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Abstract — This paper discusses several relevant aspects of 

performing monitoring in the context of software-intensive 

systems. The focus is especially on cases where the observed 

system is distributed, and the monitoring system needs to be 

secure, dependable and capable of adapting to a number of 

dynamic scenarios during the system evolution. Based on the 

analysis of monitoring needs in this type of domain, a set of 

core requirements for providing a monitoring framework for 

these domains is defined. To address these requirements, a 

high-level reference architecture for a monitoring framework 

is presented. These requirements and reference architecture 

provide a basis for designing different monitoring systems. 

Keywords – monitoring, framework, security assurance, 

adaptation, dependability. 

I.  INTRODUCTION 

Collecting data about different aspects relevant to the be-
haviour, configuration and deployment of a software-
intensive system during its lifetime is important for many 
different purposes. Together with the different partners in the 
CELTIC BUGYO Beyond project, we have collected and 
analysed a set of core requirements from the viewpoint of 
building a monitoring framework (MFW) for continuous 
monitoring of security assurance-related information. Addi-
tionally, we have analysed a set of existing MFWs for differ-
ent domains with similar requirements. Based on this set of 
requirements, we present a high-level architecture for a 
MFW and discuss how it addresses the different require-
ments. This paper is an extension of our previous work [1], 
updated with the latest evolution in our research.  

There are many potential application domains of opera-
tional measurement, including supporting software (SW) 
quality assurance activities such as testing and debugging 
that require collecting data about system behaviour for anal-
ysis [2]. Quality assurance can also be associated with moni-
toring different aspects of an operational system, such as the 
quality of service in a telecommunications network [3], 
compliance of dynamic systems with their requirements [4] 
and the security compliance of the system [5]. The monitor-
ing functionality can also be used to provide automated ac-
tions such as restarting failed services and sending failure 
notifications [6]. In the case of some systems, the data col-
lection itself is the main purpose and goal of the system. For 
example, scientific experiments can require collecting large 
amounts of data for research purposes [6,7].  

Although the measurement systems target different do-
mains, they all share the goal of capturing information (mon-
itoring) about different properties that are important to the 

functionality and security of the observed system. From the 
information monitoring perspective, they all thus share the 
same set of core requirements. In addition, each application 
of a MFW can also have its own set of specific requirements 
such as optimization for real-time processing [2] or high-
performance capture of large data sets over large networks 
[6]. In this paper, we focus on the core set of requirements 
and classify these to five different categories: intrusiveness, 
security, dependability, scalability and runtime-adaptation. 
These categories of requirements represent different view-
points of the monitoring functionality. 

First, monitoring typically disturbs the observed system 
to some extent (commonly referred to as a probe effect), af-
fecting its reliability and dependability. Intrusiveness needs 
to be minimized. Second, in many cases the collected infor-
mation provides sensitive information about the observed 
system and its behaviour and thus this information needs to 
be protected from any unauthorized access (security). Third, 
to enable best possible use of the information, the MFW de-
sign should be highly dependable in order to assure that the 
data is available even in case of failures in the observed sys-
tem in order to allow for analysis of the issues based on the 
captured information. Fourth, it is important for the MFW to 
be scalable for use in different types of observed systems, 
where the scale of distribution can vary greatly. As many 
modern systems evolve during their lifetime or exhibit high 
dynamics in their structures, the MFW should also support 
runtime adaptation to account for the measurement needs, 
the evolution of the observed system and the MFW itself. 

We start by defining a core set of requirements that we 
have synthesized for these types of systems and present high-
level reference architecture as a basis for a MFW to address 
these requirements. The main contribution of this paper is the 
identification and analysis of core requirements relevant for 
building a dependable, secure and adaptive distributed moni-
toring framework, and providing a reference architecture that 
addresses these requirements. 

The rest of this paper is structured as follows. In Section 
II, we present a number of existing MFWs for different pur-
poses and domains. In Section III, we synthesize a common 
set of requirements based on the review of requirements in 
the domains these frameworks have been applied to as well 
as the requirements we have collected and analysed together 
with different partners in the BUGYO Beyond project. In 
Section IV, we present a high-level MFW design to address 
the requirements. Finally, conclusions end the paper. 
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II. BACKGROUND AND RELATED WORK 

In this section, we present the background concepts relat-
ed to the discussion in this paper and a number of existing 
MFW designs for specific domains including a discussion on 
their relation to our work presented in this paper. 

A. Background Concepts 

Runtime monitoring is defined here as the act of collect-
ing information about a system during its operation. A MFW 
is a system that performs the collection (and possible pro-
cessing) of this information and provides it to interested cli-
ents who make use of this information. The raw information 
is typically detailed in nature and thus is mainly used by oth-
er SW components to perform further processing of the data, 
such as visualizations for human users or issuing system 
control commands for automated adaptation based on algo-
rithmic analysis. Additionally, a MFW can also provide 
higher-level events describing observations made of the ob-
served system by local processing nodes (e.g. service fail-
ure). These events can also describe information about the 
MFW itself, such as the evolution of the system infrastruc-
ture (e.g. the addition, removal or reconfiguration of a MFW 
element). These basic concepts apply on different scales, 
from embedded SW to networked systems of systems, where 
only the scale of the component and its interconnection 
mechanisms change. 

The basic (measurement) information about a system is 
captured by a probe. A probe is defined here as a SW or 
hardware (HW) component capable of performing a specific 
measurement on the observed system. These can be either 
commercial-off-the-shelf (COTS) or custom-made compo-
nents. These probes are linked to the MFW to provide the 
monitoring data to be processed by the MFW components 
and its client applications. The MFW implements the infra-
structure to capture the data over the different observed sys-
tem elements. In different types of systems, the MFW infra-
structure is thus also different, such as spread over the net-
work in distributed systems or distributed over the compo-
nents of an embedded SW. In this paper, we focus on moni-
toring of distributed systems, although we note that the prin-
ciples can for the most part be applied at different scales 
provided that the system is designed using proper architec-
tural properties (e.g. see [8] for embedded SW). 

Specific types of probes can be identified and used de-
pending on the needs of systems. For example, Wang et al. 
[4] define four types of probes: 

 Instrumented probes with analysis – probes embedded in 
a system which process raw data before outputting it. 

 Instrumented probes without analysis – probes embed-
ded in a system which directly provide captured raw da-
ta. 

 Intercepting probes with analysis – external probes (e.g. 
network analyzer HW) that provide some analysis of the 
raw data as output. 

 Intercepting probes without analysis – external probes 
that provide the raw data as captured. 

Together these probes provide the raw measurement data 
to fulfil the system measurement needs. A mediator compo-
nent is then used to provide information access to clients. 

B. Related Work 

In this section we describe a number of existing meas-
urement frameworks presented in the literature, and discuss 
their relation to our work presented in this paper. 

The current study presents a part of the CELTIC 
BUGYO Beyond project results. This project follows up on 
the CELTIC BUGYO Project. During the BUGYO project, a 
preliminary version of MFW dedicated to security assurance 
was designed and implemented [5]. The main challenge of 
this framework was to provide a solution to the problem of 
data collection related to the security-enforcing mechanisms 
of the observed system. In this previous work, the measure-
ment architecture was not deeply investigated and it was 
expected to be installed in an ad hoc manner. We partly ex-
tend this work but take a new and more systematic approach 
to defining the requirements for a MFW and its practical 
deployment, with a particular focus on addressing the dy-
namic aspects present in real systems. This MFW was de-
scribed to consist of three types of components with the fol-
lowing roles. A component called probe agent controls a 
specific type of a probe, a MUX agent provides multiplexing 
of data over subnet boundaries, and a server agent handles 
centralized processing of the monitoring data and interfacing 
with a client system. The observed data is not sampled at a 
high frequency or in great amounts and thus they do not op-
timize the communication infrastructure but rather focus on 
using XML-based protocol formats. One main weakness of 
this MFW was the fact that it was not adaptive and could 
only run on a fixed architecture. For the rest of this paper, we 
adopt the agent terminology from this previous work and the 
associated agent types (basic MFW components). 

A MFW for capturing large amounts of scientific exper-
imentation data is presented in [7]. It is aimed at capturing 
massive amounts of data from sensor electronics located next 
to the Large Hadron Collider (LHC) detectors with high-
performance, scalability and dynamic monitoring require-
ments controlled by a flexible and configurable GUI. The 
fundamental feature here is the routing of many sorts of data 
(from simple parameters to histograms or event fragments). 
They use Common Object Request Broker Architecture 
(CORBA) [9] as the protocol between the MFW components 
to support standards-based implementation on different plat-
forms. A separate data stream is used to pass the high-
volume data through the MFW system, and a separate chan-
nel is used to pass control requests and events related to the 
MFW. This aims to provide high-performance data capture 
with specialized data streams. 

A similar MFW (called MonALISA) for capturing data 
about scientific experiments is described in [6]. Its first pur-
pose was the analysis and processing of large-scale data-
intensive grid applications. Their targeted challenge is to 
provide a MFW able to manage monitoring aspects related to 
storage, networks and a large number of running applications 
in near real time. The design of MonALISA is inspired by 
the Jini [10] architecture where each agent in the framework 
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is described and registered as dynamic services. The Mo-
nALISA design is divided into three layers, each with a spe-
cific functionality. The first layer provides dynamic registra-
tion and discovery of all MFW components. The second 
layer consists of the monitoring services, where each pro-
vides data and events of a defined type, and the others can 
subscribe to these data types. The third layer is called the 
proxy layer and it handles the communication of the MFW 
components over network filters (e.g. firewalls), providing 
access control to the monitoring data and to the management 
of the MFW components. 

A monitoring framework for Voice-over-IP (VoIP) traf-
fic is presented in [3]. The main goal of this framework is to 
allow high-speed, real-time and efficient (in terms of CPU 
use) analysis of communications traffic. In this framework, 
data, i.e. packets, are collected and processed at the kernel 
level using a plugin-based server architecture with Session 
Initiation Protocol (SIP) [11] and Real-Time Transport Pro-
tocol (RTP) [12]. A set of filters is defined for the different 
plugins to define which data has to be processed by each 
plugin. The plugins can then in turn be configured to process 
the filtered data according to their functionality. A library of 
functions is provided to implement common data processing 
functions and an easy configuration and update mechanism 
is provided for the plugins. 

A MFW for web service requirements is presented in [4]. 
The data to be monitored is inferred from the web-service 
specification (WSDL) of the observed system. A set of con-
straints over the observed data and events is used to describe 
the allowed values and event sequences. This includes fre-
quency, interval and ordering of events. Some of their probes 
provide basic values while others process values before pass-
ing them forward. Probes are generated based on the WSDL. 

A MFW focusing on embedded real-time systems is in-
troduced in [2]. It focuses on high-performance requirements 
in a single (non-distributed) embedded system. It defines a 
custom binary protocol and a set of optimized services for 
capturing high-frequency data from a running system, focus-
ing on minimizing its use of the observed system resources 
(e.g. memory and CPU load). It provides a set of services to 
enable the implementation of features to monitor different 
aspects of the system (e.g. task scheduling). 

The GEMOM (Genetic Message Oriented Secure Mid-
dleware) EU FP7 Project has developed an adaptive security, 
resilience and Quality-of-Service (QoS) MFW [13,14] for 
distributed information systems. The data communication is 
arranged by a publish/subscribe mechanism, and separate 
modules handle authentication and authorization functionali-
ty. Specific QoS, resilience and security properties can be set 
for the different data processed by the GEMOM system, 
allowing for customization of authorization and authentica-
tion for different elements.  

From the design factors of the abovementioned meas-
urement frameworks, we apply the following MFW design 
patterns for the purposes of the framework discussed in this 
study: 

 Specific adaptation layer for measurement targets 
[5]. 

 Repository of available probes for specific meas-
urement targets [2]. 

 Simple interface to integrate custom probes into the 
overall measurement system [2, 3]. 

 Usage of widely supported protocols [7]. 

 Configurability of operational probes [7]. 

 Optimized communications related to expected 
measurement data communication patterns [5,7]. 

 Usage of separated dedicated communication chan-
nels [7]. 

 Customization of different aspects of the MFW 
based on module composition [3]. 

 Provide a registry that is dynamically updated to re-
flect available measurements and probes [6]. 

 Use specific components to handle connection and 
processing over network subdomains [5,6]. 

 Describe the measurements with a common set of 
properties [4,6]. 

 Optimize the availability and reliability of measure-
ment infrastructure [13]. 

 Secure the communication data [13]. 
In the following sections, we describe why these design 

patterns are relevant for a measurement framework. We also 
present a reference architecture that takes these and other 
MFW requirements into account. 

III. REQUIREMENTS 

This section describes a core set of issues we have identi-
fied for the type of monitoring addressed in this paper. Based 
on the analysis of these issues, a set of requirements for the 
design of a MFW is presented. These issues have been divid-
ed into five different categories: scalability, runtime adapta-
tion, correctness, intrusiveness and security. An overview of 
these categories and their properties is shown in Figure 1. 
These categories are described in the following subsections. 

 

 
Figure 1. Requirements overview. 

A. Scalability 

From the basic scalability perspective, the MFW infra-
structure needs to be able to handle varying amounts of ob-
served events and data captured from systems with different 
degrees of distribution. In this case, scalability issues include 
supporting varying amounts of probes and resource limita-
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tions in processing large amounts of data (e.g. CPU and 
memory use, network bandwidth). For the MFW infrastruc-
ture this can require use of alternate communication paths in 
order to avoid causing network congestion. This can require 
use of specific MFW components to be deployed at different 
locations, such as localized processing and multiplexing 
nodes, routing nodes and probe control nodes. 

The scale of distribution of a MFW depends on the na-
ture of the target of measurement. In some cases, it may be 
possible to perform all measurements from a single central-
ized location when the measurement nodes already have the 
ability to provide the required measurement access and func-
tionality remotely, such as over remote Secure Shell (SSH) 
connections. In more highly distributed systems, a more dis-
tributed MFW architecture is needed. In this case, measure-
ments need to be performed for a large number of nodes 
(possibly divided into subnets), not all of which are reacha-
ble from a single centralized (monitoring) location. This re-
quires specific router elements to be deployed to handle con-
nections over the different nodes and subnets as divided by 
filters (e.g. firewalls). 

With regards to the distribution aspect, the addressing 
scheme used for specifying which measurements can be sup-
ported also needs to be considered. Depending on the type of 
measurement being performed, one may wish to address 
more than one target in a measurement request. For example, 
in the security assurance domain, one may request infor-
mation on the encryption strength of all routers deployed and 
visible to the MFW. The task of the MFW is then to auto-
matically scale these requests without overloading the net-
work. 

As the observed system evolves, the need for such spe-
cialized MFW elements may increase, meaning that the addi-
tion of these elements needs to be supported in an evolving 
manner through runtime adaptation. 

B. Runtime Adaptation 

Modern distributed systems are rarely static in their for-
mation. Even if the system itself supports scaling to different 
sizes of network infrastructure, it is not enough to simply 
support deploying these different types of architectures. The 
system must be able to evolve to support changes in scale 
while in operation. In today’s distributed systems, nodes 
come and go, and the same nodes can move to different loca-
tions in the network. In addition to physical changes in the 
infrastructure, system reconfigurations can also change the 
available communication channels. To address these scenari-
os, the MFW must be able to keep the mapping of its ele-
ments up to date and in synch with the changes in the ob-
served system (i.e. which element does a probe measure and 
which measures it provides), and adapt to changes in the 
available communication channels between the MFW infra-
structure nodes. In order for client applications to build func-
tionality on top of the monitoring data, the MFW must also 
abstract the changes so that a client can request a specific 
measure and does not need to worry about the dynamic as-
pects of evolution such as node mobility.  

For routing of data through the MFW infrastructure, var-
ious issues need to be considered. If the used communication 

paths become unavailable, communication channels need to 
be rerouted. Yet, in many situations and to fulfil the non-
intrusiveness objective, the routing in the observed system 
should not be changed to accommodate the needs of the 
MFW. For this reason, the MFW must provide adaptation 
capabilities to address these needs in an optimally adaptive 
and non-intrusive way. 

When a measure has become unavailable but later be-
comes available again, the MFW needs to reconnect to the 
corresponding probe and to notify any client applications 
making use of this information that it has again become 
available. Similar notifications must be given for all changes 
in MFW evolution. 

As new MFW infrastructure elements are installed, the 
MFW needs to link them to enable applications to use the 
data they provide, or for the MFW to use them for the con-
trol of the measurement (e.g. data routing). A basic means is 
manual configuration of all added nodes, but runtime recon-
figuration by the MFW also needs to be configured. The 
optimal case is that the discovery and integration of new 
deployed MFW elements are automated. 

Changes (evolution) in the observed system’s infrastruc-
ture also affect the monitoring needs. As a basic feature, a 
MFW must enable the user to deploy changes to the active 
measurement requests. Additionally, depending on the types 
of probes deployed, different types of actions are necessary. 
Embedded probes are assumed to come with the deployed 
components of the observed system, and require the deploy-
ment of a matching MFW component to integrate them with 
the MFW infrastructure. External probes, on the other hand, 
can be used to monitor more than one target, and thus, in this 
case, the MFW needs to reconfigure the (existing) external 
probe to also monitor the new element that was introduced. 
For all new probes, there must exist a suitable deployed 
MFW element to integrate them with the MFW infrastruc-
ture. 

C. Intrusiveness 

Monitoring always has some effect on the target of ob-
servation – this is often referred to as the probe effect. In the 
case of the MFW, this translates to the effects that the instal-
lation of the MFW components and their use have on the 
observed system. Installation of the components themselves 
alone has an effect on the use of some system resources if the 
components are installed within the observed system itself 
and/or share some resources with it. In the case of external 
probes, installation should have only a minor effect on the 
target of observation unless the installation itself somehow 
changes the behaviour of the system, such as the routing of 
messages. 

Probes that share resources with the target of observation 
have an impact on its available resources such as CPU load 
and memory consumption. These probes are typically em-
bedded probes, running as part of the observed system or on 
the same HW. The operation of external probes can also af-
fect the observed system in a similar way. For example, rout-
ing data through an external probe can add network latency 
to the observed system. For another example, activating fea-
tures and tools, such as SFlow [15] and Netflow protocol-
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based tools [16], on router ports can be a drain on router 
CPU cycles. Some of these effects can be minimal yet still 
cause unwanted effects to, for example, the timing of the 
system, changing it from the original design specifications. 
When a probe is more active, for example, sending packets 
to different network elements, it can invoke untested or unin-
tended behaviour in a system, causing side-effects such as a 
complete crash or incorrect results. 

In the scope of the BUGYO Beyond project, we have 
identified the following possible probe effects: 

 Consumption of hosting device resources (CPU, 
memory, disk). 

 Consumption of network bandwidth. 

 Deployment of conflicting SW components, such as 
shared libraries. 

 A probe accessing restricted resources in the system, 
causing the system to enter a different state. For exam-
ple, triggering an alarm and a countermeasure. 

 A probe accessing system resources (e.g. a file) and 
causing a lock, while another part of the system is trying 
to use the same resource. 

 Change of privileges required for an agent (or probe) to 
be able to perform its tasks. 

 Opened gates (e.g. ports) to access information in the 
observed system. 

 Changes performed by the probe on the measured sys-
tem, e.g. by some eXtensible Configuration Checklist 
Description Format (XCCDF) [17] configurations or 
benchmarks. 

 Active probing of a certain interface of a target of meas-
urement can trigger some unintended features or even 
crash the whole system, if it has some unintended fea-
tures linked to this interface. 

This set is largely related to our target domain of security 
assurance, where numerous measurements are done through 
the file system and with shell scripting. Although most of 
these are very generic and we see them as being applicable 
across many domains, some different probe effects may ap-
ply in different domains. 

The predictability of probe effects is important in as-
sessing which probes to take into use and how. However, 
combining any arbitrary probes and systems produces unpre-
dictable effects. Even with tested systems and probes, the 
exact available resources and system configurations can vary 
and thus it is not possible to provide exact guidelines for any 
possible probe effects for probe-system combinations. 
Providing a large-scale analysis of possible probe effects is 
out of the scope of this paper but it should still be stressed 
that it is important to take into account the possible probe 
effects and where possible test for them. Depending on the 
potential impact, in some cases it may be unfeasible to de-
ploy probes on operational systems with which they have not 
been tested previously. Knowing the possible probe effects 
in this case helps in studying them for a specific system and 
probes. Overall, it can be said that an active probe is more 
likely to have a higher probe effect than a passive probe. 

However, even if the intrusiveness of probes cannot be 
fully predicted, the MFW should be able to monitor its im-

pact on the observed system and take any measures it can to 
address these impacts (e.g. re-route communication or start 
load-sharing components). This requires providing self-
monitoring and adaptation features based on specific probes 
and analysis of the monitoring system properties (e.g. data-
stream latency). It also requires providing self-adaptation 
features such as tuning the probe measurement frequency 
where observed to be needed. 

Even if the implementation and use of probes cannot be 
constrained, the MFW infrastructure itself, however, can and 
needs to be designed to be minimally intrusive (i.e. to mini-
mize its probe effect). To achieve this, the different con-
straints described above need to be considered, as does how 
they can be minimized in the design and implementation of 
the different components of the MFW infrastructure. One 
main goal in avoiding intrusiveness for a system should be 
the isolation of the MFW from the observed system as much 
as possible (system independence). Any problems in the 
MFW (e.g. SW crash) should not affect the observed system, 
and ideally switching the MFW on or off should have no 
effect on the observed system. Similarly, the network traffic 
and any other shared resources of the two entities should be 
separated as much as possible. Where full separation is not 
possible, the goal should be to aim for as much separation as 
possible. Virtual separation should be applied where physical 
separation is not applicable. When separation is applied, it 
needs to be applied in both functional and non-functional 
domains, e.g. for control. 

D. Correctness 

During the service lifecycle various problems may arise. 
The correctness viewpoint needs to consider the correctness 
of both the MFW components and their behaviour. It must 
also consider their effects on the observed system and how 
this may affect its correct behaviour. In this regard, the cor-
rectness aspect of the MFW is closely related to the intru-
siveness viewpoint. Addressing this includes both providing 
for verification of the behaviour of the whole MFW and all 
its components before deployment, and monitoring and ad-
dressing any problems found in its operational use. General-
ly, the following three main approaches can be identified 
from the correctness viewpoint: 

 Simplicity in the design in order to minimize the possi-
bility of new problems 

 Update mechanisms for the MFW infrastructure 

 Testing and verification mechanisms to assure the cor-
rectness of the implementations 

 
In practice aiming for simplicity would mean encapsulat-

ing more complicated processing of the measurements, con-
trol structures and similar properties at a higher level in a 
separate measurement processing and control layer. Howev-
er, the choice of how much functionality is incorporated in 
the MFW infrastructure components (probes and agents) is a 
choice of tradeoffs in the extent to which it is in the interests 
of the user for processing to be performed locally (to save on 
resources such as network bandwidth) or on a dedicated 
server-agent component that can be hosted on dedicated HW. 
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Testing and verification are needed to assure the correct-
ness of the implementations in different contexts and config-
urations (in development and while in operation). Since the 
infrastructures that are the target of observation can vary 
greatly and be highly dynamic, the correct functionality of 
the MFW also needs to be evaluated in different contexts. It 
is important to verify both the correct functionality of the 
individual components and their interactions. To support 
this, the MFW design needs to provide suitable interfaces to 
ensure required testability features (e.g. as described in [18, 
8]). 

Even with the best verification and testing techniques, 
unanticipated situations will arise and failures in the opera-
tion of the MFW will be found during its operation in vari-
ous complex contexts and interactions with different compo-
nents and systems. To address any errors found during op-
erational use, update mechanisms are needed for the different 
components of the MFW infrastructure. 

A set of specific issues needs to be considered for updat-
ing components in an operational system. Three main issues 
for this are referential transparency, state transfer, and mutu-
al references [19]. Referential transparency refers to updated 
components not having enough information to notify all re-
lated components that are connected to the component in 
question whether they need to be notified about the update. 
State transfer refers to the requirement of transferring the 
state of the component from the previous version to the new 
updated version. For example, a probe agent may have a 
state describing its current activity and the state of the con-
nected probe, and all this information needs to be transferred 
to the new version of the updated component. Mutual refer-
ences refer to the problem of requiring simultaneous updates 
on several components due to their mutual dependencies, e.g. 
during an interface update. 

Related to these issues, the updating of the MFW com-
ponents translates to different requirements for the different 
components of the MFW infrastructure. This includes both 
rerouting of communication channels and reconfiguration of 
any specific functionality, such as the frequency of sampling 
with a probe. In addition to fixing errors and vulnerabilities, 
implementation updates are needed in order to enable new 
features for the different components that are developed to 
address new requirements for the MFW infrastructure. As 
many modern systems have high availability requirements, it 
cannot be assumed that they can be taken down for these 
updates, and similarly the MFW should keep providing its 
functionality with minimal interruption. 

As the MFW generally collects data from external tools 
or built-in functions in the observed system, it cannot pro-
vide generic support for updating these components external 
to the MFW. In this regard, the MFW must rely on the us-
er(s) having the possibility to deploy the updates using sup-
port provided by the observed system and its components. 
This can take different forms, such as specific interfaces pro-
vided by the updated component (e.g. SSH scripting access) 
or remote management and deployment tools. 

E. Security 

Considering the information processed and the function-
ality provided by the MFW, security issues also need to be 
adequately considered. Confidentiality, Integrity and Availa-
bility (CIA) [20] are the most widely recognized basic di-
mensions of information security. To minimize the possible 
impacts of the different security threats on the MFW and the 
observed system, every means to guard the observed system 
from abuse of the MFW infrastructure should be taken. 

Considering the communication of the measurement data 
itself, the following viewpoints need to be considered: 

 Data protection: Data can be communicated through a 
non-secure network and should be protected, e.g. 
through encryption. 

 Registration, authentication and non-repudiation: To 
protect from unauthorized access, each of the new de-
ployed probes needs to be registered and authenticated, 
and every message between the probes and the aggrega-
tion server needs to be authenticated. 

 Services availability: To be useful, the monitoring data 
needs to be available at all times, optimally even when 
the rest of the system is unavailable, allowing investiga-
tion of system failures. To achieve this goal, the meas-
urement infrastructure and aggregation services should 
be able to communicate data at any time or keep a log 
file. 

The MFW provides continuous monitoring data captured 
from the observed system. Much of the information that is 
being collected can describe sensitive details about the ob-
served system, and thus protecting the confidentiality and 
integrity of this information is as important as the security of 
the observed system itself.  

As the MFW needs to be closely tied to the observed sys-
tem to enable making the required observations, different 
factors having a bearing on its impact on the observed sys-
tem from the security viewpoint must also be considered. 
The possibility of introducing new vulnerabilities into the 
observed system by using the MFW and launching attacks 
against the observed system through the MFW needs to be 
minimized. In certain attack scenarios, the attacker might 
even gain unauthorized control of the whole target system 
through the MFW.  

Instrumentation of a given observed system by a contin-
uous in runtime management needs to have adequate security 
controls in place based on holistic risk-driven analysis. The 
holistic approach should cope with the resilience of the com-
plete resulting system, including the original observed sys-
tem, necessary changes to accommodate the MFW functions 
and the new MFW-specific parts. The ultimate goal is to 
achieve a resulting system that is more resilient overall than 
the original system.  

To address these issues, the MFW infrastructure must be 
resilient to malware, relevant vulnerabilities, security attacks 
and other faults with security effects. For example, Denial-
of-Service (DoS) attacks can affect the availability of the 
observed system through misuse of the MFW and its re-
source consumption. In addition to considering external 
threats such as DoS from unauthorized external attackers, 
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internal threats also need to be considered, such as message 
flooding attacks or even more harmful attacks by a malicious 
authorized node.  

Overall, an attacker should not be able to use the MFW 
infrastructure to cause harm to the system under observation 
by causing it to take excessive resources, gain control of the 
system, install unauthorized software or otherwise change 
the system behaviour in an undesired way. The MFW infra-
structure should not provide any means of performing at-
tacks against the observed system. Similarly, the MFW in-
frastructure itself must be protected from attacks and fail-
ures. This includes authentication, integrity and availability 
controls for the communication between the different ele-
ments of the MFW infrastructure, proper authorization and 
data confidentiality and integrity countermeasures. As it is in 
general not possible to predict and prevent every possible 
failure or issue in advance, non-repudiation of the data, mes-
sages and actions should be at an adequate level to enable 
audit trail and forensics activities. 

An important security-related aspect to be considered is 
resilience. Even if the observed system is experiencing prob-
lems, the MFW should continue its operation as far as possi-
ble in order to provide information about the current state of 
the observed system and to allow for an expert to take cor-
rective actions based on the gathered information. This 
means the MFW should, if possible, be even more dependa-
ble and resilient than the rest of the system components. In 
some cases, only the latest information may be of interest. 
However, in other cases the historical data could also be im-
portant and in these cases the local nodes need to keep a his-
torical data storage when disconnected from the overall 
measurement infrastructure. 

Overall, the main aspects related to the security view-
point can be summarized as follows: 

 Reduce the chance of using the MFW as a tool to mount 
attacks against the observed system through, for exam-
ple, probe registration messages as a DoS attack vector 
or gaining control of the system. 

 Minimize the use of shared resources between the MFW 
and the observed system to reduce the possibility of it 
being used as an attack vector. 

 Provide sufficient security controls for the measurement 
infrastructure. 

 Use proper authentication and authorization mechanisms 
for measurement communications.  

 Ensure the confidentiality of all processed data as it de-
scribes sensitive security-related measurements, both in 
individual probes and at the overall server level. 

 Provide non-repudiation to properly ensure auditability 
and forensics. 

 Ensure any confidential data inside the MFW such as 
credential and key information for probes (e.g. pass-
word). 

 Isolate the MFW from the observed system as far as 
possible. 

IV. A REFERENCE ARCHITECTURE 

This section describes a MFW Reference Architecture 
(RA) and discusses how it addresses the requirements dis-
cussed in the previous section. Figure 2 shows a high-level 
overview of a potential MFW infrastructure with different 
components. In this architecture, the server-agent is the com-
ponent that handles the high-level control and processing of 
the overall measurement infrastructure. The router-agents are 
the components that take care of transmitting the required 
data across the network. Probe agents are responsible for 
controlling different probes at local nodes. 

In a practical measurement infrastructure, different com-
positions of these nodes are to be expected and while the 
general types of nodes can be described as probe, router and 
server agents, the exact composition of the individual nodes 
can also vary. For example, the probe agents need to be 
adapted to the exact measurement needs, the router agents to 
the exact routing needs and the server agent to the actual 
processing needs. 

Network1

Network3

Network2
Client

Client

Probe-Agent

Router-Agent

Server-Agent

Data-Flow

P2P

Client

 

Figure 2. Overall conceptual architecture. 

Figure 3 shows a layered view of the same conceptual ar-
chitecture. It is shown as a set of layers, where each of the 
layers consists of a set of one or more separate components 
deployed over the network. Each component in these layers 
only communicates with the components in the layers direct-
ly above and below it. These form a layered architecture as 
described by Buschmann et al. [27]. This encapsulates the 
functionality of each layer as a separate, reusable and main-
tainable piece. A separate communications channel is used as 
a peer-to-peer (P2P) overlay. While this overlay is not strict-
ly speaking a layer between any of the other layers, but ra-
ther stretches over all the other ones, it is shown here sepa-
rately due to its central role in achieving many of the set re-
quirements. These components will be discussed in more 
detail next. 
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Figure 3. A conceptual layered architecture. 

Layer 1 corresponds to the client using the MFW. Typi-
cally the communication with a specific client is based on the 
custom interfaces of the client and needs to be implemented 
separately. Generally, the functionality of these messages 
can be described as including the communication of basic 
measurement values, MFW infrastructure events and passing 
of measurement requests and configuration messages be-
tween the client and the MFW. 

Layer 2 handles data processing and configuration con-
trol over the MFW infrastructure. For the MFW infrastruc-
ture, it handles making notifications of events such as dis-
connected probes to the client, as well as taking any defined 
adaptation actions based on observed events. This layer also 
handles mobility of nodes and keeping the infrastructure 
model for the client in synch (and abstracting away the dy-
namic aspects) with the dynamically evolving infrastructure 
in order to provide correctly over time the required measures 
to the client. 

Layer 3 collects the data from the different probes in the 
system. It takes the data provided by the probes and com-
municates this to the MFW control and data processing lay-
er. This layer views the passed data simply as information to 
be communicated and thus sets no restrictions on it, e.g. 
whether it has been processed before or is “raw” probe data. 

Layer 4 includes the actual probes. It is responsible for 
handling the base measures for the MFW. The components 
in this layer are typically not a part of the MFW itself but 
rather separate components such as commercial off-the-shelf 
or open-source software components. These are used from 
the Layer 3 MFW components to perform the actual required 
measurements and to acquire the requirement measurements. 

Considering the links between these four layers, the first 
layer only communicates with the second layer through a 
centralized server providing access to the MFW services and 
measurements. The second layer provides this interface to 
the first layer and communicates with the distributed nodes 
of the measurement infrastructure. It issues measurement 
requests, configuration commands and similar messages to 
the distributed measurement and router nodes according to 
the requests from the first layer. It does not see the actual 
probes performing the measures. The fourth layer only 
communicates with the third layer by receiving measurement 
instructions (requests) and configuration data, and providing 
measurement data in response. This layer is unaware of any 
other layers and only sees the third layer that serves as the 

adaptation layer between the probes and the MFW agents. 
The fourth layer is also the only layer that needs to be direct-
ly in touch with the actual observed system in order to pro-
vide the measurements. The other layers can be separated to 
address the isolation requirements. This is where the com-
munication overlay comes in. 

The communication overlay is both separate from and in-
terlinked with the different layers. As an overlay it can be 
separated from the different MFW components by use of 
standardized network interfaces. At the same time, by bind-
ing the MFW components to this interface, it forms a sepa-
rate, dedicated communication channel for these compo-
nents. This also allows for handling secure communications 
through mechanisms in this overlay. The fourth layer is basi-
cally separate from this overlay as it communicates not only 
with the MFW components only but also with probes in the 
actual observed system. Thus the use of an overlay here al-
lows for minimizing intrusiveness as well. 

These layers, the overlay and some generic components 
are discussed in the following subsections. We start with 
generic components shared by the different layers, and fol-
low with layer- and overlay-specific components. 

A. Component Platform and Automated Updates 

Using a component platform as a basis for the MFW pro-
vides several advantages. In our implementation, we have 
used the Open Services Gateway initiative (OSGi) [21] com-
ponent framework, but other component frameworks with 
similar functionality can also be used. However, in the rest of 
this paper we discuss this from the perspective of the OSGi 
platform. This type of a component platform as a basis pro-
vides for loosely coupled services that can be composed in 
different ways, allowing for easy extension and customiza-
tion of chosen parts of the MFW. In the following subsec-
tions the different layers of the MFW are described as a set 
of plugins that can be combined in different ways in the dif-
ferent MFW elements to customize and distribute the func-
tionality of the MFW in different ways.  

Additionally, OSGi is used as a basis to provide a uni-
form and automated update mechanism for all components. 
The goal is to perform updates without interruption of the 
functionality of the updated components. On a general level, 
an update can be considered to comprise installing new com-
ponents, removing existing components or updating existing 
component implementations. OSGi provides the basic 
framework for this in allowing for runtime installation and 
removal of components, although it needs to be extended to 
make this happen in a distributed fashion.  

To support automated updates, each component of the 
MFW needs to define an interface for reading its internal 
state so that the new version can replicate the state of the 
component being replaced. For states that cannot be easily 
transferred (e.g. data elements whose processing has been 
started), we use a different replacement strategy. A new ver-
sion of the component (service) is installed beside the exist-
ing one in the same OSGi instance and new messages are 
routed to the new instance. The old version is removed after 
it has finished processing all its queued input. This mecha-
nism allows updates of single components. In cases where 
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the ordering of the data is not important this approach is ef-
fective; otherwise queues would need to be used to buffer 
new messages between the old and new versions [22]. 

Large-scale updates (e.g. interface changes) are less 
common but can have a potentially large impact and require 
a more centralized approach. To support this, a central up-
date manager is needed within the MFW. This keeps track of 
component versions (which can be queried from the compo-
nents) and tracks dependencies between components. This 
enables the management of large-scale updates if there is, for 
example, an interface change that requires all components to 
be updated. From the operation correctness viewpoint, these 
are also more central for the operation of the MFW, as a fail-
ure in the update manager will likely cause the complete 
system to enter a failure state. Thus it also requires more 
thorough testing and verification. These features of an update 
system are common to any system embedding such features 
and we do not go into details in depth here but rather refer to 
other existing works such as [22]. However, we do note that 
while much of the existing work on live updates focuses on 
addressing complex cases, we in practice have experienced 
that such complex needs in a MFW are rare. The data passed 
in usually is not sequentially dependent but rather 
timestamped, thereby simplifying these requirements and the 
required technical solutions. 

In addition to updating elements of the MFW itself, we 
also expect most probes to require updates, for example, to 
add new features and address found issues. One option for 
this would be to use the MFW to perform these updates us-
ing a common update interface shared by MFW probe 
agents. Each probe agent would translate the update requests 
to a suitable format for the specific probe in question. How-
ever, due to the complexity (in organizational policies and 
technical challenges in heterogeneous systems) of allowing 
and providing for automated install of arbitrary SW on vari-
ous systems, we rely on existing tools being used for remote 
SW deployment to update the (custom and COTS) probes. 
Thus we do not provide technical solutions in the architec-
ture of the MFW itself for this, but instead rely on existing 
tools intended for this purpose. However, we identify this as 
an important aspect of a usable MFW. 

However, we rely on updating probe configurations 
through the probe agents, each of which is expected to have 
the ability to read and set the configuration of the managed 
probes. This information is then communicated to the client 
in order to allow the provision of features for probe configu-
ration management. This is based on the expectation that 
each configuration can be described with a set of basic data 
elements (e.g. numerical values and text strings) and each 
probe agent is capable of describing the probe configuration 
parameters. Client users are also expected to know enough 
about their system in order to understand the information 
required to configure these probes. In special cases where the 
probes are built to be managed by the MFW itself, they can 
also be reconfigured by the data processing and control layer. 

B. The Communication Overlay and Protocols 

In this subsection we discuss the communication aspects 
of the MFW. This includes both the overlay that is used to 

provide the separate communication channel for the different 
MFW components and the protocols used to communicate 
between the different MFW components over the overlay. 

 
The P2P Overlay 
 

The need for a separate communication overlay has been 
discussed before. Here, we discuss the use of a P2P-based 
private, dedicated overlay as a means to solve many of the 
requirements for runtime adaptation and intrusiveness. The 
overlay we have used in practice is the Armature P2P over-
lay, the foundations for which were laid out in [23]. 

This overlay provides a separate communication channel 
for the measurements that is dedicated for the MFW. As it is 
based on Virtual Private Network (VPN) technologies and 
features discovery of nodes and overlay-layer routing, it pro-
vides a separate, secure, adaptive and relatively non-intrusive 
virtual communication channel. This overlay thus provides 
us with a virtual (logical) communication channel that can be 
dedicated for the use of the MFW and deployed alongside 
the actual nodes of the observed system, which is the type of 
solution usually needed for practical systems. We call our 
implementation of this overlay Armature. For better separa-
tion, Armature nodes are contained within small virtual ma-
chines running embedded-system language interpreters. This 
addresses many of the intrusiveness and security require-
ments of the MFW. Besides separation from the system, it 
also simplifies deployment, as the overlay configuration 
changes needed for security controls, such as firewalls, in the 
observed system are the same across the system. 

Due to the peer-to-peer nature of the overlay, it also ad-
dresses many of the runtime adaptation requirements of the 
MFW. When deployed, it forms a virtual network among the 
deployed peers and automatically calculates optimal routes 
to uphold a robust communication mechanism between the 
different nodes. When parts of the overlay are separated, 
they form their own subsystem. When they are re-joined, 
they will automatically connect to each other and reform new 
routes as needed. For the reset of the MFW infrastructure 
(agents) the use of the overlay is simple, as it is simply visi-
ble as another network interface on the hosts where it is de-
ployed. 
 
Communication Protocols between the Components 
 

In addition to a communication channel, protocols for 
passing the data over this channel are needed. An overview 
of the communication protocols we use is shown in Figure 4, 
building on the ideas from [5]. A custom communication 
protocol is needed for each probe as these are assumed to be 
COTS or custom-made SW components that are not de-
signed with the MFW in mind. It is thus necessary to have an 
adaptation layer for reading their values and controlling their 
configurations. This adaptation is handled by the probe 
agents, consisting of both generic and probe-specific parts. 
The generic part is shared by all the probe agent implementa-
tions and provides a ready implementation of the functionali-
ty needed to communicate with the server and router agents 
over the chosen middleware protocols.  
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For communications between the different MFW agents, 
we use a general description of a Message Oriented Middle-
ware (MOM) technology. Using a suitable MOM helps hide 
the details of communication from different agent imple-
mentors and provides all the benefits of MOM use, enabling 
us to rely on well tested and designed components for this 
otherwise complex task. It also provides for several choices 
depending on the specific needs of the target system. For 
example, one may use open-source protocols such as XML-
RPC [24] or Representational State Transfer (REST) [25] 
web services, or commercial MOM implementations, such as 
ICE [26], that are heavily optimized for performance and 
other factors. 

 

Server

Agent

Router

Agent

Probe

Agent
Probes

MOM MOM
spec

ific

 
Figure 4. Communication protocol data formats. 

C. Layer 4: Base Measurement Layer 

The base measurement layer is based upon probes 
(COTS or custom-made) that are embedded or deployed in 
the observed system infrastructure in order to collect any 
kind of data that is considered relevant and can be collected 
with a probe. A probe agent connects each probe to the 
MFW and controls the probes. One probe agent can be 
mapped to one or more probes, and one probe should be 
mapped to only one probe agent to avoid synchronization 
issues. 

In addition to providing the basic data, this layer also 
provides events related to the functionality of the probes and 
probe agents, including the availability of new probe agents 
and the loss of a probe (becoming non-responsive). It is basi-
cally responsible for describing the available measurements 
from a probe (its characteristics), controlling it as needed and 
providing the raw measurements from the probe on request. 
What is supported depends on the types of probes that are 
available and the features they support. 

In our experience, some different considerations need to 
be taken into account when implementing probes at this lev-
el. In some cases, a specific functionality may be needed to 
perform a measurement of a specific part of the observed 
system: for example, to read a specific configuration parame-
ter that can only be read programmatically. While we have 
used a common platform for the development of our MFW 
agents due to the benefits this brings, as discussed before, we 
cannot assume that such platforms can be installed on all 
nodes where measurements need to be performed. Instead we 
need to be able to make use of what is available and possible 
on the target of measurement. The probe agent is then a 
component used as the bridge linking these specific tools and 
formats to the rest of the MFW. 

One generic example here is the use of SSH-based meas-
urement probes. One may have a probe agent capable of cre-
ating an SSH connection to a remote host and executing 
scripts on the target to collect measurement information 
(such as reading system logs or configuration files, or exe-

cuting custom probe commands). In this case, the generic 
output can be, for example, the output of the script execu-
tion. Thus in this case the probe is the SSH script executed 
on the SSH server in the target. The probe agent is a compo-
nent of the MFW capable of performing these measurements 
over that SSH. 

On the other hand, various constraints need to be consid-
ered. In many cases, such as mobile nodes, the address of the 
target of measurement may vary. Similarly, the availability 
of the connection to that node may vary. Further, having a 
separate server of the target of measurement available to 
respond to queries can be a problem due to the need to have 
open ports and other similar constraints and intrusiveness 
aspects. For this reason, a more commonly suitable approach 
to address these constraints is to make the connection from 
the target towards the probe agent. In this case, only the 
probe agent needs to host a server and provide a suitably 
static address for the collection of the data. The probe agents 
can then be deployed as needed and will forward the data to 
the server agent. The server functionality on the probe agent 
can be different, such as a generic SSH server or a generic 
Hypertext Transfer Protocol (HTTP) server. However, this 
type of architecture allows one to deploy any type of a ser-
vice composition found useful.  

D. Layer 3: Data Collection Layer 

The data collection layer gathers the data provided by the 
base measures layer and communicates these to the control 
and data processing layer. It can also incorporate more ad-
vanced features such as processing of the data (e.g. multi-
plexing) for more efficient communication and smaller net-
work bandwidth use similar to the MFWs described in [5, 6]. 
In addition to raw probe data, this layer also provides events 
to the control and data processing layer to describe any ob-
served events in the MFW infrastructure. Looking at Figure 
2, all the different agents take some part in the implementa-
tion of this layer although this is mainly focused on the rout-
er-agents. 

In practice, a router agent in this case is a node in the 
peer-to-peer overlay. These agents handle the relevant parts 
of the dynamic adaptation, and security features as described 
before. This layer also handles passing data through (sub-) 
network boundaries where necessary, through filters such as 
firewalls. The router agents are basically the mediators of the 
communication between the server and probe agents, which 
connect to it by using the overlay interface. For more ad-
vanced support, it is possible to build additional agents as 
separate agents on top of the overlay to support features such 
as multiplexing of collected data, handling of authentication, 
authorization and encryption at the subnet level and dealing 
with network filters such as firewalls and Network Address 
Translation (NAT) services, similar to [6]. 

As the overlay sees the data passed through simply as 
something to be transferred, different strategies to address 
scalability at the level of data processing at different nodes 
can be employed without impact on the overall MFW archi-
tecture. For example, more of the processing of the base 
measures can be handled locally by the probe agents, result-
ing in less data being passed through the MFW infrastruc-
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ture. This data can then be handled by a specific functionali-
ty in the server-agent. These types of approaches will result 
in less network traffic and lower likelihood of congestion, 
distributing some of the processing to the different MFW 
nodes. The choice of this strategy depends on the needs of 
the observed system and the MFW. 

E. Layer 2: Control and Data Processing Layer 

The control and data processing layer provides services 
for processing the data from the data collection layer and for 
controlling the MFW infrastructure. This is basically equiva-
lent to the server-agent shown in Figure 2. Specific clients 
can then be built to access the MFW through the server-
agent. In order to support scalability, extensibility and inter-
connection with different clients of the MFW, we use an 
architecture based on the blackboard architectural style [27] 
as illustrated in Figure 5. 
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Figure 5. High-level architecture of layer 2. 

This type of architecture is actually shared across all the 
different nodes (agents) of the MFW and not just the server-
agent. However, it is described here in terms of the server-
agent to provide a concrete example of its application. The 
goal is to achieve a highly cohesive and decoupled composi-
tion of components to support their composition in different 
ways in different nodes and to address different requirements 
such as live updates of different parts and verification of 
functional correctness. To achieve this, all data is passed 
through the blackboard, whereas messages between the 
plugins are passed using the OSGi middleware mechanism. 

Regarding the data, all measurements, events and client 
commands are processed through a blackboard component, 
which provides this data to all registered plugins that have 
subscribed to this type of data. These plugins can provide 
additional data to the blackboard, which can further be pro-
cessed by other plugins. This allows for clear separation of 
different aspects of data processing, event handling, client 
and MFW infrastructure communication and other aspects. 
Again, the plugins are mapped to OSGi services in our im-
plementation. This also provides the means to do updates of 
specific plugins through the OSGi update mechanism. In the 
case of message passes where simple data values are not 
optimal, the bindings are handled dynamically through the 
OSGi service binding mechanisms. This allows us to address 
dynamic composition, decoupling and cohesion on different 
levels. 

The control factor in this layer is related to mapping the 
measurements requested for specific properties of the ob-
served system to the probes of the MFW infrastructure. This 

includes abstracting all dynamic evolution of the infrastruc-
ture(s) in an infrastructure model provided to the client(s). 
The control factor is also related to responding to events that 
require taking actions and control over the deployed MFW 
infrastructure. 

In order to support all the requirements described in Sec-
tion III, different types of functionalities need to be support-
ed. Client-specific data processing functionality can be pro-
vided as customized plugins for the blackboard. For exam-
ple, basic processing functionality can be provided in the 
form of a plugin that takes instructions from the MFW client 
that define calculations and threshold values of the moni-
tored data. These can be used to calculate more advanced 
values from the base measures, and to provide events to the 
client when a given threshold value for the calculations is 
exceeded. As the communication is handled through the 
blackboard, additional processing of the values provided by 
one of these plugins can be done with another plugin that 
subscribes to the provided values of the previous plugin.  

Customized plugin functionality can be, for example, 
used to provide specific data to a specific client or to perform 
custom control and configuration of the observed system 
based on the observations. Although the needs for different 
measurement domains may vary, we define a set of basic 
plugins offering generic services for different purposes. This 
includes a functionality to store all the data processed 
through the blackboard to support historical analysis actions, 
a control plugin to handle the adaptation of the MFW in re-
sponse to the events observed in its operation (e.g. to config-
ure probe sampling rates) and a registry for handling the ab-
straction of infrastructure changes to the client. Similar to 
[3], filters can be attached to any plugin to control the data it 
processes and to allow for more fine-grained configuration of 
plugins (e.g. what the persistence plugin stores). 

F. Measurement Abstraction 

Besides addressing the different needs for runtime adap-
tation in terms of adaptive communications, the MFW also 
needs to provide a means for the client to make requests for a 
specific type of measurement without the need to define ex-
plicitly which specific probe will provide it. This abstraction 
is the role of the control and data processing layer in the 
MFW (Layer 2). In our case, we have described our solution 
in our previous work [1] and here we shortly summarize the 
main points. 

Each measurement probe can be identified with a Base 
Measure Identifier (BM ID) that is composed of a Measure 
ID coming from BM taxonomy, and a Device ID that identi-
fies which infrastructure object it is measuring. Note that the 
term Device ID may be misleading at times as the target of 
measurement here can also be a service and as such hosted 
on or a subpart of the functionality hosted on a device. 

It should be noted that several taxonomies or other ap-
proaches can be used as a basis for defining the Measure ID. 
The actual choice is domain dependent and can even vary 
inside the domain based on the specific application choice 
and target inside the domain. For example, in the security 
assurance domain, we have used as an example the security 
countermeasures taxonomy from [28], which classifies dif-
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ferent measurement targets such as firewalls and intrusion 
detection systems inside the security assurance domain. An-
other example inside this same domain is the use of the cate-
gories from Common Criteria. 

Using the two identifiers we have defined, all measure-
ment results can have Unified Resource Identifiers (URI), or 
to be exact, Uniform Resource Locators (URL), for example, 
of type: MFW://<device_id>/<measure-id. 

A client of the MFW can then make requests for the dif-
ferent types of measurements on different types of targets. 
The MFW can then provide best-effort measurement results 
according to the available probes and their characteristics. 
For more advanced support, the different probes can also be 
described in terms of different characteristics such as their 
ability to provide precise results. Such characteristics can 
only be defined by those who deploy the specific probes, as 
their interpretations will vary over different probes. Howev-
er, the MFW can use by default this data as ordinal scale 
values and let the user define the scales. 

Finally, each MFW Uniform Resource Identifier (URI) 
can then be used as a hyperlink between different measure-
ments. Using this method, it is possible to make BMs de-
pendent on other BMs where this is found useful. 

G. Security 

As described in Section III.E, security-enforcing mecha-
nisms of the MFW infrastructure need to include user and 
data authentication, authorization, data confidentiality, data 
and system integrity, data and system availability, non-
repudiation and resilience solutions. This is again supported 
by the composition of the MFW agents from different ser-
vices (components). These can be used to compose the agent 
to support features such as encryption and authentication 
with specific modules such as described in [9, 10]. This also 
allows fulfilling the security demands on different scales of 
distribution. In more distributed architectures this requires 
decentralization of these features over subnets in the router-
agents, while in a centralized version this support can also be 
centralized at the server-agent level. This can also be handled 
at the middleware level as provided by the MOM platform 
(e.g. through the security features of the P2P overlay). 

Each MFW component basically has a single user type, 
which is the higher-level agent (probe → probe agent (→ 
router agent) → server agent → MFW client) that can issue 
control over it. Similarly, each one has a single type of a user 
that can provide monitoring information, which is the lower-
level agent (opposite order to the previous one). This 
knowledge can be used to simplify the required authentica-
tion process as only one type of a user needs to be supported 
at each level, and this user type is always known. 

Considering the communication between the different el-
ements of the MFW, each probe agent that controls a probe 
and provides data to the server-agent needs to register with 
proper authentication mechanisms before being able to 
communicate measurement results. Similarly, each data 
transmission needs to be authenticated to ensure that no false 
data is provided by unauthorized attackers. 

In order to limit the possibilities of attackers using MFW 
components to perform intrusive actions on a system or as an 

attack vector, the capabilities of probes and agents should be 
limited where possible. For example, user accounts can be 
created to access the required information for the probes, 
with said users only being authorized to access the required 
data. To ease management, a roles strategy can be used to 
enable multi-domain or subnets management where the con-
figuration of the accounts can be replicated without local or 
specific particularities. 

In the following list, we describe some of the technolo-
gies and solutions we have applied in addressing these relat-
ed security requirements.  

For achieving integrity of the exchanged data: 

 Applying hash methods, which will verify that the re-
ceived data is the same as the sent data. 

 Digital signature methods to provide non-repudiation 
features. 

For ensuring confidentiality of the exchanged data: 

 Encrypted communications, communications mecha-
nisms based on public and private key strategies. 

 Similarly, applying encryption to all configuration data 
stored by any MFW node (probe/agent) such as 
usernames and passwords. 

Supporting the availability of the exchanged data: 

 Providing features that monitor the availability of the 
different systems of the infrastructure (agents and cock-
pit) and that will alert when a device has availability 
problems. This is related to the self-monitoring features 
of the MFW. 

 The use of data filtering techniques to, for example, re-
duce the possibility of (DoS) attacks. Specific considera-
tions are needed; for example, when the MFW addresses 
are mapped for mobility and dynamic aspects (e.g. add-
ed or removed element). 

 Consequently, the communication protocol used be-
tween the probes and aggregation server can propose an 
alternative management solution, and if historical data is 
considered to be important, probes should implement the 
management of local history. 

H. Separation of the MFW and the Observed System 

As elements of the MFW (probes and probe agents) are 
installed to measure properties of the observed system, their 
deployment is bound to have some impact on the observed 
system. To minimize this intrusiveness, different aspects 
need to be considered. The first aspect is related to separat-
ing the communication of the measurement data and the ef-
fects it can have on the observed system. Here we have de-
scribed the use of the P2P overlay to address this aspect. 

Another aspect of isolation is related to deploying ele-
ments of the MFW on the same physical host machines as 
the one observed in the system. In many cases the functional-
ity of the MFW (the agents) needs to be hosted on the ob-
served infrastructure elements. The separation of these two 
can be addressed by using virtualized infrastructure to host 
the components of the measurement framework (e.g. Java 
Virtual Machine (JVM) for OSGi or a complete separate 
VM). 
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Finally, intrusiveness can be mitigated with self-
monitoring and adaptation. In this case, specific self-
monitoring plugins would be deployed at the different nodes 
(agents). These would monitor for specific problems such as 
depletion of resources (e.g. CPU, memory, network band-
width) and adjust their operation accordingly. The specific 
strategies would require domain-specific tuning according to 
the criticality of different factors such as the availability of 
the measurement data and the operational intrusiveness of 
specific nodes. 

I. Patterns and the Reference Architecture 

This subsection provides a brief mapping of the MFW 
patterns listed in Section II. The requirements of the architec-
ture are discussed in more detail in the following section. 
However, these requirements are also referred to in this sec-
tion when relevant for the explanation of the patterns. In the 
following we recall the patterns from Section II and briefly 
note how they are visible in the proposed architecture. 

 Specific adaptation layer for measurement targets 
[5]. This is the role of layer 3 (probe agents) together 
with layer 4 (probes). 

 Repository of available probes for specific meas-
urement targets [2]. As discussed we identify a set of 
common mechanisms such as SSH and HTTP 
probes. In different domains it is further possible to 
provide specific repositories such as XCCDF in the 
security assurance domain. 

 Simple interface to integrate custom probes into the 
overall measurement system [2, 3]. This is provided 
by the split of the probe agent to generic (readily 
provided) and probe-specific (custom) parts. 

 Usage of widely supported protocols [7]. Relying on 
available and widely developed MOM solutions ad-
dresses this. 

 Allow configuration of operational probes [7]. This 
is supported by the interfaces of a probe agent, 
which can adapt to the probes as best possible. 

 Optimize communications related to expected meas-
urement data communication patterns [5, 7]. In our 
case the assumption is that bandwidth requirements 
are relatively reasonable, and thus no specific data 
channels are used. In other cases, this could be sup-
ported with the addition of another path. 

 Usage of separated dedicated communication chan-
nels [7]. This is basically the definition of the P2P 
overlay we use. 

 Allow customizing different aspects of the MFW 
based on module composition [3]. This is supported 
by the OSGi platform together with the blackboard-
based architecture. 

 Provide a registry that is dynamically updated to re-
flect available measurements and probes [6]. This is 
supported by layer 2 (server-agent). 

 Use specific components to handle connection and 
processing over network sub-domains [5, 6]. This is 
transparent to the MFW agents thanks to the P2P 
overlay. 

 Describe the measurements with a common set of 
properties [4, 6]. This is supported by our measure-
ment abstraction layer. 

 Optimize the availability and reliability of measure-
ment infrastructure [13]. Again this is supported by 
the P2P overlay, which is specifically designed to 
support these properties, cleanly modularized from 
the MFW perspective. 

 Secure the communication data [13]. The Armature 
P2P overlay we used handles a large part of the fea-
tures related to security. Additionally, we provided 
the guidelines for the security mechanisms we have 
applied to address this. 

V. DISCUSSION 

While the mapping of the MFW design patterns was dis-
cussed before, this section discusses in more detail how the 
reference architecture (RA) addresses the different require-
ments described in Section III. This discussion is structured 
along the categories of requirements presented in Section III. 

The RA supports different scales of distribution by sup-
porting different communication protocols and strategies in 
the communication layer. The described P2P approach espe-
cially allows for a distributed approach. In general, new 
MFW agent deployment is supported by runtime registration 
mechanisms. Further, the common plugin architecture for all 
MFW agents, based on the OSGi component platform, al-
lows for distributing functionality to agents as needed. For 
example, the use of a common component platform and 
plugin architecture allows for the deployment of some of the 
server-agent functionality on probe agent nodes if needed for 
local processing. This and the ability of server-agents to use 
any number of different components for data processing 
support scaling to varying amounts of data. Some specific 
issues to consider with regards to scalability include the abil-
ity to use advanced features such as discovery and registra-
tion mechanisms as a means to launch attacks on the MFW 
itself, and the intrusiveness of monitoring the observed sys-
tem resource use to launch any measures for dynamic adap-
tation, such as rerouting.  

In the case of many of the runtime adaptation require-
ments we rely on the work done to address these require-
ments in the middleware community. The P2P overlay dis-
cussed as the communication channel for the RA supports 
most of these requirements.  

The RA uses several approaches for isolating the MFW 
from the observed system. This includes both the discussed 
features for the isolation of the network communication and 
of the SW components of the MFW. The effectiveness of 
this approach depends on the use of available techniques. For 
example, using a JVM to host the agents allows some control 
over the resources it can use (e.g. memory) but can be lim-
ited in other regards (e.g. CPU, files). This is a trade-off to 
consider for different scenarios and may require use of addi-
tional advanced techniques (e.g. sandboxing, such as [29]). 

As discussed before, addressing probe effects with de-
ployment of various probes in different systems is difficult in 
general. Testing everything fully in a separate environment 
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would be ideal, but it can be very expensive and difficult to 
simulate all the possible combinations of different probes 
and their environments during a system lifetime. This also 
applies to the combination of (sub-) systems with other sys-
tems. No generic guidelines can be provided for possible 
probe effects other than checking the probes and agents in 
operation as far as possible, and considering their properties 
such as files accessed and resources needed. This also high-
lights the importance of the isolation aspect.  

When using specifically created probes that have been 
designed into the system from the beginning, intrusiveness is 
not an issue. Unfortunately, this is not always the case even 
when designed for, as the future probe requirements are im-
possible to fully predict. However, the RA aims to deploy 
only minimal components to the observed system infrastruc-
ture, which helps in minimizing its intrusiveness by focusing 
complex processing in the server-agent. It also focuses on 
minimizing the intrusiveness in terms of the router-agents by 
requiring only the deployment of agents for the P2P overlay 
that share similar deployment requirements. 

The basic verification of the correctness of the MFW and 
its components requires use of testing and verification tech-
niques before deployment. In this part we have to rely on the 
availability and use of advanced techniques for SW testing 
and verification. However, we do support this with the inter-
faces designed for the agents in the form of state transfer (for 
updates) and configuration access (for reconfiguration). The-
se interfaces form a basis for testability features that can be 
used to test agent behaviour in various contexts. 

Even if we cannot ensure full pre-runtime verification 
with architectural solutions, the RA addresses runtime verifi-
cation of different aspects with its self-monitoring features 
similar to the intrusiveness aspects. This cannot address all 
possible scenarios but allows for building features to check 
the correctness of new agents and their functionality in new 
contexts. This is also supported by the provided automated 
update mechanisms, which allow for addressing found issues 
and updating the agents with new features as needed. 

The different aspects of security are addressed at the dif-
ferent agents. Specific components are provided to be de-
ployed as services with the MFW agents as needed. These 
allow for addressing the different requirements related to 
security such as confidentiality and integrity also at different 
degrees of distribution. The dependability aspects (including 
availability and resilience) of security are addressed by the 
isolation of the MFW infrastructure (similar to the intrusive-
ness aspects) from the observed system infrastructure as far 
as possible. This also includes the use of all the security- and 
scalability-related solutions for handling large amounts of 
data and unauthorized usage attempts in case of failures in 
the observed system or malicious usage attempts of the 
MFW or the observed system. 

As for overall security, the MFW is not different from 
other distributed systems handling sensitive information. We 
have provided some guidelines regarding the securing of 
different aspects of the MFW. However, these are generic 
and applied only to the specific domain of the MFW. More 
generally, most other approaches for system security in gen-
eral also apply here and are thus not discussed in detail. 

Overall it can be said that different domains set different 
requirements and in this case some of the issues are more 
important to address than others. For example, in systems 
with high performance and large monitoring data streams, it 
can be useful to optimize monitoring with separate channels 
as in [6] and optimized data formats as in [2]. The extensibil-
ity and customization options provided by the modular refer-
ence architecture should provide a good basis for this.  

VI. CONCLUSIONS AND FUTURE WORKS 

This paper presented a core set of requirements for build-
ing a secure, dependable and adaptive distributed monitoring 
framework and reference architecture for addressing these 
requirements. This is based on both surveying existing ap-
proaches to building monitoring frameworks for different 
domains, and on our current work and experiences in build-
ing monitoring frameworks for different domains. The work 
provides a basis for building other monitoring frameworks 
that need to address these types of requirements. The pre-
sented requirements provide a basis for understanding the 
different needs of monitoring and how they are related to the 
domains in which the reader is interested. The reference ar-
chitecture shows how these can be addressed given the 
common constraints we present, showing both high-level 
architectural solutions and practical examples of their im-
plementation. These are topics that are increasingly relevant 
in many aspects of modern systems, where different runtime 
adaptation aspects, information collection for decision sup-
port, and other aspects need to be supported. 

Future work entails describing further experiences of the 
different implementations and their practical applications in 
different domains. Future works should also include more 
systematic consideration of the impacts of monitoring data 
and analysis on the initial risk analysis that provides input for 
monitoring as well as their iterative refinements. Events at 
different levels may also require more attention. Specific 
future aspects to consider include the emerging new types of 
infrastructures such as the future internet and cloud-based 
services where monitoring needs to consider specific chal-
lenges posed by the shared infrastructure between different 
stakeholders, including both infrastructure providers and 
consumers. 
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