Optimize the availability and reliability of measure-
ment infrastructure [13].

 Secure the communication data [13].
In the following sections, we describe why these design

patterns are relevant for a measurement framework. We also
present a reference architecture that takes these and other
MFW requirements into account.

III. REQUIREMENTS

This section describes a core set of issues we have identi-
fied for the type of monitoring addressed in this paper. Based
on the analysis of these issues, a set of requirements for the
design of a MFW is presented. These issues have been divid-
ed into five different categories: scalability, runtime adapta-
tion, correctness, intrusiveness and security. An overview of
these categories and their properties is shown in Figure 1.
These categories are described in the following subsections.

Figure 1. Requirements overview.

A. Scalability

From the basic scalability perspective, the MFW infra-
structure needs to be able to handle varying amounts of ob-
served events and data captured from systems with different
degrees of distribution. In this case, scalability issues include
supporting varying amounts of probes and resource limita-

82

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tions in processing large amounts of data (e.g. CPU and
memory use, network bandwidth). For the MFW infrastruc-
ture this can require use of alternate communication paths in
order to avoid causing network congestion. This can require
use of specific MFW components to be deployed at different
locations, such as localized processing and multiplexing
nodes, routing nodes and probe control nodes.

The scale of distribution of a MFW depends on the na-
ture of the target of measurement. In some cases, it may be
possible to perform all measurements from a single central-
ized location when the measurement nodes already have the
ability to provide the required measurement access and func-
tionality remotely, such as over remote Secure Shell (SSH)
connections. In more highly distributed systems, a more dis-
tributed MFW architecture is needed. In this case, measure-
ments need to be performed for a large number of nodes
(possibly divided into subnets), not all of which are reacha-
ble from a single centralized (monitoring) location. This re-
quires specific router elements to be deployed to handle con-
nections over the different nodes and subnets as divided by
filters (e.g. firewalls).

With regards to the distribution aspect, the addressing
scheme used for specifying which measurements can be sup-
ported also needs to be considered. Depending on the type of
measurement being performed, one may wish to address
more than one target in a measurement request. For example,
in the security assurance domain, one may request infor-
mation on the encryption strength of all routers deployed and
visible to the MFW. The task of the MFW is then to auto-
matically scale these requests without overloading the net-
work.

As the observed system evolves, the need for such spe-
cialized MFW elements may increase, meaning that the addi-
tion of these elements needs to be supported in an evolving
manner through runtime adaptation.

B. Runtime Adaptation

Modern distributed systems are rarely static in their for-
mation. Even if the system itself supports scaling to different
sizes of network infrastructure, it is not enough to simply
support deploying these different types of architectures. The
system must be able to evolve to support changes in scale
while in operation. In today’s distributed systems, nodes
come and go, and the same nodes can move to different loca-
tions in the network. In addition to physical changes in the
infrastructure, system reconfigurations can also change the
available communication channels. To address these scenari-
os, the MFW must be able to keep the mapping of its ele-
ments up to date and in synch with the changes in the ob-
served system (i.e. which element does a probe measure and
which measures it provides), and adapt to changes in the
available communication channels between the MFW infra-
structure nodes. In order for client applications to build func-
tionality on top of the monitoring data, the MFW must also
abstract the changes so that a client can request a specific
measure and does not need to worry about the dynamic as-
pects of evolution such as node mobility.

For routing of data through the MFW infrastructure, var-
ious issues need to be considered. If the used communication

paths become unavailable, communication channels need to
be rerouted. Yet, in many situations and to fulfil the non-
intrusiveness objective, the routing in the observed system
should not be changed to accommodate the needs of the
MFW. For this reason, the MFW must provide adaptation
capabilities to address these needs in an optimally adaptive
and non-intrusive way.

When a measure has become unavailable but later be-
comes available again, the MFW needs to reconnect to the
corresponding probe and to notify any client applications
making use of this information that it has again become
available. Similar notifications must be given for all changes
in MFW evolution.

As new MFW infrastructure elements are installed, the
MFW needs to link them to enable applications to use the
data they provide, or for the MFW to use them for the con-
trol of the measurement (e.g. data routing). A basic means is
manual configuration of all added nodes, but runtime recon-
figuration by the MFW also needs to be configured. The
optimal case is that the discovery and integration of new
deployed MFW elements are automated.

Changes (evolution) in the observed system’s infrastruc-
ture also affect the monitoring needs. As a basic feature, a
MFW must enable the user to deploy changes to the active
measurement requests. Additionally, depending on the types
of probes deployed, different types of actions are necessary.
Embedded probes are assumed to come with the deployed
components of the observed system, and require the deploy-
ment of a matching MFW component to integrate them with
the MFW infrastructure. External probes, on the other hand,
can be used to monitor more than one target, and thus, in this
case, the MFW needs to reconfigure the (existing) external
probe to also monitor the new element that was introduced.
For all new probes, there must exist a suitable deployed
MFW element to integrate them with the MFW infrastruc-
ture.

C. Intrusiveness

Monitoring always has some effect on the target of ob-
servation – this is often referred to as the probe effect. In the
case of the MFW, this translates to the effects that the instal-
lation of the MFW components and their use have on the
observed system. Installation of the components themselves
alone has an effect on the use of some system resources if the
components are installed within the observed system itself
and/or share some resources with it. In the case of external
probes, installation should have only a minor effect on the
target of observation unless the installation itself somehow
changes the behaviour of the system, such as the routing of
messages.

Probes that share resources with the target of observation
have an impact on its available resources such as CPU load
and memory consumption. These probes are typically em-
bedded probes, running as part of the observed system or on
the same HW. The operation of external probes can also af-
fect the observed system in a similar way. For example, rout-
ing data through an external probe can add network latency
to the observed system. For another example, activating fea-
tures and tools, such as SFlow [15] and Netflow protocol-

83

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

based tools [16], on router ports can be a drain on router
CPU cycles. Some of these effects can be minimal yet still
cause unwanted effects to, for example, the timing of the
system, changing it from the original design specifications.
When a probe is more active, for example, sending packets
to different network elements, it can invoke untested or unin-
tended behaviour in a system, causing side-effects such as a
complete crash or incorrect results.

In the scope of the BUGYO Beyond project, we have
identified the following possible probe effects:

 Consumption of hosting device resources (CPU,
memory, disk).

 Consumption of network bandwidth.

 Deployment of conflicting SW components, such as
shared libraries.

 A probe accessing restricted resources in the system,
causing the system to enter a different state. For exam-
ple, triggering an alarm and a countermeasure.

 A probe accessing system resources (e.g. a file) and
causing a lock, while another part of the system is trying
to use the same resource.

 Change of privileges required for an agent (or probe) to
be able to perform its tasks.

 Opened gates (e.g. ports) to access information in the
observed system.

 Changes performed by the probe on the measured sys-
tem, e.g. by some eXtensible Configuration Checklist
Description Format (XCCDF) [17] configurations or
benchmarks.

 Active probing of a certain interface of a target of meas-
urement can trigger some unintended features or even
crash the whole system, if it has some unintended fea-
tures linked to this interface.

This set is largely related to our target domain of security
assurance, where numerous measurements are done through
the file system and with shell scripting. Although most of
these are very generic and we see them as being applicable
across many domains, some different probe effects may ap-
ply in different domains.

The predictability of probe effects is important in as-
sessing which probes to take into use and how. However,
combining any arbitrary probes and systems produces unpre-
dictable effects. Even with tested systems and probes, the
exact available resources and system configurations can vary
and thus it is not possible to provide exact guidelines for any
possible probe effects for probe-system combinations.
Providing a large-scale analysis of possible probe effects is
out of the scope of this paper but it should still be stressed
that it is important to take into account the possible probe
effects and where possible test for them. Depending on the
potential impact, in some cases it may be unfeasible to de-
ploy probes on operational systems with which they have not
been tested previously. Knowing the possible probe effects
in this case helps in studying them for a specific system and
probes. Overall, it can be said that an active probe is more
likely to have a higher probe effect than a passive probe.

However, even if the intrusiveness of probes cannot be
fully predicted, the MFW should be able to monitor its im-

pact on the observed system and take any measures it can to
address these impacts (e.g. re-route communication or start
load-sharing components). This requires providing self-
monitoring and adaptation features based on specific probes
and analysis of the monitoring system properties (e.g. data-
stream latency). It also requires providing self-adaptation
features such as tuning the probe measurement frequency
where observed to be needed.

Even if the implementation and use of probes cannot be
constrained, the MFW infrastructure itself, however, can and
needs to be designed to be minimally intrusive (i.e. to mini-
mize its probe effect). To achieve this, the different con-
straints described above need to be considered, as does how
they can be minimized in the design and implementation of
the different components of the MFW infrastructure. One
main goal in avoiding intrusiveness for a system should be
the isolation of the MFW from the observed system as much
as possible (system independence). Any problems in the
MFW (e.g. SW crash) should not affect the observed system,
and ideally switching the MFW on or off should have no
effect on the observed system. Similarly, the network traffic
and any other shared resources of the two entities should be
separated as much as possible. Where full separation is not
possible, the goal should be to aim for as much separation as
possible. Virtual separation should be applied where physical
separation is not applicable. When separation is applied, it
needs to be applied in both functional and non-functional
domains, e.g. for control.

D. Correctness

During the service lifecycle various problems may arise.
The correctness viewpoint needs to consider the correctness
of both the MFW components and their behaviour. It must
also consider their effects on the observed system and how
this may affect its correct behaviour. In this regard, the cor-
rectness aspect of the MFW is closely related to the intru-
siveness viewpoint. Addressing this includes both providing
for verification of the behaviour of the whole MFW and all
its components before deployment, and monitoring and ad-
dressing any problems found in its operational use. General-
ly, the following three main approaches can be identified
from the correctness viewpoint:

 Simplicity in the design in order to minimize the possi-
bility of new problems

 Update mechanisms for the MFW infrastructure

 Testing and verification mechanisms to assure the cor-
rectness of the implementations

In practice aiming for simplicity would mean encapsulat-

ing more complicated processing of the measurements, con-
trol structures and similar properties at a higher level in a
separate measurement processing and control layer. Howev-
er, the choice of how much functionality is incorporated in
the MFW infrastructure components (probes and agents) is a
choice of tradeoffs in the extent to which it is in the interests
of the user for processing to be performed locally (to save on
resources such as network bandwidth) or on a dedicated
server-agent component that can be hosted on dedicated HW.

84

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Testing and verification are needed to assure the correct-
ness of the implementations in different contexts and config-
urations (in development and while in operation). Since the
infrastructures that are the target of observation can vary
greatly and be highly dynamic, the correct functionality of
the MFW also needs to be evaluated in different contexts. It
is important to verify both the correct functionality of the
individual components and their interactions. To support
this, the MFW design needs to provide suitable interfaces to
ensure required testability features (e.g. as described in [18,
8]).

Even with the best verification and testing techniques,
unanticipated situations will arise and failures in the opera-
tion of the MFW will be found during its operation in vari-
ous complex contexts and interactions with different compo-
nents and systems. To address any errors found during op-
erational use, update mechanisms are needed for the different
components of the MFW infrastructure.

A set of specific issues needs to be considered for updat-
ing components in an operational system. Three main issues
for this are referential transparency, state transfer, and mutu-
al references [19]. Referential transparency refers to updated
components not having enough information to notify all re-
lated components that are connected to the component in
question whether they need to be notified about the update.
State transfer refers to the requirement of transferring the
state of the component from the previous version to the new
updated version. For example, a probe agent may have a
state describing its current activity and the state of the con-
nected probe, and all this information needs to be transferred
to the new version of the updated component. Mutual refer-
ences refer to the problem of requiring simultaneous updates
on several components due to their mutual dependencies, e.g.
during an interface update.

Related to these issues, the updating of the MFW com-
ponents translates to different requirements for the different
components of the MFW infrastructure. This includes both
rerouting of communication channels and reconfiguration of
any specific functionality, such as the frequency of sampling
with a probe. In addition to fixing errors and vulnerabilities,
implementation updates are needed in order to enable new
features for the different components that are developed to
address new requirements for the MFW infrastructure. As
many modern systems have high availability requirements, it
cannot be assumed that they can be taken down for these
updates, and similarly the MFW should keep providing its
functionality with minimal interruption.

As the MFW generally collects data from external tools
or built-in functions in the observed system, it cannot pro-
vide generic support for updating these components external
to the MFW. In this regard, the MFW must rely on the us-
er(s) having the possibility to deploy the updates using sup-
port provided by the observed system and its components.
This can take different forms, such as specific interfaces pro-
vided by the updated component (e.g. SSH scripting access)
or remote management and deployment tools.

E. Security

Considering the information processed and the function-
ality provided by the MFW, security issues also need to be
adequately considered. Confidentiality, Integrity and Availa-
bility (CIA) [20] are the most widely recognized basic di-
mensions of information security. To minimize the possible
impacts of the different security threats on the MFW and the
observed system, every means to guard the observed system
from abuse of the MFW infrastructure should be taken.

Considering the communication of the measurement data
itself, the following viewpoints need to be considered:

 Data protection: Data can be communicated through a
non-secure network and should be protected, e.g.
through encryption.

 Registration, authentication and non-repudiation: To
protect from unauthorized access, each of the new de-
ployed probes needs to be registered and authenticated,
and every message between the probes and the aggrega-
tion server needs to be authenticated.

 Services availability: To be useful, the monitoring data
needs to be available at all times, optimally even when
the rest of the system is unavailable, allowing investiga-
tion of system failures. To achieve this goal, the meas-
urement infrastructure and aggregation services should
be able to communicate data at any time or keep a log
file.

The MFW provides continuous monitoring data captured
from the observed system. Much of the information that is
being collected can describe sensitive details about the ob-
served system, and thus protecting the confidentiality and
integrity of this information is as important as the security of
the observed system itself.

As the MFW needs to be closely tied to the observed sys-
tem to enable making the required observations, different
factors having a bearing on its impact on the observed sys-
tem from the security viewpoint must also be considered.
The possibility of introducing new vulnerabilities into the
observed system by using the MFW and launching attacks
against the observed system through the MFW needs to be
minimized. In certain attack scenarios, the attacker might
even gain unauthorized control of the whole target system
through the MFW.

Instrumentation of a given observed system by a contin-
uous in runtime management needs to have adequate security
controls in place based on holistic risk-driven analysis. The
holistic approach should cope with the resilience of the com-
plete resulting system, including the original observed sys-
tem, necessary changes to accommodate the MFW functions
and the new MFW-specific parts. The ultimate goal is to
achieve a resulting system that is more resilient overall than
the original system.

To address these issues, the MFW infrastructure must be
resilient to malware, relevant vulnerabilities, security attacks
and other faults with security effects. For example, Denial-
of-Service (DoS) attacks can affect the availability of the
observed system through misuse of the MFW and its re-
source consumption. In addition to considering external
threats such as DoS from unauthorized external attackers,

85

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

internal threats also need to be considered, such as message
flooding attacks or even more harmful attacks by a malicious
authorized node.

Overall, an attacker should not be able to use the MFW
infrastructure to cause harm to the system under observation
by causing it to take excessive resources, gain control of the
system, install unauthorized software or otherwise change
the system behaviour in an undesired way. The MFW infra-
structure should not provide any means of performing at-
tacks against the observed system. Similarly, the MFW in-
frastructure itself must be protected from attacks and fail-
ures. This includes authentication, integrity and availability
controls for the communication between the different ele-
ments of the MFW infrastructure, proper authorization and
data confidentiality and integrity countermeasures. As it is in
general not possible to predict and prevent every possible
failure or issue in advance, non-repudiation of the data, mes-
sages and actions should be at an adequate level to enable
audit trail and forensics activities.

An important security-related aspect to be considered is
resilience. Even if the observed system is experiencing prob-
lems, the MFW should continue its operation as far as possi-
ble in order to provide information about the current state of
the observed system and to allow for an expert to take cor-
rective actions based on the gathered information. This
means the MFW should, if possible, be even more dependa-
ble and resilient than the rest of the system components. In
some cases, only the latest information may be of interest.
However, in other cases the historical data could also be im-
portant and in these cases the local nodes need to keep a his-
torical data storage when disconnected from the overall
measurement infrastructure.

Overall, the main aspects related to the security view-
point can be summarized as follows:

 Reduce the chance of using the MFW as a tool to mount
attacks against the observed system through, for exam-
ple, probe registration messages as a DoS attack vector
or gaining control of the system.

 Minimize the use of shared resources between the MFW
and the observed system to reduce the possibility of it
being used as an attack vector.

 Provide sufficient security controls for the measurement
infrastructure.

 Use proper authentication and authorization mechanisms
for measurement communications.

 Ensure the confidentiality of all processed data as it de-
scribes sensitive security-related measurements, both in
individual probes and at the overall server level.

 Provide non-repudiation to properly ensure auditability
and forensics.

 Ensure any confidential data inside the MFW such as
credential and key information for probes (e.g. pass-
word).

 Isolate the MFW from the observed system as far as
possible.

IV. A REFERENCE ARCHITECTURE

This section describes a MFW Reference Architecture
(RA) and discusses how it addresses the requirements dis-
cussed in the previous section. Figure 2 shows a high-level
overview of a potential MFW infrastructure with different
components. In this architecture, the server-agent is the com-
ponent that handles the high-level control and processing of
the overall measurement infrastructure. The router-agents are
the components that take care of transmitting the required
data across the network. Probe agents are responsible for
controlling different probes at local nodes.

In a practical measurement infrastructure, different com-
positions of these nodes are to be expected and while the
general types of nodes can be described as probe, router and
server agents, the exact composition of the individual nodes
can also vary. For example, the probe agents need to be
adapted to the exact measurement needs, the router agents to
the exact routing needs and the server agent to the actual
processing needs.

Network1

Network3

Network2
Client

Client

Probe-Agent

Router-Agent

Server-Agent

Data-Flow

P2P

Client

Figure 2. Overall conceptual architecture.

Figure 3 shows a layered view of the same conceptual ar-
chitecture. It is shown as a set of layers, where each of the
layers consists of a set of one or more separate components
deployed over the network. Each component in these layers
only communicates with the components in the layers direct-
ly above and below it. These form a layered architecture as
described by Buschmann et al. [27]. This encapsulates the
functionality of each layer as a separate, reusable and main-
tainable piece. A separate communications channel is used as
a peer-to-peer (P2P) overlay. While this overlay is not strict-
ly speaking a layer between any of the other layers, but ra-
ther stretches over all the other ones, it is shown here sepa-
rately due to its central role in achieving many of the set re-
quirements. These components will be discussed in more
detail next.

86

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Layer 1:

Presentation, Evaluation, Management

Layer 2:

Measurement Control and Processing

Layer 3:

Data Collection

Layer 4:

Base Measures

C
o

m
m

u
n

ic
a

ti
o

n
 O

v
e

rl
a

y

C
o

n
tr

o
l:
 c

o
n

fi
g

u
ra

ti
o

n
,
d

a
ta

 r
e

q
u

e
s
ts

,
..
.

In
fo

rm
a

tio
n

: d
a

ta
, e

v
e

n
ts

, ...

Figure 3. A conceptual layered architecture.

Layer 1 corresponds to the client using the MFW. Typi-
cally the communication with a specific client is based on the
custom interfaces of the client and needs to be implemented
separately. Generally, the functionality of these messages
can be described as including the communication of basic
measurement values, MFW infrastructure events and passing
of measurement requests and configuration messages be-
tween the client and the MFW.

Layer 2 handles data processing and configuration con-
trol over the MFW infrastructure. For the MFW infrastruc-
ture, it handles making notifications of events such as dis-
connected probes to the client, as well as taking any defined
adaptation actions based on observed events. This layer also
handles mobility of nodes and keeping the infrastructure
model for the client in synch (and abstracting away the dy-
namic aspects) with the dynamically evolving infrastructure
in order to provide correctly over time the required measures
to the client.

Layer 3 collects the data from the different probes in the
system. It takes the data provided by the probes and com-
municates this to the MFW control and data processing lay-
er. This layer views the passed data simply as information to
be communicated and thus sets no restrictions on it, e.g.
whether it has been processed before or is “raw” probe data.

Layer 4 includes the actual probes. It is responsible for
handling the base measures for the MFW. The components
in this layer are typically not a part of the MFW itself but
rather separate components such as commercial off-the-shelf
or open-source software components. These are used from
the Layer 3 MFW components to perform the actual required
measurements and to acquire the requirement measurements.

Considering the links between these four layers, the first
layer only communicates with the second layer through a
centralized server providing access to the MFW services and
measurements. The second layer provides this interface to
the first layer and communicates with the distributed nodes
of the measurement infrastructure. It issues measurement
requests, configuration commands and similar messages to
the distributed measurement and router nodes according to
the requests from the first layer. It does not see the actual
probes performing the measures. The fourth layer only
communicates with the third layer by receiving measurement
instructions (requests) and configuration data, and providing
measurement data in response. This layer is unaware of any
other layers and only sees the third layer that serves as the

adaptation layer between the probes and the MFW agents.
The fourth layer is also the only layer that needs to be direct-
ly in touch with the actual observed system in order to pro-
vide the measurements. The other layers can be separated to
address the isolation requirements. This is where the com-
munication overlay comes in.

The communication overlay is both separate from and in-
terlinked with the different layers. As an overlay it can be
separated from the different MFW components by use of
standardized network interfaces. At the same time, by bind-
ing the MFW components to this interface, it forms a sepa-
rate, dedicated communication channel for these compo-
nents. This also allows for handling secure communications
through mechanisms in this overlay. The fourth layer is basi-
cally separate from this overlay as it communicates not only
with the MFW components only but also with probes in the
actual observed system. Thus the use of an overlay here al-
lows for minimizing intrusiveness as well.

These layers, the overlay and some generic components
are discussed in the following subsections. We start with
generic components shared by the different layers, and fol-
low with layer- and overlay-specific components.

A. Component Platform and Automated Updates

Using a component platform as a basis for the MFW pro-
vides several advantages. In our implementation, we have
used the Open Services Gateway initiative (OSGi) [21] com-
ponent framework, but other component frameworks with
similar functionality can also be used. However, in the rest of
this paper we discuss this from the perspective of the OSGi
platform. This type of a component platform as a basis pro-
vides for loosely coupled services that can be composed in
different ways, allowing for easy extension and customiza-
tion of chosen parts of the MFW. In the following subsec-
tions the different layers of the MFW are described as a set
of plugins that can be combined in different ways in the dif-
ferent MFW elements to customize and distribute the func-
tionality of the MFW in different ways.

Additionally, OSGi is used as a basis to provide a uni-
form and automated update mechanism for all components.
The goal is to perform updates without interruption of the
functionality of the updated components. On a general level,
an update can be considered to comprise installing new com-
ponents, removing existing components or updating existing
component implementations. OSGi provides the basic
framework for this in allowing for runtime installation and
removal of components, although it needs to be extended to
make this happen in a distributed fashion.

To support automated updates, each component of the
MFW needs to define an interface for reading its internal
state so that the new version can replicate the state of the
component being replaced. For states that cannot be easily
transferred (e.g. data elements whose processing has been
started), we use a different replacement strategy. A new ver-
sion of the component (service) is installed beside the exist-
ing one in the same OSGi instance and new messages are
routed to the new instance. The old version is removed after
it has finished processing all its queued input. This mecha-
nism allows updates of single components. In cases where

87

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the ordering of the data is not important this approach is ef-
fective; otherwise queues would need to be used to buffer
new messages between the old and new versions [22].

Large-scale updates (e.g. interface changes) are less
common but can have a potentially large impact and require
a more centralized approach. To support this, a central up-
date manager is needed within the MFW. This keeps track of
component versions (which can be queried from the compo-
nents) and tracks dependencies between components. This
enables the management of large-scale updates if there is, for
example, an interface change that requires all components to
be updated. From the operation correctness viewpoint, these
are also more central for the operation of the MFW, as a fail-
ure in the update manager will likely cause the complete
system to enter a failure state. Thus it also requires more
thorough testing and verification. These features of an update
system are common to any system embedding such features
and we do not go into details in depth here but rather refer to
other existing works such as [22]. However, we do note that
while much of the existing work on live updates focuses on
addressing complex cases, we in practice have experienced
that such complex needs in a MFW are rare. The data passed
in usually is not sequentially dependent but rather
timestamped, thereby simplifying these requirements and the
required technical solutions.

In addition to updating elements of the MFW itself, we
also expect most probes to require updates, for example, to
add new features and address found issues. One option for
this would be to use the MFW to perform these updates us-
ing a common update interface shared by MFW probe
agents. Each probe agent would translate the update requests
to a suitable format for the specific probe in question. How-
ever, due to the complexity (in organizational policies and
technical challenges in heterogeneous systems) of allowing
and providing for automated install of arbitrary SW on vari-
ous systems, we rely on existing tools being used for remote
SW deployment to update the (custom and COTS) probes.
Thus we do not provide technical solutions in the architec-
ture of the MFW itself for this, but instead rely on existing
tools intended for this purpose. However, we identify this as
an important aspect of a usable MFW.

However, we rely on updating probe configurations
through the probe agents, each of which is expected to have
the ability to read and set the configuration of the managed
probes. This information is then communicated to the client
in order to allow the provision of features for probe configu-
ration management. This is based on the expectation that
each configuration can be described with a set of basic data
elements (e.g. numerical values and text strings) and each
probe agent is capable of describing the probe configuration
parameters. Client users are also expected to know enough
about their system in order to understand the information
required to configure these probes. In special cases where the
probes are built to be managed by the MFW itself, they can
also be reconfigured by the data processing and control layer.

B. The Communication Overlay and Protocols

In this subsection we discuss the communication aspects
of the MFW. This includes both the overlay that is used to

provide the separate communication channel for the different
MFW components and the protocols used to communicate
between the different MFW components over the overlay.

The P2P Overlay

The need for a separate communication overlay has been
discussed before. Here, we discuss the use of a P2P-based
private, dedicated overlay as a means to solve many of the
requirements for runtime adaptation and intrusiveness. The
overlay we have used in practice is the Armature P2P over-
lay, the foundations for which were laid out in [23].

This overlay provides a separate communication channel
for the measurements that is dedicated for the MFW. As it is
based on Virtual Private Network (VPN) technologies and
features discovery of nodes and overlay-layer routing, it pro-
vides a separate, secure, adaptive and relatively non-intrusive
virtual communication channel. This overlay thus provides
us with a virtual (logical) communication channel that can be
dedicated for the use of the MFW and deployed alongside
the actual nodes of the observed system, which is the type of
solution usually needed for practical systems. We call our
implementation of this overlay Armature. For better separa-
tion, Armature nodes are contained within small virtual ma-
chines running embedded-system language interpreters. This
addresses many of the intrusiveness and security require-
ments of the MFW. Besides separation from the system, it
also simplifies deployment, as the overlay configuration
changes needed for security controls, such as firewalls, in the
observed system are the same across the system.

Due to the peer-to-peer nature of the overlay, it also ad-
dresses many of the runtime adaptation requirements of the
MFW. When deployed, it forms a virtual network among the
deployed peers and automatically calculates optimal routes
to uphold a robust communication mechanism between the
different nodes. When parts of the overlay are separated,
they form their own subsystem. When they are re-joined,
they will automatically connect to each other and reform new
routes as needed. For the reset of the MFW infrastructure
(agents) the use of the overlay is simple, as it is simply visi-
ble as another network interface on the hosts where it is de-
ployed.

Communication Protocols between the Components

In addition to a communication channel, protocols for
passing the data over this channel are needed. An overview
of the communication protocols we use is shown in Figure 4,
building on the ideas from [5]. A custom communication
protocol is needed for each probe as these are assumed to be
COTS or custom-made SW components that are not de-
signed with the MFW in mind. It is thus necessary to have an
adaptation layer for reading their values and controlling their
configurations. This adaptation is handled by the probe
agents, consisting of both generic and probe-specific parts.
The generic part is shared by all the probe agent implementa-
tions and provides a ready implementation of the functionali-
ty needed to communicate with the server and router agents
over the chosen middleware protocols.

88

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For communications between the different MFW agents,
we use a general description of a Message Oriented Middle-
ware (MOM) technology. Using a suitable MOM helps hide
the details of communication from different agent imple-
mentors and provides all the benefits of MOM use, enabling
us to rely on well tested and designed components for this
otherwise complex task. It also provides for several choices
depending on the specific needs of the target system. For
example, one may use open-source protocols such as XML-
RPC [24] or Representational State Transfer (REST) [25]
web services, or commercial MOM implementations, such as
ICE [26], that are heavily optimized for performance and
other factors.

Server

Agent

Router

Agent

Probe

Agent
Probes

MOM MOM
spec

ific

Figure 4. Communication protocol data formats.

C. Layer 4: Base Measurement Layer

The base measurement layer is based upon probes
(COTS or custom-made) that are embedded or deployed in
the observed system infrastructure in order to collect any
kind of data that is considered relevant and can be collected
with a probe. A probe agent connects each probe to the
MFW and controls the probes. One probe agent can be
mapped to one or more probes, and one probe should be
mapped to only one probe agent to avoid synchronization
issues.

In addition to providing the basic data, this layer also
provides events related to the functionality of the probes and
probe agents, including the availability of new probe agents
and the loss of a probe (becoming non-responsive). It is basi-
cally responsible for describing the available measurements
from a probe (its characteristics), controlling it as needed and
providing the raw measurements from the probe on request.
What is supported depends on the types of probes that are
available and the features they support.

In our experience, some different considerations need to
be taken into account when implementing probes at this lev-
el. In some cases, a specific functionality may be needed to
perform a measurement of a specific part of the observed
system: for example, to read a specific configuration parame-
ter that can only be read programmatically. While we have
used a common platform for the development of our MFW
agents due to the benefits this brings, as discussed before, we
cannot assume that such platforms can be installed on all
nodes where measurements need to be performed. Instead we
need to be able to make use of what is available and possible
on the target of measurement. The probe agent is then a
component used as the bridge linking these specific tools and
formats to the rest of the MFW.

One generic example here is the use of SSH-based meas-
urement probes. One may have a probe agent capable of cre-
ating an SSH connection to a remote host and executing
scripts on the target to collect measurement information
(such as reading system logs or configuration files, or exe-

cuting custom probe commands). In this case, the generic
output can be, for example, the output of the script execu-
tion. Thus in this case the probe is the SSH script executed
on the SSH server in the target. The probe agent is a compo-
nent of the MFW capable of performing these measurements
over that SSH.

On the other hand, various constraints need to be consid-
ered. In many cases, such as mobile nodes, the address of the
target of measurement may vary. Similarly, the availability
of the connection to that node may vary. Further, having a
separate server of the target of measurement available to
respond to queries can be a problem due to the need to have
open ports and other similar constraints and intrusiveness
aspects. For this reason, a more commonly suitable approach
to address these constraints is to make the connection from
the target towards the probe agent. In this case, only the
probe agent needs to host a server and provide a suitably
static address for the collection of the data. The probe agents
can then be deployed as needed and will forward the data to
the server agent. The server functionality on the probe agent
can be different, such as a generic SSH server or a generic
Hypertext Transfer Protocol (HTTP) server. However, this
type of architecture allows one to deploy any type of a ser-
vice composition found useful.

D. Layer 3: Data Collection Layer

The data collection layer gathers the data provided by the
base measures layer and communicates these to the control
and data processing layer. It can also incorporate more ad-
vanced features such as processing of the data (e.g. multi-
plexing) for more efficient communication and smaller net-
work bandwidth use similar to the MFWs described in [5, 6].
In addition to raw probe data, this layer also provides events
to the control and data processing layer to describe any ob-
served events in the MFW infrastructure. Looking at Figure
2, all the different agents take some part in the implementa-
tion of this layer although this is mainly focused on the rout-
er-agents.

In practice, a router agent in this case is a node in the
peer-to-peer overlay. These agents handle the relevant parts
of the dynamic adaptation, and security features as described
before. This layer also handles passing data through (sub-)
network boundaries where necessary, through filters such as
firewalls. The router agents are basically the mediators of the
communication between the server and probe agents, which
connect to it by using the overlay interface. For more ad-
vanced support, it is possible to build additional agents as
separate agents on top of the overlay to support features such
as multiplexing of collected data, handling of authentication,
authorization and encryption at the subnet level and dealing
with network filters such as firewalls and Network Address
Translation (NAT) services, similar to [6].

As the overlay sees the data passed through simply as
something to be transferred, different strategies to address
scalability at the level of data processing at different nodes
can be employed without impact on the overall MFW archi-
tecture. For example, more of the processing of the base
measures can be handled locally by the probe agents, result-
ing in less data being passed through the MFW infrastruc-

89

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ture. This data can then be handled by a specific functionali-
ty in the server-agent. These types of approaches will result
in less network traffic and lower likelihood of congestion,
distributing some of the processing to the different MFW
nodes. The choice of this strategy depends on the needs of
the observed system and the MFW.

E. Layer 2: Control and Data Processing Layer

The control and data processing layer provides services
for processing the data from the data collection layer and for
controlling the MFW infrastructure. This is basically equiva-
lent to the server-agent shown in Figure 2. Specific clients
can then be built to access the MFW through the server-
agent. In order to support scalability, extensibility and inter-
connection with different clients of the MFW, we use an
architecture based on the blackboard architectural style [27]
as illustrated in Figure 5.

Blackboard

Database

Measurement

Infrastructure

Persistence

Plugin

Base

Measures &

Events

Data

Plugin1

Data

Plugin2

Event

Plugin1

Registry

Plugin

Client app
Client Plugin

Events

& DataHistory

Plugin

Control

Plugin

Client Plugin

Events

& Data
Client app

Monitor

Plugin

Figure 5. High-level architecture of layer 2.

This type of architecture is actually shared across all the
different nodes (agents) of the MFW and not just the server-
agent. However, it is described here in terms of the server-
agent to provide a concrete example of its application. The
goal is to achieve a highly cohesive and decoupled composi-
tion of components to support their composition in different
ways in different nodes and to address different requirements
such as live updates of different parts and verification of
functional correctness. To achieve this, all data is passed
through the blackboard, whereas messages between the
plugins are passed using the OSGi middleware mechanism.

Regarding the data, all measurements, events and client
commands are processed through a blackboard component,
which provides this data to all registered plugins that have
subscribed to this type of data. These plugins can provide
additional data to the blackboard, which can further be pro-
cessed by other plugins. This allows for clear separation of
different aspects of data processing, event handling, client
and MFW infrastructure communication and other aspects.
Again, the plugins are mapped to OSGi services in our im-
plementation. This also provides the means to do updates of
specific plugins through the OSGi update mechanism. In the
case of message passes where simple data values are not
optimal, the bindings are handled dynamically through the
OSGi service binding mechanisms. This allows us to address
dynamic composition, decoupling and cohesion on different
levels.

The control factor in this layer is related to mapping the
measurements requested for specific properties of the ob-
served system to the probes of the MFW infrastructure. This

includes abstracting all dynamic evolution of the infrastruc-
ture(s) in an infrastructure model provided to the client(s).
The control factor is also related to responding to events that
require taking actions and control over the deployed MFW
infrastructure.

In order to support all the requirements described in Sec-
tion III, different types of functionalities need to be support-
ed. Client-specific data processing functionality can be pro-
vided as customized plugins for the blackboard. For exam-
ple, basic processing functionality can be provided in the
form of a plugin that takes instructions from the MFW client
that define calculations and threshold values of the moni-
tored data. These can be used to calculate more advanced
values from the base measures, and to provide events to the
client when a given threshold value for the calculations is
exceeded. As the communication is handled through the
blackboard, additional processing of the values provided by
one of these plugins can be done with another plugin that
subscribes to the provided values of the previous plugin.

Customized plugin functionality can be, for example,
used to provide specific data to a specific client or to perform
custom control and configuration of the observed system
based on the observations. Although the needs for different
measurement domains may vary, we define a set of basic
plugins offering generic services for different purposes. This
includes a functionality to store all the data processed
through the blackboard to support historical analysis actions,
a control plugin to handle the adaptation of the MFW in re-
sponse to the events observed in its operation (e.g. to config-
ure probe sampling rates) and a registry for handling the ab-
straction of infrastructure changes to the client. Similar to
[3], filters can be attached to any plugin to control the data it
processes and to allow for more fine-grained configuration of
plugins (e.g. what the persistence plugin stores).

F. Measurement Abstraction

Besides addressing the different needs for runtime adap-
tation in terms of adaptive communications, the MFW also
needs to provide a means for the client to make requests for a
specific type of measurement without the need to define ex-
plicitly which specific probe will provide it. This abstraction
is the role of the control and data processing layer in the
MFW (Layer 2). In our case, we have described our solution
in our previous work [1] and here we shortly summarize the
main points.

Each measurement probe can be identified with a Base
Measure Identifier (BM ID) that is composed of a Measure
ID coming from BM taxonomy, and a Device ID that identi-
fies which infrastructure object it is measuring. Note that the
term Device ID may be misleading at times as the target of
measurement here can also be a service and as such hosted
on or a subpart of the functionality hosted on a device.

It should be noted that several taxonomies or other ap-
proaches can be used as a basis for defining the Measure ID.
The actual choice is domain dependent and can even vary
inside the domain based on the specific application choice
and target inside the domain. For example, in the security
assurance domain, we have used as an example the security
countermeasures taxonomy from [28], which classifies dif-

90

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ferent measurement targets such as firewalls and intrusion
detection systems inside the security assurance domain. An-
other example inside this same domain is the use of the cate-
gories from Common Criteria.

Using the two identifiers we have defined, all measure-
ment results can have Unified Resource Identifiers (URI), or
to be exact, Uniform Resource Locators (URL), for example,
of type: MFW://<device_id>/<measure-id.

A client of the MFW can then make requests for the dif-
ferent types of measurements on different types of targets.
The MFW can then provide best-effort measurement results
according to the available probes and their characteristics.
For more advanced support, the different probes can also be
described in terms of different characteristics such as their
ability to provide precise results. Such characteristics can
only be defined by those who deploy the specific probes, as
their interpretations will vary over different probes. Howev-
er, the MFW can use by default this data as ordinal scale
values and let the user define the scales.

Finally, each MFW Uniform Resource Identifier (URI)
can then be used as a hyperlink between different measure-
ments. Using this method, it is possible to make BMs de-
pendent on other BMs where this is found useful.

G. Security

As described in Section III.E, security-enforcing mecha-
nisms of the MFW infrastructure need to include user and
data authentication, authorization, data confidentiality, data
and system integrity, data and system availability, non-
repudiation and resilience solutions. This is again supported
by the composition of the MFW agents from different ser-
vices (components). These can be used to compose the agent
to support features such as encryption and authentication
with specific modules such as described in [9, 10]. This also
allows fulfilling the security demands on different scales of
distribution. In more distributed architectures this requires
decentralization of these features over subnets in the router-
agents, while in a centralized version this support can also be
centralized at the server-agent level. This can also be handled
at the middleware level as provided by the MOM platform
(e.g. through the security features of the P2P overlay).

Each MFW component basically has a single user type,
which is the higher-level agent (probe → probe agent (→
router agent) → server agent → MFW client) that can issue
control over it. Similarly, each one has a single type of a user
that can provide monitoring information, which is the lower-
level agent (opposite order to the previous one). This
knowledge can be used to simplify the required authentica-
tion process as only one type of a user needs to be supported
at each level, and this user type is always known.

Considering the communication between the different el-
ements of the MFW, each probe agent that controls a probe
and provides data to the server-agent needs to register with
proper authentication mechanisms before being able to
communicate measurement results. Similarly, each data
transmission needs to be authenticated to ensure that no false
data is provided by unauthorized attackers.

In order to limit the possibilities of attackers using MFW
components to perform intrusive actions on a system or as an

attack vector, the capabilities of probes and agents should be
limited where possible. For example, user accounts can be
created to access the required information for the probes,
with said users only being authorized to access the required
data. To ease management, a roles strategy can be used to
enable multi-domain or subnets management where the con-
figuration of the accounts can be replicated without local or
specific particularities.

In the following list, we describe some of the technolo-
gies and solutions we have applied in addressing these relat-
ed security requirements.

For achieving integrity of the exchanged data:

 Applying hash methods, which will verify that the re-
ceived data is the same as the sent data.

 Digital signature methods to provide non-repudiation
features.

For ensuring confidentiality of the exchanged data:

 Encrypted communications, communications mecha-
nisms based on public and private key strategies.

 Similarly, applying encryption to all configuration data
stored by any MFW node (probe/agent) such as
usernames and passwords.

Supporting the availability of the exchanged data:

 Providing features that monitor the availability of the
different systems of the infrastructure (agents and cock-
pit) and that will alert when a device has availability
problems. This is related to the self-monitoring features
of the MFW.

 The use of data filtering techniques to, for example, re-
duce the possibility of (DoS) attacks. Specific considera-
tions are needed; for example, when the MFW addresses
are mapped for mobility and dynamic aspects (e.g. add-
ed or removed element).

 Consequently, the communication protocol used be-
tween the probes and aggregation server can propose an
alternative management solution, and if historical data is
considered to be important, probes should implement the
management of local history.

H. Separation of the MFW and the Observed System

As elements of the MFW (probes and probe agents) are
installed to measure properties of the observed system, their
deployment is bound to have some impact on the observed
system. To minimize this intrusiveness, different aspects
need to be considered. The first aspect is related to separat-
ing the communication of the measurement data and the ef-
fects it can have on the observed system. Here we have de-
scribed the use of the P2P overlay to address this aspect.

Another aspect of isolation is related to deploying ele-
ments of the MFW on the same physical host machines as
the one observed in the system. In many cases the functional-
ity of the MFW (the agents) needs to be hosted on the ob-
served infrastructure elements. The separation of these two
can be addressed by using virtualized infrastructure to host
the components of the measurement framework (e.g. Java
Virtual Machine (JVM) for OSGi or a complete separate
VM).

91

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Finally, intrusiveness can be mitigated with self-
monitoring and adaptation. In this case, specific self-
monitoring plugins would be deployed at the different nodes
(agents). These would monitor for specific problems such as
depletion of resources (e.g. CPU, memory, network band-
width) and adjust their operation accordingly. The specific
strategies would require domain-specific tuning according to
the criticality of different factors such as the availability of
the measurement data and the operational intrusiveness of
specific nodes.

I. Patterns and the Reference Architecture

This subsection provides a brief mapping of the MFW
patterns listed in Section II. The requirements of the architec-
ture are discussed in more detail in the following section.
However, these requirements are also referred to in this sec-
tion when relevant for the explanation of the patterns. In the
following we recall the patterns from Section II and briefly
note how they are visible in the proposed architecture.

 Specific adaptation layer for measurement targets
[5]. This is the role of layer 3 (probe agents) together
with layer 4 (probes).

 Repository of available probes for specific meas-
urement targets [2]. As discussed we identify a set of
common mechanisms such as SSH and HTTP
probes. In different domains it is further possible to
provide specific repositories such as XCCDF in the
security assurance domain.

 Simple interface to integrate custom probes into the
overall measurement system [2, 3]. This is provided
by the split of the probe agent to generic (readily
provided) and probe-specific (custom) parts.

 Usage of widely supported protocols [7]. Relying on
available and widely developed MOM solutions ad-
dresses this.

 Allow configuration of operational probes [7]. This
is supported by the interfaces of a probe agent,
which can adapt to the probes as best possible.

 Optimize communications related to expected meas-
urement data communication patterns [5, 7]. In our
case the assumption is that bandwidth requirements
are relatively reasonable, and thus no specific data
channels are used. In other cases, this could be sup-
ported with the addition of another path.

 Usage of separated dedicated communication chan-
nels [7]. This is basically the definition of the P2P
overlay we use.

 Allow customizing different aspects of the MFW
based on module composition [3]. This is supported
by the OSGi platform together with the blackboard-
based architecture.

 Provide a registry that is dynamically updated to re-
flect available measurements and probes [6]. This is
supported by layer 2 (server-agent).

 Use specific components to handle connection and
processing over network sub-domains [5, 6]. This is
transparent to the MFW agents thanks to the P2P
overlay.

 Describe the measurements with a common set of
properties [4, 6]. This is supported by our measure-
ment abstraction layer.

 Optimize the availability and reliability of measure-
ment infrastructure [13]. Again this is supported by
the P2P overlay, which is specifically designed to
support these properties, cleanly modularized from
the MFW perspective.

 Secure the communication data [13]. The Armature
P2P overlay we used handles a large part of the fea-
tures related to security. Additionally, we provided
the guidelines for the security mechanisms we have
applied to address this.

V. DISCUSSION

While the mapping of the MFW design patterns was dis-
cussed before, this section discusses in more detail how the
reference architecture (RA) addresses the different require-
ments described in Section III. This discussion is structured
along the categories of requirements presented in Section III.

The RA supports different scales of distribution by sup-
porting different communication protocols and strategies in
the communication layer. The described P2P approach espe-
cially allows for a distributed approach. In general, new
MFW agent deployment is supported by runtime registration
mechanisms. Further, the common plugin architecture for all
MFW agents, based on the OSGi component platform, al-
lows for distributing functionality to agents as needed. For
example, the use of a common component platform and
plugin architecture allows for the deployment of some of the
server-agent functionality on probe agent nodes if needed for
local processing. This and the ability of server-agents to use
any number of different components for data processing
support scaling to varying amounts of data. Some specific
issues to consider with regards to scalability include the abil-
ity to use advanced features such as discovery and registra-
tion mechanisms as a means to launch attacks on the MFW
itself, and the intrusiveness of monitoring the observed sys-
tem resource use to launch any measures for dynamic adap-
tation, such as rerouting.

In the case of many of the runtime adaptation require-
ments we rely on the work done to address these require-
ments in the middleware community. The P2P overlay dis-
cussed as the communication channel for the RA supports
most of these requirements.

The RA uses several approaches for isolating the MFW
from the observed system. This includes both the discussed
features for the isolation of the network communication and
of the SW components of the MFW. The effectiveness of
this approach depends on the use of available techniques. For
example, using a JVM to host the agents allows some control
over the resources it can use (e.g. memory) but can be lim-
ited in other regards (e.g. CPU, files). This is a trade-off to
consider for different scenarios and may require use of addi-
tional advanced techniques (e.g. sandboxing, such as [29]).

As discussed before, addressing probe effects with de-
ployment of various probes in different systems is difficult in
general. Testing everything fully in a separate environment

92

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

would be ideal, but it can be very expensive and difficult to
simulate all the possible combinations of different probes
and their environments during a system lifetime. This also
applies to the combination of (sub-) systems with other sys-
tems. No generic guidelines can be provided for possible
probe effects other than checking the probes and agents in
operation as far as possible, and considering their properties
such as files accessed and resources needed. This also high-
lights the importance of the isolation aspect.

When using specifically created probes that have been
designed into the system from the beginning, intrusiveness is
not an issue. Unfortunately, this is not always the case even
when designed for, as the future probe requirements are im-
possible to fully predict. However, the RA aims to deploy
only minimal components to the observed system infrastruc-
ture, which helps in minimizing its intrusiveness by focusing
complex processing in the server-agent. It also focuses on
minimizing the intrusiveness in terms of the router-agents by
requiring only the deployment of agents for the P2P overlay
that share similar deployment requirements.

The basic verification of the correctness of the MFW and
its components requires use of testing and verification tech-
niques before deployment. In this part we have to rely on the
availability and use of advanced techniques for SW testing
and verification. However, we do support this with the inter-
faces designed for the agents in the form of state transfer (for
updates) and configuration access (for reconfiguration). The-
se interfaces form a basis for testability features that can be
used to test agent behaviour in various contexts.

Even if we cannot ensure full pre-runtime verification
with architectural solutions, the RA addresses runtime verifi-
cation of different aspects with its self-monitoring features
similar to the intrusiveness aspects. This cannot address all
possible scenarios but allows for building features to check
the correctness of new agents and their functionality in new
contexts. This is also supported by the provided automated
update mechanisms, which allow for addressing found issues
and updating the agents with new features as needed.

The different aspects of security are addressed at the dif-
ferent agents. Specific components are provided to be de-
ployed as services with the MFW agents as needed. These
allow for addressing the different requirements related to
security such as confidentiality and integrity also at different
degrees of distribution. The dependability aspects (including
availability and resilience) of security are addressed by the
isolation of the MFW infrastructure (similar to the intrusive-
ness aspects) from the observed system infrastructure as far
as possible. This also includes the use of all the security- and
scalability-related solutions for handling large amounts of
data and unauthorized usage attempts in case of failures in
the observed system or malicious usage attempts of the
MFW or the observed system.

As for overall security, the MFW is not different from
other distributed systems handling sensitive information. We
have provided some guidelines regarding the securing of
different aspects of the MFW. However, these are generic
and applied only to the specific domain of the MFW. More
generally, most other approaches for system security in gen-
eral also apply here and are thus not discussed in detail.

Overall it can be said that different domains set different
requirements and in this case some of the issues are more
important to address than others. For example, in systems
with high performance and large monitoring data streams, it
can be useful to optimize monitoring with separate channels
as in [6] and optimized data formats as in [2]. The extensibil-
ity and customization options provided by the modular refer-
ence architecture should provide a good basis for this.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presented a core set of requirements for build-
ing a secure, dependable and adaptive distributed monitoring
framework and reference architecture for addressing these
requirements. This is based on both surveying existing ap-
proaches to building monitoring frameworks for different
domains, and on our current work and experiences in build-
ing monitoring frameworks for different domains. The work
provides a basis for building other monitoring frameworks
that need to address these types of requirements. The pre-
sented requirements provide a basis for understanding the
different needs of monitoring and how they are related to the
domains in which the reader is interested. The reference ar-
chitecture shows how these can be addressed given the
common constraints we present, showing both high-level
architectural solutions and practical examples of their im-
plementation. These are topics that are increasingly relevant
in many aspects of modern systems, where different runtime
adaptation aspects, information collection for decision sup-
port, and other aspects need to be supported.

Future work entails describing further experiences of the
different implementations and their practical applications in
different domains. Future works should also include more
systematic consideration of the impacts of monitoring data
and analysis on the initial risk analysis that provides input for
monitoring as well as their iterative refinements. Events at
different levels may also require more attention. Specific
future aspects to consider include the emerging new types of
infrastructures such as the future internet and cloud-based
services where monitoring needs to consider specific chal-
lenges posed by the shared infrastructure between different
stakeholders, including both infrastructure providers and
consumers.

ACKNOWLEDGMENT

The work presented in this paper has been carried out in
the CELTIC BUGYO Beyond research project. The authors
acknowledge the contributions to the topics discussed in this
paper by various project partners.

REFERENCES

[1] T. Kanstrén and R. Savola, "Definition of Core Requirements and a

Reference Architecture for a Dependable, Secure and Adaptive Dis-

tributed Monitoring Framework," in 3rd Int'l. Conference on Depend-
ability (DEPEND 2010), 2010.

[2] M. Pollari and T. Kanstrén, "A Probe Framework for Monitoring Em-

bedded Real-Time Systems," in Proc. 4th Int'l. Conf. on Internet Moni-

toring and Protection (ICIMP 2009), Venice/Mestre, Italy, 2009, pp.
109-115.

[3] F. Fusco, F. Huici, L. Deri, and S. Niccolini, "Enabling High-Speed
and Extensible Real-Time Communications Monitoring," in Int'l.

93

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Symposium on Integrated Network Management, 2009, pp. 343-350.

[4] Q. Wang, J. Shao, F. Deng, Y. Liu, M. Li, J. Han, and H. Mei, "An

Online Monitoring Approach for Web Service Requirements," IEEE

Transactions on Dependable and Secure Computing, vol. 2, no. 4, pp.
338-351, October-December 2009.

[5] E. Bulut, D. Khadraoui, and B. Marquet, "Multi-Agent Based Security
Assurance Monitoring System for Telecommunication Infrastructures,"

in Proc. Communication, Network and Information Security, 2007.

[6] I. Legrand et al., "Monitoring and Control of Large Systems with Mo-

nALISA," Communications of the ACM, vol. 52, no. 9, pp. 49-55,
September 2009.

[7] W. Vandelli et al., "Strategies and Tools for ATLAS Online Monitor-
ing," IEEE Transactions on Nuclear Science, vol. 54, no. 3, pp. 609-

615, June 2007.

[8] T. Kanstrén, "A Study on Design for Testability in Component-Based

Embedded Software," in 6th Int'l. Conf. on Software Engineering
Research, Management and Applications (SERA 2008), Prague, Czech

Republic, 2008, pp. 31-38.

[9] Common Object Request Broker Architecture (CORBA) Specification,

Version 3.1, 2008

[10] Sun Microsystems, “Jini Connection Technology”, 1999.

[11] SIP: Session Initiation Protocol, Internet Engineering Task Force, RFC

3261, 2002.

[12] RTP: A Transport Protocol for Real-Time Applications, Internet Engi-

neering Task Force, RFC 3550, 2003.

[13] R. M. Savola and H. Abie, "Development of Measurable Security for a
Distributed Messaging System," International Journal on Advances in

Security, vol. 2, no. 4, pp. 358-380, 2009.

[14] R. M. Savola and P. Heinonen, "Security-Measurability Enhancing

Mechanisms for a Distributed Adaptive Security Monitoring System,"

in Proc. 4th Int'l. Conf. on Emerging Security Information, Systems
and Technologies (SECURWARE2010), Venice/Mestre, Italy, 2010.

[15] sFlow.org – Making the Network Visible. sFlow.org [Accessed: May

21, 2011].

[16] Cisco Systems NetFlow Services Export Version, Internet Engineering

Task Force RFC 3954, 2004.

[17] N. Ziring, S.D. Quinn: Specification for the Extensible Configuration

Checklist Description Format (XCCDF) Version 1.1.2, U.S. National
Institute of Standards and Technology, NIST Interagency Report 7275

(Draft), 2006.

[18] R. V. Binder, "Design for Testability in Object-Oriented Systems,"

Communications of the ACM, vol. 37, no. 9, pp. 87-101, September

1994.

[19] N. Feng, T. White, and B. Pagurek, "Dynamic evolution of network

management software by software hot-swapping," in Int'l. Symposium
on Integrated Network Management (IM2001), 2001, pp. 63-76.

[20] D. B. Parker, Computer Security Management. Reston, VA, USA:

Reston Publishing Company, 1981.

[21] OSGi Alliance: OSGi – The Dynamic Module System for Java.

www.osgi.org/Main/HomePage [Accessed May 21, 2011]

[22] Q. Wang, J. Shen, X. Wang, and H. Mei, "A component-based ap-

proach to online software evolution," Journal of Software Maintenance
and Evolution: Research and Practice, vol. 18, pp. 181-205, 2006.

[23] A. Hecker and M. Riguidel, "Survivability as a Complementary Opera-

tional Security Model for IT Services (position paper)," in PERADA

Workshop, 2008.

[24] XML-RPC Specification. www.xmlrpc.com [Accessed May 21, 2011].

[25] R.T. Fielding, R.N. Taylor, “Principled Design of the Modern Web

Architecture”, ACM Transactions on Internet Technology, 2(2): 115-
150, 2002.

[26] M. Henning, “A New Approach to Object-Oriented Middleware”,
IEEE Internet Computing, vol. 8, no. 1, 2004.

[27] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerland, and M. Stal,

Pattern-Oriented Software Architecture: A System of Patterns: John

Wiley & Sons, Inc., 1996.

[28] A. Herzog, N. Shahmehri, and C. Duma, "An Ontology of Information

Security," International Journal of Information Security and Privacy,
vol. 1, no. 4, pp. 1-23, October-December 2007.

[29] Y. Bennet et al., "Native Client: A Sandbox for Portable, Untrusted

x86 Native Code," Communications of the ACM, vol. 53, no. 1, pp. 91-

99, 2010.

94

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

