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Abstract—Despite its potential to tackle many security
challenges of large-scale systems such as pervasive networks,
self-managed protection has been little explored. This paper
addresses the problem from a policy management perspective
by presenting a policy-driven framework for self-protection
of pervasive systems called ASPF (Autonomic Security Policy
Framework). Enforced authorization policies in a device are
adapted according to the security context, both at the network
and device levels. ASPF describes how an autonomic security
manager may control OS-level authorization mechanisms sup-
porting multiple classes of policies. Evaluation of an ASPF
implementation shows that the framework enables effective
self-protection of pervasive systems. ASPF is also applicable
for autonomic security management of other types of large-
scale infrastructures such as cloud environments.

Keywords-Autonomic Computing, Self-Protection, Policy
Management, Authorization, Pervasive Networks.

I. INTRODUCTION

Advances in pervasive networking are rapidly taking us
to the final frontier in security, revealing a whole new
landscape of threats. In open and dynamic environments,
malicious nodes may enter a network undetected, and vari-
ous malwares may invisibly install themselves on a device.
When roaming between heterogeneous networks, each with
its own protection requirements, a device may also take
advantage of security policy conflicts to gain unauthorized
privileges. In embedded settings including limited and often
unstable computing and networking resources, denial of
service attacks are easier, with little lightweight security
countermeasures. Finally, these decentralized, large-scale
systems make end-to-end security supervision difficult. Ad-
ministration by hand is clearly impossible, with the risk
of some sub-system security policies not being up-to-date.
These threats may only be mitigated with mechanisms highly
adaptable to execution conditions and security requirements
(e.g., supporting multiple authorization policies), with lim-
ited overhead. Above all, protection mechanisms should
be self-managed [1], following the autonomic approach
to security introduced by IBM [2], which defines a self-
protecting system as a system that “can anticipate, detect,
identify and protect [itself] against threats.” [3].

To realize context-aware autonomic adaptations, the
policy-driven paradigm has successfully demonstrated its
flexibility and generality [4]: system functionalities are gov-
erned by a set of policies. As the context changes, other
policies may be selected to activate within the system func-
tions better adapted to its new environment. Unfortunately,
this type of design was little applied to self-protection of
pervasive systems.

In this paper, we validate the viability of this approach by
presenting a policy-driven security management framework
called ASPF (Autonomic Security Policy Framework). ASPF
describes the design of an autonomic security manager for
pervasive systems. The framework is built on an earlier
implemented OS security architecture called Virtual Security
Kernel (VSK) [5]–[7] that specifies the managed security
mechanisms. VSK implements kernel-level policy-neutral
authorization, and supports dynamic policy reconfiguration,
but without describing any control strategy of adaptation.

The original features of this framework are the following:
• ASPF enables the selection of the most appropriate

authorization policy to be enforced in the device in
order to match the estimated risk level of the current
environment. Two levels of adaptation are possible,
policies being tuned (or generated) according to the
security context of the network and of the device.

• Policies are specified in an XACML extension for the
attribute-based model of access control [8], which pro-
vides a fairly generic manner to describe permissions
in open systems.

• An authorization architecture is also defined to refine
the ASPF models, and is implemented above the VSK
authorization mechanisms.

Performance, resilience, and security evaluation results
show that the combined ASPF and VSK frameworks enable
to achieve effective self-protection (Section IX-B evaluates
the autonomic maturity level achieved with ASPF regarding
security mechanisms). Moreover, ASPF is generic enough to
be applied to other types of large-scale infrastructures such
as cloud computing environments by defining the proper
framework refinement.
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This paper is organized as follows. After reviewing related
work (Section II), we introduce briefly our self-protection
architecture (Section III). We then describe the ASPF de-
sign principles (Section IV), policy model (Section V),
framework (Section VI) and authorization architecture (Sec-
tion VII). We present an ASPF implementation over the VSK
mechanisms (Section VIII), and some evaluation results
(Section IX). We finally show how ASPF may be refined
for self-protection in cloud environments (Section X).

II. RELATED WORK

Self-protection has so far been explored very little. While
quite an early idea [2], it was discussed at the level of
principles with few frameworks available, mainly for en-
terprise information systems [9], [10]. To orchestrate the
components needed for autonomic security management,
a policy-driven design [4], [10] seems promising, since
the approach has been successfully applied to other self-
* properties: indeed, several generic policy management
frameworks [11]–[13] have been proposed to automate de-
vice and network reconfigurations to respond to context
changes. Unfortunately, these frameworks hardly considered
security. Notable exceptions are [13] for large organizations
and [14] for pervasive systems which supports authoriza-
tion and obligation policies. But with those frameworks, it
remains unclear how to specify and federate authorization
policies described in different security models to overcome
heterogeneity of network security policies.

Three main elements seem to be missing: (1) descrip-
tions of self-protection strategies; (2) specifications of secu-
rity policies; and (3) authorization mechanisms supporting
multiple policies and/or their reconfiguration. A promising
approach for (1) is based on Domain-Specific Languages
(DSLs) [15], but does not yet address security. For (2) and
(3), one main challenge is the great diversity of access
control models [16] proposed to describe policies. Policy-
neutral access control (PNAC) languages [17] allow support-
ing several models, but lack real enforcement mechanisms.
On the other end, several PNAC frameworks have been
proposed [18], [19] but without generic enough specifi-
cation languages. An interesting mid-term is described in
[20] which combines a highly expressive security model
(ABAC) [8], [21], a PNAC language (XACML) [22], and
an authorization architecture. However, self-management of
policies is not described. Further work is therefore needed.

III. SELF-PROTECTION ARCHITECTURE

We now provide some background on the solution we
explored for self-protection of pervasive networks [5]–[7].

We consider a pervasive system to be organized into a flat
number of clusters, each containing a set of nodes. Nodes
may join or leave a cluster dynamically. A cluster enforces
a cluster-level authorization policy, applicable to nodes in
the cluster. Nodes have various resource limitations, ranging

from sensors to laptops, and enforce different node-level
authorization policies. We now focus on a single cluster, but
the approach can be generalized to any number of clusters.

For self-protection, we consider a security architecture
divided into 3 abstract layers (see Figure 1). For each
node, an execution space provides a running environment
for application- or system-level services, encapsulated and
manipulated as components. Node security management is
performed in a (security) control plane using the VSK
component. It oversees the execution space, both in terms
of application-specific customizations and of enforcement
of authorizations to access resources. Finally, a distributed
autonomic plane supervises the VSK authorization policies
in each node and performs the necessary adaptations at the
cluster and node levels using several feedback loops. This
paper provides an answer on how to design that layer using
the ASPF framework.

VSK implements the managed OS-level security mecha-
nisms in a node. It consists of a Virtual Kernel (VK) and an
Access Control Monitor (ACM). The VK allows to reconfig-
ure the execution space by providing run-time management
functionalities over components and their bindings. It also
efficiently controls access to the execution space resources,
playing the role of an enforcement point for ACM decisions.
Otherwise, the VK remains hidden in the background to min-
imize interactions with the execution space for performance
optimization. The ACM is a decision engine allowing run-
time selection of multiple authorization policies described
in different access control models. Its design is compliant
with the ABAC vision of access control [8], [21]: security
attributes and permissions are separately managed (by an
Attribute Manager for subject-attribute mappings, and by a
Rule Manager for attribute-permissions assignments), and
may be dynamically updated. More details regarding the
VSK design may be found in [7].

We now present ASPF, a policy management framework
which realizes an autonomic security manager above the
VSK. The general idea is to adapt system security function-
alities to the environment by context-aware change (tuning
and/or generation) of authorization policies, such as adapting
the policy strength to the ambient risk level.

The following sections describe the ASPF design prin-
ciples, policy model (which specifies how to represent
the managed authorization policies), security management
framework, and resulting authorization architecture.

IV. ASPF DESIGN PRINCIPLES

We now describe the requirements for the framework.

A. Design Requirements

Several requirements should be met for such a self-
protection framework.
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Figure 1. A 3-Level Architecture for Self-Protection.

1) Policy neutrality: Different types of authorization poli-
cies may be enforced in clusters and nodes. Policy-neutrality
is thus mandatory to account for heterogeneous security do-
mains by supporting several classes of authorization policies.
Moreover, policies should be able to be reconfigured dynami-
cally (including between different classes) when nodes move
between security domains, or when the context changes.

2) Scalability: Pervasive systems are highly open and
dynamic: nodes can enter and leave a network at run-time.
The numbers of connected nodes may thus vary greatly in
time, scaling network capacity both up and down, while the
infrastructure remains unchanged. Scalability is thus a major
challenge for the underlying protection framework, which
should support both small- and large-scale systems.

3) Consistency: At the device level, a single system
component (e.g., the security kernel [23]) usually controls
all access to resources and enforces authorization policies.
However, at the network level, each node still applies its
own policy, but some nodes may share resources. The lack
of a centralized module for enforcement of authorizations
may lead to inconsistent network security policies. A solu-
tion for policy administration is thus required to guarantee
consistency of distributed authorization policies.

4) User-friendly administration: Pervasive systems be-
come increasingly complex, involving multiple users with
different roles. Thus, the issue of system administration
with minimal human intervention cannot be ignored. A
security policy management framework should therefore
simplify administration tasks and make system modifications
transparent to users.

5) Context-awareness: Openness and dynamicity of per-
vasive networks induce rapid changes in the system context,
calling for context-aware administration and protection. For
instance, node availability may affect access privileges,
as in ASRBAC authorization policies [24]. A node part
of some clusters may have specific types of permissions

that cannot be assigned to nodes in other clusters. Node
migration between clusters may thus require update of access
privileges. The management framework should thus select
security functions based on evolution of the context.

6) Other Requirements: The security framework should
also take into account requirements such as unified modeling
of heterogeneous nodes, efficient protection mechanisms
compatible with embedded constraints, or collaboration of
decentralized security infrastructures.

B. ASPF Overview

Administration of authorization policies includes creation,
deletion, and maintenance of access attributes and rules, and
management of run-time constraints. To achieve this goal,
ASPF applies the autonomic approach to make systems self-
protected. Moreover, ASPF is policy-driven, i.e., the security
behavior of the system is entirely governed by policies.
The main distinguishing features of the framework are the
following:

1) Policy-based management of authorization: The
policy-driven approach is well adapted for administration of
systems in open and dynamic environments: evolutions only
trigger updates of applied policies, without changing the
enforcement mechanisms. In our case, we use authorization
policies to control protection. ASPF enables to modify,
deploy, and enforce them through out the whole system.

2) Attribute-based authorization enforcement: Attribute-
based access control [8], [20] is more suitable for open
environments than traditional identity-based authorization:
pervasive devices are not known by their exact names but by
a dynamic set of attributes. This paradigm presents benefits
in terms of expressivity and flexibility: it enables to support
a large set of existing authorization policies, making policy-
neutrality possible without developing a fully-fledged spe-
cific architecture. Separation of attributes from permissions
also improves flexibility for dynamic policy reconfiguration.

106

International Journal on Advances in Security, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/security/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



3) Decentralized validation of authorizations: A scalable
distributed system avoids using a central authority for vali-
dating authorizations. Our framework is based on a hybrid
architecture using the concepts of cluster and node. Each
node enforces a local authorization policy. Authorization
policies of nodes inside a cluster are centrally controlled
by a cluster authority which guarantees policy consistency
between nodes. Policy synchronization between cluster au-
thorities may be either centralized or decentralized. This ar-
chitecture allows decentralized enforcement of authorization
policies, while maintaining an efficient central control of
policy deployment.

4) Integration of self-protection control loops: To satisfy
the context-awareness requirement, ASPF regulates security
using several self-protection feedback loops to select the
authorization policy best fitting the system security context.

5) Self-configuration control loops for policy deployment:
To guarantee consistency of decentralized policies, and facil-
itate system administration, self-configuration control loops
allow the system to configure itself with minimal human
intervention. Modification of chosen authorization policies
will thus be automatically propagated through the whole
network to guarantee consistent policy deployment.

V. ASPF POLICY MODEL

In a pervasive system, different classes of authorization
policies may be enforced: for instance, policies specified in
the Domain and Type Enforcement (DTE) [25], Multiple
Level Security (MLS) [26], or Role-Based Access Control
(RBAC) [27] models.

ASPF allows to express those different models by de-
scribing authorization policies using the ABMAC (Attribute-
Based Multi-Policy Access Control) model [20]. In this
model, distinguishing features of system elements (subjects,
objects, environment...) are described by attributes on which
access decisions are based. Access attributes include princi-
pal identities, group membership, roles, security clearances,
labels, or any other authorization information. Attributes are
clearly separated from access rules, enabling independent
modifications, e.g., activate/deactivate a role depending on
location without reloading a full authorization policy.
<?xml version="1.0"?>
<DTEPolicy>
<Rule>
<Target>

<SubjectAtt... name="domain">Trusted</SubjectAtt...>
<ObjectAtt... name="type">Private</ObjectAtt...>
<ActionAtt... name="operation">write</ActionAtt...>

</Target>
<Effect>grant</Effect>

</Rule>
...

</DTEPolicy>

The ASPF policy model is shown in Figure 2. An ASPF
policy consists of an attribute map and a set of rules. The
map links system elements to their attributes. Elements may
be subjects, objects, actions, or context data. Examples of

Figure 2. The ASPF Policy Model.

corresponding attributes include security domains, resource
types, read/write operations, or location/time information. A
rule contains a target, described by several attributes and an
effect (allow/deny). A sample DTE policy is shown above,
granting write authorizations to private resources for subjects
in a trusted domain.

The result is a quite expressive model, while still remain-
ing policy-neutral: as for XACML [22], specific authoriza-
tion policies may be supported by refining the model through
profiles. For instance, DTE, MLS, and RBAC policies are
simply specified by defining the right types of attributes
(domains, types, labels, roles...). Similarly, context-aware or
history-based policies may be defined by adding specific
context or history attributes.

As a drawback the processing of XACML policies may
induce a performance overhead when dealing with policies
with a large number of rules. This issue can be tackled by
adopting an XACML policy optimization approach such as
proposed in [28].

VI. ASPF DESIGN

ASPF is a security management framework that governs
authorization policies enforced by underlying VSK mech-
anisms. This section presents the ASPF design, based on
several types of models.

A. Overall Design

The ASPF design is organized into three models:
• A core model describes system resources, security, and

autonomic functionalities.
• An extended model refines the security and autonomic

models for each type of resource.
• An implementation model describes the realization of

the extended model, organizing functionalities into
components to be implemented.

Those models are defined in the three steps shown in
Figure 3. The core model consists of a resource model, a
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Figure 3. ASPF Overall Design.

security model and an autonomic model. These models are
then refined into the extended model which involves a cluster
extended model and a node extended model for cluster and
node resources. Finally, these two models are refined into
the corresponding implementation models.

B. ASPF Core Model

Figure 4. The Resource Model.

1) Resource Model: The resource model describes the
structural organization of the system. The main concepts are
those of System, Cluster, and Node, as shown in Figure 4:

• A Resource is the top-level concept which may be
extended if the framework needs to be refined. It
serves as coupling point with other models to describe
different system functionalities.

• The System class represents the overall system to be
protected (i.e., the pervasive network). It is organized
into clusters.

• A Cluster is a coarse-grained structural unit including
a set of nodes which collaborate to achieve some tasks,
e.g., to provide a given service.

• A Node is the minimal structural unit. In pervasive
networks, it represents a mobile device able to perform
several functions and communicate with other nodes.

Figure 5. The Security Model.

2) Security Model: The security model specifies the au-
thorization functionality to control access to Resources. The
main concepts are those of Access Control Monitor (ACM)
and Authorization Policy as shown in Figure 5:

• The ACM is a reference monitor which controls all
access requests to resources.

• The Authorization Policy expresses conditions under
which authorizations are granted or denied. It is speci-
fied according to the policy model previously described.

3) Autonomic Model: The autonomic model specifies
how self-configuration and self-protection are achieved in
the system. The self-protection model adapts authorization
policies according to evolution of the context. The self-
configuration model customizes authorization policies ac-
cording to resource types, user preferences, or administrator-
defined security governance strategies.

Figure 6. The Self-Protection Model.

The self-protection model describes how adaptations (se-
lection of adequate security counter-measures) are launched
at run-time, driven by evolution of the security context.
Adaptations are performed both at the cluster level and at the
node level. The main element of the model are the following,
as shown in Figure 6:

• The Self-Protection Manager controls and orchestrates
all activities related to self-protection. Its main role is to
monitor the context and update authorization policies.

• The Self-Protection Governance Policy captures the
administration strategy for self-protection. It drives
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decision-making, specifying how to select the right
authorization policy according to context information.

• The Context captures all information about the system
environment which may influence such decisions.

• The Initial Policy is the current authorization policy,
input for the context-aware security adaptation process.

• The Resulting Policy is the authorization policy output
of the security adaptation process. This policy is gen-
erated by the Self-Protection Manager.

Once a Resulting Policy has been generated, this new
policy should be propagated through the whole network
for enforcement. As ASPF targets large-scale distributed
systems, global policies should be translated into local ones
to be enforced by each node. The self-configuration model
specifies this translation process. The main element of the
model are the following, as shown in Figure 7:

• The Self-Configuration Manager is the component in
charge of the self-configuration process. It generates a
Resulting Policy based on an Initial Policy according to
a Self-Configuration Governance Policy.

• The Self-Configuration Governance Policy contains the
guidelines for the translation process. It may be speci-
fied by condition-action rules.

• The Initial Policy is policy output of the self-protection
model, input for the self-configuration process. It typi-
cally represents the new network security policy.

• The Resulting Policy is a policy derived from the
Initial Policy, customized for each resource. It typically
represents the new node security policy, adapted to
the node-specific setting, e.g., by filtering all network
access control rules not involving directly that node to
comply with node computational limitations.

C. ASPF Extended Model

The role of the ASPF core model is to describe the
security framework independently from the type of large-
scale system. However, to be useful in practice, the frame-
work must be described in a concrete setting. This is the
purpose of the extended model which specifies the security
framework for a specific type of large-scale system such
as pervasive networking or cloud computing infrastructures.
We now present an extended model for the pervasive setting
which was the core focus of our study. However, another
extension for cloud environments is detailed in Section X.

As pervasive systems are modeled as clusters and
nodes, two extended models are defined to describe self-
management of security at the cluster and node levels.

1) Cluster Extended Model: The main elements of the
model are shown in Figure 8.

• The Cluster Self-Protection Manager captures the over-
all intelligence for self-protection of a cluster, coordi-
nating the different necessary components.

• The Cluster Context class captures information about
the context of a cluster. It may be specified using a more
detailed context model such as DEN-ng [29] describing
multiple dimensions of context.

• The Cluster Self-Protection Governance Policy captures
the strategy to select the most adequate security func-
tion based on the cluster context.

• The Cluster Initial Authorization Policy is the starting
point for the security adaptation process. It may be
initially one of a set of predefined policies.

• The Cluster Resulting Authorization Policy is the result
of the security adaptation process, and is generated by
the Cluster Self-Protection Manager according to the
current cluster status. That policy will then be applied
to all nodes of the cluster.

The ASPF modular design into several models makes
it more easy to select only the features necessary for the
considered setting: compared to the core model, the cluster
extended model only integrates the self-protection model.
Authorization and self-configuration are left aside since: (1)
policy enforcement is performed directly in the nodes; and
(2) policy propagation towards nodes will be specified in the
node extended model.

2) Node Extended Model: The main elements of the
model are shown in Figure 9.

• The Node Self-Configuration Manager coordinates the
components for self-configuration at the node level, i.e.,
to propagate adaptations decided at the cluster level.
Such operations will be performed according to the
Node Self-Configuration Governance Policy.

• The Node Self-Protection Manager orchestrates the
components for self-protection of a node. Such oper-
ations will be performed according to the Node Self-
Protection Governance Policy which describes reac-
tions (i.e., authorization policies) to apply in security-
sensitive situations, based on the Node Context.

• The Node Resulting Authorization Policy is the final
output of the ASPF framework: after the adaptation
process, both at the cluster and node levels, this policy
will be installed inside the node for access control
enforcement by the Node Access Control Monitor.

Overall, at the node level, self-management of security is
a combination of self-configuration and self-protection: the
result of the security adaptation process at the cluster level
(Cluster Resulting Authorization Policy) is transformed into
a Node Resulting Authorization Policy (self-configuration).
Updates on the Node Resulting Authorization Policy will also
be performed based on the node context (self-protection).

D. ASPF Implementation Model

The previous models are now refined at the implemen-
tation level, different implementation architectures being
possible. In the sequel, we present an implementation model
which fulfils the requirements presented in Section IV-A.
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Figure 7. The Self-configuration Model.

Figure 8. A Cluster Extended Model.

1) Cluster Implementation Model: The elements of the
model are shown in Figure 10.

• The Cluster Authority component implements the Clus-
ter Self-protection Manager class. It coordinates all
self-protection tasks in the cluster.

• The Cluster Context Monitor provides a representation
of the cluster security context. It aggregates low-level
inputs from different sources (system/network monitor-
ing probes, sensors,...), relying on context management
infrastructures or intrusion detection systems.

• The Cluster Authorization Policy Repository contains
a set of initial cluster authorization policies to enforce
protection within different potential situations.

• The Cluster Governance Policy Engine generates secu-
rity adaptation strategies to tune authorization policies
to the environment, e.g., use DTE (resp. MLS) policies

in a friendly (resp. hostile) setting. It may also define
new policies to cope with unknown situations.

• The Cluster Resulting Authorization Policy is the output
of the cluster-level security adaptation process.

2) Node Implementation Model: The main elements of
the model are shown in Figure 11.

• The Self-Configuration Manager and Self-Protection
Manager functionalities are implemented by two com-
ponents, the Node Authority and the Node Adapter.
The Node Authority typically resides on a server at the
cluster-level, while the Node Adapter is a component
local to each node. The Node Authority is the main
control point to administer security configurations and
customize authorization policies. The Node Adapter is
a local security controller in the node with two roles. It
is a proxy for the remote Node Authority, executing its
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Figure 9. The Node Extended Model.

Figure 10. The Cluster Implementation Model.

decisions and installing in the node authorization poli-
cies customized at the other endpoint. It also realizes
node-level self-protection to adapt node authorization
policies based on the node context.

• The Node Profile refines the Node Self-Configuration
Governance Policy by describing the node capabilities
(CPU, memory, storage...). As a cluster might contain
many nodes, a large part of cluster policy rules might
not be relevant for each node and should be filtered.
In our design, node-level self-configuration is viewed

as filtering the cluster authorization policy according to
constraints described in this profile.

• Other components such as the Node Context Monitor
or the Node Governance Policy Engine play the same
roles as on the cluster side, but for the node setting.

• The Node Resulting Authorization Policy is the final
output of the node-level security adaptation process.
The corresponding access control rules may then be
enforced in the node with a lightweight authorization
overhead thanks to the underlying VSK OS.
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Figure 11. The Node Implementation Model.

Figure 12. Cluster-Level Self-Protection Loop

E. A Double Control Loop for Self-Protection

ASPF regulates security at two levels, using separate
feedback loops, both at the cluster and node levels. The
previous implementation components interact as follows.

1) Cluster-Level Self-Protection: This loop shown in
Figure 12 aims to mitigate threats against a cluster. The
Cluster Context Monitor aggregates security-relevant events
to reach a representation of the cluster security context. It
notifies the Cluster Authority in case the context changes.
The Cluster Authority then updates the Cluster Authorization
Policy, according to the strategy specified in the Cluster
Self-Protection Governance Policy. This operation may be
performed by selecting a predefined stronger/weaker policy
from the Cluster Authorization Policy Repository.

Nodes have severe resource limitations, for instance in
terms of computing capabilities or power consumption.
Execution must therefore be optimized. The chosen cluster
policy is further interpreted by each node according to its

specificities (CPU, memory, battery, etc.) captured in the
Node Profile, generating a new node authorization policy
(Node Resulting Authorization Policy). Policy rules not
relevant for each node are notably discarded. This policy
is then loaded into the node authorization sub-system for
enforcement. This customization improves efficiency and
scalability. It also makes the system more manageable by
reducing the number of authorization rules.

2) Node-Level Self-protection: A simpler loop also oper-
ates at the node level to defeat attacks on a single node as
shown in Figure 13). Based on information about the node
security context (captured by the Node Context Monitor),
this loop tunes security attributes such as assigning a differ-
ent role to a subject in order to reduce his privileges in a
hostile environment, without modifying the rest of the node
authorization policy. For instance, when a node is attacked,
the security level of a highly sensitive resource could be
increased from Confidential to Top Secret to minimize
possibilities to access the resource.
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Figure 13. Node-Level Self-Protection Loop

Figure 14. Authorization Architecture

VII. AUTHORIZATION ARCHITECTURE

The ASPF authorization architecture integrates the self-
configuration and self-protection models into the XACML
authorization framework (see Figure 14). XACML defines
4 main components for policy enforcement (PEP), decision-
making (PDP), administration (PAP), and management of
attributes (PIP) [22]. In the VSK architecture: the PEP is
the Virtual Kernel (VK) component, which enforces autho-
rizations on execution resources; the PDP is the Decision
Engine component; the PIP is the Attribute Manager (AM)
component that provides additional information for access
validation. The authorization policy is stored in the Rule
Manager (RM) component.

Access requests to resources (located in the execution
space) are forwarded to the Decision Engine and transformed
to an ABAC-compliant request. Attributes are fetched from
the Attribute Manager, and the request is validated against
the authorization policy. The decision is then enforced by
the VK by reconfiguring the execution space to establish
access to requested resources.

ASPF may be seen as an enhanced PDP. Pure decision-
making is extended with autonomic capabilities to generate
or tune the security policies contained in the VSK ACM
based on policy sets written by a cluster network adminis-
trator.

Figure 14 shows how ASPF realizes the two self-
protection control loops described in Section VI-E. The
cluster-level self-protection model together with the node-
level self-configuration model achieve a global control loop
which updates both rules and attributes of authorization
policies according to cluster context and node profile in-
formation. The node-level self-protection loop tunes security
attributes based on node context information. The overall ar-
chitecture not only performs access control enforcement and
decision-making. It also improves management of authoriza-
tion policies, notably by enabling context-aware adaptations
thanks to autonomic features.
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VIII. IMPLEMENTATION

A first prototype implementation was realized including
a set of devices running a kernel composed of VSK and
of a node-side ASPF component (implemented using the
THINK [30] component-based OS framework), and a cluster
authority server (implemented in Java). DTE, MLS and
RBAC security policies are currently supported, with 10
subjects (threads) and 60 objects (system calls) to model
a typical embedded OS environment, and 3 security levels
for the cluster security context. Cluster policies are filtered
according to active subjects or objects described in the node
profile. The resulting attribute mappings and rules are then
loaded inside the VSK via a dedicated reconfiguration inter-
face ReconfVSK allowing to change dynamically security
attributes and policy rules.

IX. EVALUATION

The self-protection capabilities of the framework
(ASPF+VSK) were evaluated in terms of overall response
time and resiliency to attacks. A qualitative assessment
of the security of the framework is also given. All
measurements were performed on a 2.7GHz DELL
OptiPlex 740 desktop PC with Linux/Ubuntu 9.04 and 1GB
of RAM, on which are run the cluster authority server and
node simulations.

A. End-to-End Response Time

We measure the overall latency to complete a full self-
protection loop for adaptations at the cluster and node levels.
Evaluation results for each step of the loop are shown in
Figures 15a and 15b for different types of security policies.

In the first benchmark, detection of an attack on a cluster
of 100 nodes in a steady state is simulated by direct update
of the cluster security context. In practice, this step would be
performed by an Intrusion Detection System (IDS) such as
Snort, with 1ms as typical order of magnitude for attack
detection and countermeasure initiation. The next steps
are generation of a node-specific policy (given times are
averaged on the number of nodes), invoking the node VSK
to load the policy, kernel reconfiguration with the new policy,
and return to the steady state. The overall latency averaged
over different security models is 33.92ms.

In the second benchmark, attacks are detected by a
node context handler. The next steps include invoking the
VSK, tuning security attributes to adapt to the new security
context, and returning to a steady state. The measured overall
latency for this adaptation loop is 1.15ms.

Overall, the adaptation response times seem reasonable,
since the time between two policy reconfigurations is typ-
ically from a few seconds to one minute, for instance
when switching between wireless networks in different
locations. As expected, node-level adaptations are much
lighter than cluster-level reconfigurations. This is in part due
to the ABAC approach: the same authorization rules may

be applied, only attributes values being tuned. For highly
dynamic environments, this design makes self-protection
more lightweight, allowing to follow small variations of the
context, without regenerating a full policy.

B. Resilience

To measure the effectiveness of self-protection using
ASPF, we use the methodology for benchmarking self-*
capabilities of autonomic systems proposed in [31] based
on injection of disturbances (see Figure 16a). The idea,
coming from dependability benchmarks, is to introduce in
the System Under Test (SUT) disturbances in the form
of attacks or faults, and to measure the impact on the
performance workload. This type of benchmark, already
used to assess self-healing abilities, measures how well the
SUT adapts to the injected changes in terms of speed of
recovery, impact on performance, etc.

In our case, the SUT is the set VSK+ASPF on which
is applied a workload to validate access requests from the
execution space. We measure the impact on throughput
(number of requests per second validated by the VSK, av-
eraged over a sliding sampling time window τ ) of updating
security policies to respond to injected attacks. An attack
from a malicious node is simulated by directly changing
the cluster security context at the beginning of an injection
slot, and waiting from the SUT to come back to a steady
state. The results are shown in Figure 16b for τ = 1ms
and τ = 0.16ms, which is about the latency value for
an end-to-end reconfiguration. The decrease in throughput
due to security adaptations depends on the sampling slot
value: 89% for τ = 0.16ms (worst case), but only 15% for
τ = 1ms (standard situation). These results show that the
system is able to protect itself effectively with a reasonable
performance cost. The recovery time is almost immediate
for τ = 0.16ms, and about 2ms for τ = 1ms. Thus, the
system is able to complete successfully its reconfiguration
in times which are largely acceptable. These metrics tend
to show that ASPF provides self-protection with minimal
impact on system resources.

C. Security Evaluation

Evaluating the quality of the autonomic response is
harder: does the system remain secure after a security re-
configuration? To avoid rogue third parties to directly update
node authorization policies inside the VSK, a single recon-
figuration interface (ReconfVSK) is introduced as unique
entry point to control the VSK. This interface remains
internal to a node, to avoid policy update requests coming
from the network aiming to lower node security settings.
ASPF behaves as a distributed security management plane
which guarantees complete mediation over this interface: all
authorization policy modifications may only be issued by
the Node Adapter, Node Authority, and Cluster Authority
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(a)

(b)

Figure 15. Self-Protection Latencies: (a) Cluster-Level; (b) Node-Level.
(a)

(b)

Figure 16. Benchmarking Self-Protection Capabilities: (a) Principle; (b) Results.

components along a trusted path. The link between node-
side and cluster-side ASPF components is also assumed to be
a secure, authenticated channel to avoid man-in-the-middle
attacks or rogue cluster authorities. Finally, an MMU-like

hardware mechanism in the node prevents circumventing the
Node Adapter component. These features qualify ASPF as a
strongly protected management plane over VSK authoriza-
tion mechanisms.
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The underlying VSK infrastructure which serves as foun-
dation for ASPF was also evaluated in terms of security.
Three main threats were identified:

1) An application-level component gains illegitimate ac-
cess rights through an existing binding. For bindings,
the current THINK framework does not distinguish
between read and write actions, i.e., a binding for a
read access action could be used to perform a write
invocation. Thus, a malicious component could per-
form a privilege escalation through such a binding, as
there is currently no checking mechanism in THINK
to prevent it.

2) An application-level component illegally accesses an-
other such component by bypassing VSK protection.
The VSK limits itself to checking and validating
access requests based on presented attributes. How-
ever, an illegal access bypassing the kernel remains
possible, as in THINK an invocation may directly
access to a physical address without any control.

3) An application-level component illegally accesses the
VSK. This threat is an extension of the previous one:
since VSK is also built on the THINK framework,
access to the kernel by directly jumping to a physical
address may be possible.

The first threat may be mitigated by extending the definition
of interfaces of the THINK framework with access action
types. During compilation, checking may be included to
determine if method invocations match authorized access
types. The second and third threats correspond to bypass
attacks. A MMU-based hardware mechanism is usually used
to avoid circumventing reference monitors. Such mecha-
nisms may be used to prevent bypass of VSK authorization
checks. One MMU solution for component-based OSes
was implemented in CRACKER [19]: the MMU organizes
components into different memory pages according to their
security level, and performs additional checking for inter-
page invocations. For some hardware platforms like AVR or
ARM which do not support MMU, a tool was proposed for
code checking which replaces memory access by a pointer to
a manager for security policy validation [32]. We believe that
isolation between application-level components and the VSK
may be achieved through these two categories of solutions.

X. APPLYING ASPF TO CLOUD INFRASTRUCTURES

We now further validate the framework design by showing
through a short case study that ASPF is generic enough
to be applicable to other types of large-scale systems than
simply pervasive networks. In the sequel, we focus on cloud
computing infrastructures. We first recall some of the main
security issues of those environments (Section X-A), high-
lighting the need for self-protection mechanisms. We then
present the targetted self-protection scenarios (Section X-B).
We finally show how the ASPF core model (Section X-C),

extended model (Section X-D), and authorization architec-
ture (Section X-E) may be refined to realize and coordinate
several self-protection loops in a cloud setting.

A. Towards Self-Protecting Clouds

Cloud computing raises many security challenges [33],
notably due to vulnerabilities introduced by virtualization of
computing resources, and unclear effectiveness of traditional
security architectures in fully virtualized networks. One of
the main issues is how to guarantee strong resource isolation,
both on the computing and networking side in a multi-tenant
environment.

Few solutions are available, usually addressing only one
of the two aspects [34], [35]. The extremely short response
times required to activate system defenses efficiently, and
the impossibility of manual security maintenance call for
a flexible, dynamic, and automated security management
of cloud infrastructures, which is clearly lacking today. A
framework enabling self-protection of a cloud infrastructure
could provide answers to some of those challenges, making
ASPF an interesting candidate to reach this objective.

In the cloud, virtualization has two facets:
• Computing resources are abstracted away from the

hardware in the form of virtual machines (VMs) isolated
by a hypervisor on each server of a data center. Threats
come at two levels of granularity: at the host level,
through weaknesses either in the VM (guest OS) or the
hypervisor; and at the cloud-level, mainly in the form
of network-level attacks found in traditional security
environments (e.g., DDoS). An autonomous security
management framework for the cloud should thus put in
place self-protection loops at each of those two levels.

• Network resources (routers, firewalls,...) themselves
become virtualized, e.g., as virtual appliances. Net-
work zones where traffic could be separated physically
or logically using VLANs or VPNs are replaced by
logical security domains which may have variable
boundaries. It is thus critical to be able to manage
security autonomously in such “islands”. The security
management framework should thus also provide self-
protection abilities in logical security domains, called
VSBs (Virtual Security Domains) in the sequel.

B. Cloud Self-Protection Scenario

We explore the realization of adaptable quarantine zones:
a number of VMs considered as compromised are isolated
from the data center temporarily. Confinement may be lifted
when the risk has decreased, and the VMs not considered
hostile any more.

We assume that on each physical machine of the data
center is installed a firewall component which allows to con-
trol strictly communications between VMs: an authorization
policy specifies which interactions are allowed/forbidden.
This virtual firewall may for instance be located in the
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domain 0 of a Xen hypervisor. Additional firewalls may
also be placed at the cloud level to control inter-machine
communications. The authorization policy is reconfigurable
dynamically according to the estimated level of risk. Self-
protection of the virtualized infrastructure then consists in
adapting this set of policies according to the execution
context of the data center, more or less hostile. Depending
on alerts generated from an IDS (local or distributed in the
data center), the most adequate authorization policy is au-
tonomously selected, and installed in the different firewalls
to realize hardened control over VM communications, and
enforce the quarantine zone (see Figure 17).

In what follows, the quarantine zone is implemented at
three levels of granularity: (1) within in physical server
(machine-level self-protection); (2) within a VSB (logical
self-protection); and (3) at the cloud level (system-level self-
protection). The next sections describe how the ASPF core
and extended models may be refined to realize those 3 self-
protection loops.

C. ASPF Core Model

1) Resource Model: This model describes the organiza-
tion of a cloud infrastructure (see Figure 18). As for the
pervasive case, entities derive from a generic Resource class.

• The System class represents the overall cloud infras-
tructure to be protected, physically composed of a set
of machines and logically divided into several VSBs.
Both physical and logical isolation are realized through
Authorization Policies.

• A Machine is a server in the data center. It hosts several
Virtual Machines (VMs), isolated by an hypervisor,
which may create, destroy, or migrate VMs on demand.

• The VM is the first-class architectural component of
the cloud. It runs a guest OS on top of the hypervisor,
which manages VM resources.

• The VSB is a logical unit of VM isolation, e.g. to
compartimentalize different services. VMs belonging
to a VSB may be distributed on several machines.
VSBs may be strictly isolated between each other using
network-level mechanisms.

• A Local VSB contains all VMs of a VSB which reside
on a given machine. It realizes local isolation from
VMs of other VSBs in the machine. VM isolation at
the VSB level is achieved by collaboration between all
the corresponding Local VSBs.

2) Security Model: As for the pervasive case, access to
resources is controlled by authorization policies. However,
in the cloud, the security model features several types of
policies since the resource model is richer (see Figure 19).

• The System Authorization Policy contains all access
permissions to cloud resources. It will be enforced by
the System ACM component at the cloud level.

• The VSB Authorization Policy contains access permis-
sions in the scope of a VSB: it controls VM access

at a logical level (the VSB security domain), regard-
less of the VM physical location. If we assume that
access between two VMs belonging to different VSBs
is always denied (strict isolation between VSBs), the
System Authorization Policy may be viewed as the
collection of VSB Authorization Policies. Policies in
each VSB may be specified in different authorization
models (e.g., DTE, MLS, or RBAC), as each VSB is a
security island where policies may be administrated in
a specific manner.

• The Local VSB Authorization Policy is the projection
of the VSB Authorization Policy inside a machine, and
thus corresponds to two types of situations: VMs are
co-located on the same machine; or VMs reside in
different machines. In the former situation, access may
be directly validated by at the machine-level. The latter
calls for inter-machine collaboration.

• The Machine Authorization Policy is the collection
of Local VSB Authorization Policies for all Local
VSBs in the machine. Due to possible heterogeneity
of authorization models between VSBs, in the general
case, the Machine Authorization Policy will be a set of
Local VSB Authorization Policies specified in different
models. This policy will be enforced by the Machine
ACM component residing on each machine.

In our cloud model, to control inter-VM communications,
policy enforcement is performed both at the machine level
and the system level. We describe next a simple solution,
other alternatives being possible.

If the VMs reside on the same machine, the Machine
ACM applies the Machine Authorization Policy to vali-
date the request. Since by default the VMs reside in the
same VSB, validation is straightforward by enforcing the
corresponding Local VSB Authorization Policy. However,
since Local VSB Authorization Policies may be described
in different models, a policy-neutral solution is required
for access control enforcement at the machine level. Using
ABAC for policy specification allows to achieve that goal
as in the pervasive case.

If the VMs reside in different machines, the Machine
ACM of the requesting VM checks in its Machine Autho-
rization Policy whether this VM has permission to access an
external machine. Control is then transferred to the System
ACM which checks in the System Authorization Policy
whether inter-machine communication to the target VM is
allowed. Finally, the Machine ACM of the target VM checks
that requests to this VM coming from a remote machine
are allowed. Such a three-step validation of requests allows
authorization to be more efficient and scalable (local policies
do not deal with inter-machine communications) and to
check consistency of distributed policies at the system level.
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Figure 17. An Adaptable Quarantine Zone.

Figure 18. Cloud Resource Model.

D. Extended Models

The extended models describe the realization of several
self-protection loops at different levels of granularity in the
cloud, to address threats targeted at a machine, a logical
security domain (i.e., a VSB), or the cloud itself by updating
the corresponding authorization policies.

1) Machine Extended Model: If a malicious VM com-
promises the hypervisor [36], [37], the threat may spread to
all the VMs residing on the machine, which may need to
be confined. Defeating such attacks is the objective of this
self-protection loop (Figure 20).

When an attack is detected by the Machine Context
monitor, the Machine Self-Protection Manager applies a
Machine Self-Protection Governance Policy to adapt the
Machine Authorization Policy to the current situation, policy
which will be propagated to the authorization policies of
each Local VSB on the machine. At the same time, the
manager collaborates with the System Self-Protection Man-
ager to determine whether further counter-measures should

be triggered at the cloud level.
2) VSB Extended Model: This self-protection loop (Fig-

ure 21) addresses a wider scope: it aims to defeat attacks
which have spread into a logical security domain, e.g., by
isolating compromised VMs. The VSB Authorization Policy
is updated to fit the evolving VSB Security Context – those
modifications are propagated to the System Authorization
Policy to maintain policy consistency. A self-configuration
loop is then launched to refine this policy into corresponding
Local VSB Authorization Policies – the modifications being
propagated to the Machine Authorization Policies.

3) System Extended Model: Two events may launch
the system self-protection loop (Figure 22): detection of
a cloud-level attack through System Context monitoring;
or a request from a Machine Self-Protection Manager for
increased counter-measures, faced with an anomaly which
cannot be handled at the machine level alone. Regarding
self-protection, the System Self-Protection Manager tunes
the System Authorization Policy following the run-time
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Figure 19. Cloud Security Model.

Figure 20. Machine Extended Model.

adaptation strategy defined in the System Self-Protection
Governance Policy. This update is propagated towards the
relevant VSB Authorization Policies. As in a pervasive
case, on each machine, a self-configuration mechanism then
translates each VSB Authorization Policy into a Local VSB
Authorization Policy, finally updating the Machine Autho-
rization Policy.

E. Authorization Architecture

An authorization architecture called SECloud was defined
to implement the previous self-protection models. SECloud
refines the ASPF authorization architecture. As shown in

Figure 23, authorization validation is the result of a col-
laboration between System and Machine ACMs. SECloud
consists of a number of server-side components installed
in the cloud service provider network to control System,
VSB, and local VSB functionalities, while the machine-side
components essentially apply authorization policy adaptation
decisions taken at the other end-point, and control access
among local VMs. Such an architecture is currently under
implementation.
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Figure 21. VSB Extended Model.

XI. CONCLUSION

This paper presented ASPF, a policy-based security man-
agement framework illustrating the design of an autonomic
security manager to control OS-level authorization mech-
anisms in a pervasive device. ASPF implements several
self-protection loops, authorization policies being adapted
according to security context variation at both the network
and device levels. Policies are described with an attribute-
based extension of XACML to support policies specified
in multiple authorization models. Performance, resilience,
and security evaluations show that, together with VSK,
ASPF provides strong and yet tuneable security while still
achieving good performance, making it suitable for self-
protection of pervasive systems. ASPF is also applicable to
other types of large-scale systems such as cloud computing
environments.

Current work focuses on the definition of the security
adaptation strategy. We are currently investigating the ap-
proach where autonomic management strategies are spec-
ified using domain-specific languages (DSLs) [38]. Cur-
rent ASPF adaptation strategies are purely action-based.
However, higher-level strategies using objective or utility
function policies are also desirable [39]. By enabling the
specification of governance strategies with richer types of
policies, the DSL approach should allow describing self-
managed security at different levels of granularity which
can be refined (e.g., with notions of policy continuum [40]),
and thus evolve towards greater autonomic maturity in the
corresponding systems.
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