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Abstract-Web application scanners detect and provide some 
diagnoses for specific vulnerabilities. However, scanner 
performance as well as the damage potential of different 
vulnerabilities varies. This undermines the development of 
effective remediation solutions and the reliable sharing of 
vulnerability information. This paper describes the 
development of fuzzy classification metrics that are used to 
grade web application scanners and vulnerabilities so that 
scanner performance can be evaluated and confidence levels 
can be computed for vulnerability reports. These metrics help 
derive a level of assurance that will support security 
management decisions as well as enhance effective remediation 
efforts.  
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I. BACKGROUND AND MOTIVATION 
 
Contemporary detection of software vulnerabilities in web-
based systems is accomplished via web application scanners 
[21, 25]. However, depending on the capabilities of these 
scanners, different vulnerability reports generated will have 
a widely varying level of trustworthiness. This raises critical 
concerns especially when these reports are used to estimate 
system risks for management decisions and the development 
of remediation processes.  
 
Risk analysis is inherently a complex process fraught with 
ambiguity and uncertainty. Traditional risk approaches are 
usually based on assumptions of known vulnerabilities or 
threats and are thus not suitable for contemporary web 
services and applications that exhibit a degree of platform 
inter-operability and dynamic content. In different web 
applications, some vulnerabilities are also more dangerous 
than others in terms of potential damage/risks [1, ICIMP 
2009]. These issues create a challenge to develop a quality 
assurance mechanism for scanner generated reports. 
Qualified reports can then support a trusted level of analysis 
of system risk as well as being a more dependable resource 
of shared system security information. 
 
Our assurance mechanism described in this paper focuses on 
supporting more reliable risk analysis of web-based systems 

and is based on fuzzy metrics that are used to calibrate 
scanner performance as well as vulnerabilities. Our 
approach also forms part of a system framework that 
achieves standardization of scanner reports across different 
web technologies [2-4]. The standardization is necessary 
since there has been a rise in the number and type of 
scanners and vulnerabilities. Scanner algorithms evolve as 
the vulnerabilities evolve. For any organization that had a 
greater requirement for security, it would be more advisable 
to rely on several algorithms instead of just one since these 
algorithms perform differently in different scenarios. The 
scanner results can then be collated to give a more 
significant output in a standardized format. Our approach 
would benefit the Security Administration and Audit groups 
of an organization or enterprise in ensuring scalable security 
enforcement and compliance against an unpredictable 
vulnerability backdrop.  
 
In this paper, our approach utilizes the standardized scanner 
results generated, together with scanner performance and 
vulnerability calibrations, to compute associated confidence 
levels with these results.  
 
The rest of the paper is organized as follows. Section II 
presents a review of existing research. Section III sums up 
the research issues based on the review and describes the 
requirements. Section IV details the design of the quality 
assurance metrics while section V presents the design of the 
scanner and vulnerability grading systems.  Section VI 
exemplifies the calculation of the 1st and 2nd degree 
confidence levels for vulnerability reports while Section VII 
provides an illustrative example to describe the working of 
the framework. Section VIII concludes the paper followed 
by the references. 
 
 

II. REVIEW OF EXISTING RESEARCH 
 
It is difficult for decision makers to identify entire network 
threats and collect precise and adequate data to estimate all 
probable risks due to vulnerabilities or threats.  
Furthermore, risk analysis for web service security and 
applications is not only limited to determining recognized 
web threats, but should also estimate potential risks.  A 
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review of the more recent works that have had some 
influence in this research is described in this section. 
 
In [14] an extended form of the Pseudo-Order Preference 
Model (POPM) was used to estimate the imprecise risk of 
web services based on richness of information and to 
determine their ranking using a weighted additive rule. A 
fuzzy logic based approach was used to calculate 
information characteristics provided by the web service. 
There are 3 models used in this process a) Pseudo-order 
preference model, b) Semi-order preference model and c) 
Complete-preorder preference model. Each model is 
executed if and only if a condition is reached. Each model 
was given an Outranking relation which the research states 
would affect the decision making capabilities for the risk 
analysis. The decision makers have been stated as useful 
parameters in helping the experts making their decisions. 
The future work in this model includes the selection of an 
appropriate threshold for the preference relation, defining an 
appropriate threshold for the Indifference preference. The 
use of fuzzy logic by this research, however, does not 
extend to measure differing security tool performance and 
vulnerability severity. 
 
In the research [15], the software code has been taken and 
analyzed for security patterns. The paper shows the results 
of experimenting with J2EE code with a MySQL back-end 
and JBoss Application Server. The various software security 
patterns of Intercepting Validator, Guard of Secure Proxy 
with Secure Pipe, Container Managed Security and Secure 
Logger have been analyzed with how implementation of 
each affects the vulnerability being used on the system. A 
fuzzy approach has been used by having a linguistic value 
for every generated fuzzy equivalent range such as low, 
medium, high, very high etc., This has been used to analyze 
the effectiveness of the various security patterns. The 
effectiveness of the patterns against primary attack evens 
i.e. events that lead to execution of an attack has also been 
analyzed. While each pattern has a varying effectiveness in 
varying scenarios, the code with security patterns 
implemented has been proven to always be more secure to 
the ones that are not following the patterns. Future work of 
the project involves the creation of newer patterns that have 
not been mentioned above. This approach uses a whitebox 
methodology to test for code patterns that have a less 
likelihood of getting affected by certain vulnerabilities. Our 
approach compliments this research by ensuring if these 
code patterns have been designed and implemented 
securely. 
 
The research [16] describes the need to prevent or manage 
the damage caused by security threats. The research 
describes that the web-server based applications must be 
made in such a way that they incorporate the ability to self-
heal after an attack. The authors describe how this can be 
made possible by the basis of data obtained from anomaly 

detection. The anomaly detection data is then processed 
using a Discrete Finite Automate (DFA) to detect malicious 
web requests. An anomaly based detection combined with 
DFA needs to be trained in the beginning to find which 
anomaly detection data matches a true positive attack and 
the patterns of such requests are observed by the training 
algorithm. The patterns are then detected after the training 
and such requests are suggested to be blocked or sent to a 
more secure, but less functional server to protect the found 
and restored. This approach is suitable for systems that are 
holding highly critical data that cannot be changed but 
would need extensive training and validation and could be 
expensive to implement. It needs to be implemented at 
every server. It is not a preventive technique but a criterion 
for recovery when an attack is observed. Our approach, on 
the other hand, is a part of a framework that would be able 
to provide remediation based on the observed attack but not 
an automated recovery. 
 
The research in [12] proposed a method for identifying and 
charting software exposure to un-patched vulnerabilities. 
Disclosed vulnerabilities are divided into 2 types. The first 
comprises of vulnerabilities that are publicly known with no 
patch available from the vendor. The second comprises of 
vulnerabilities that are publicly known with a patch 
available from the vendor. By calculating the Daily 
Vulnerability Exposure (DVE) for all un-patched 
vulnerabilities for a continuous period of time, an exposure 
chart is obtained. Using the chart’s help, it is possible to 
ascertain how long a vendor takes to patch and if the patch 
is effective, by calculating the DVE after the patch date. The 
exposure chart could also be used to calculate the severity 
metrics used by the National Vulnerability Database (NVD). 
The DVE is a severity metric that is based on how much the 
vulnerability is graded in terms of time elapsed, from the 
date it is discovered till the date a patch is available. The 
vulnerabilities handled here are generally in the new and 
Relatively new categories of our approach. These have been 
described in the section V. 
 
The research in [13] is oriented towards the quantitative 
characterization of the vulnerabilities in operating systems. 
A time-based model for the total vulnerabilities discovered 
is proposed and fitted to the data for Windows 98 and 
Windows NT 4.0. Being a time-based model, it is able to 
obtain an indication of the expectancy of the vulnerability 
being targeted based on the phase the system is in. An 
alternative effort-based vulnerability model analogous to 
software reliability growth models was also proposed. Both 
models fit well and the fit is significant, however, further 
development is necessary before confidence levels 
associated with the detection of vulnerabilities can be 
assessed. 
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III. RESEARCH ISSUES AND REQUIREMENTS 
 
While data classification can act as an enabler for a more 
effective diagnosis and calculation of DVE helps in 
determining patch effectiveness [12], the widely varying 
detection capabilities encountered during scanning as well 
as the differing threat / risk levels posed by individual 
vulnerabilities have not been addressed. 
 
The approaches [10][5][11] have been influential in 
validating the use of fuzzy logic in classification. The use of 
a neural network is an effective method in developing an 
inference engine. However, it needs to a lot of training data 
and this data can influence the working in a very significant 
way. By using suitable heuristics instead gives more 
stability to the system against any misclassification errors 
and also reduces any complexity that could be faced while 
training a neural network.  
 
The scanner output could be right or wrong depending upon 
the algorithms used by the scanner and the database 
supported by the scanner. From the intrusion detection 
research stated above [5][11] it can be observed that the 
intrusion detection models also use several tools to first 
identify the various suspicious events and then have some 
decision making processes to deal with such observed 
events based on fuzzy diagnosis. This research also adopts 
such an approach to deal with the web vulnerabilities 
discovered by the scanners. However, this is the only 
similarity between the approaches in this research and the 
above stated works [10][5][11]. 
 
In our research, we address the variable detection capability 
of scanners and different threat / risk levels posed by 
individual vulnerabilities. Our approach grades web 
vulnerabilities and scanners quantitatively via expressions 
based on fuzzy truth values. The requirements of our 
approach are stated as follows: 
 
1. Metrics for vulnerabilities and scanner performance 

may be calibrated empirically prior to analysis making 
this a more practical and flexible methodology. 

 
2. Web vulnerabilities and scanner performance may be 

classified and ranked in a reliable and informative way. 
 
3. Scales easily to cover new vulnerabilities, vulnerability 

variants and scanners. 
 
4. Supports more effective management and remediation 

decisions and facilitates occurrence estimation of 
classified vulnerability. 

 
 

 
 

IV. PRELIMINARIES 
 
In this section, we define and explain the terminologies that 
will be used in the rest of the paper. 
 
Scanners are applications that use suitable algorithms to 
detect web vulnerabilities. 
Fuzzy sets are sets whose elements have degrees of 
membership. An element mapping to the value 0 means that 
the member is not included in the fuzzy set, while a 
mapping to the universe of disclose, where the universe of 
disclose represents the entire set of members possible and 
the fuzzy sets they belong to. A diagrammatic representation 
is given in Figure 1.  A value of 1 describes a fully included 
member. Mapped values strictly between 0 and 1 

characterize the fuzzy members. 
 

Figure 1. Venn Diagram of a fuzzy set 
A positive vulnerability refers to a vulnerability that is 
present in the website at a specified instant and there is 
evidence to support it.  
 
A negative vulnerability refers to a vulnerability that is not 
present in the website and can be proved to a satisfactory 
level. 
 
The calibration phase is the time period during which fuzzy 
metrics are calibrated before the scanner is ready to generate 
vulnerability reports. 
 
An instance of a vulnerability detected present (absent) by a 
scanner for a given website can be defined as that 
manifestation (or non-manifestation) of the vulnerability 
that occurs during a specified period of time where there has 
been no change in scanner algorithm, scanned website or 
vulnerability definition.  
 
Test websites are those websites that have been custom 
designed to contain or not contain specified vulnerabilities 
for the purpose of testing the scanners. The test websites are 
used mainly in the calibration phase. 
 

  Universe of 
Disclose 
 
Set 1 
 
Set 2 
 
Member (Set 
1=>1; 
Set 2=>0) 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Ground truth is the true value of whether the vulnerability is 
present or absent. It is an absolute value i.e. the vulnerability 
is present or it is absent. 
 
The Likelihood Ratio is the ratio of the probability that a 
particular vulnerability would be predicted when it matches 
the ground truth to the probability that it would be predicted 
erroneously.  
 
Sensitivity is the proportion of correct detections of 
vulnerability presence out of all true instances of a particular 
scanner’s detection. It can be computed in both a 
vulnerability specific way as well as in a scanner specific 
way. When calculated in a scanner specific way, it is 
averaged over all the vulnerabilities. It corresponds to the 
correct detection rate relative to ground truth.  
 
Specificity is the proportion of false detections of 
vulnerability presence out of all false instances of a 
particular scanner’s detection. It can be computed in both a 
vulnerability specific way as well as in a scanner specific 
way. When computed in a scanner specific way, it is 
averaged over all specified vulnerabilities.  
 
Cross-site request forgery (CSRF) is an attack which forces 
an end user to execute unwanted actions on a web 
application in which the end user is currently authenticated. 
 
Cross-site scripting (XSS) attacks occur when an attacker 
uses a web application to send malicious code, generally in 
the form of a browser side script, to a different end user. 
 

 
V. DESIGN OF CLASSIFICATION METRICS 

 
In our proposed design (Figure 2), calibration forms an 
important and integral part of the framework. The 
calibration process makes use of two grading systems: 
scanner grading system and vulnerability grading system. 
Scanner and vulnerability metrics are first calibrated by the 
respective grading systems before any confidence levels and 
diagnostics are computed.  
 
Grading can increase the reliability of reports obtained by 
allowing for their evaluation based on the grades of the 
various scanners that detected the specified vulnerability 
and threat/risk posed by the vulnerability. Grading of 
scanners and vulnerabilities are computed based on scanner 
specific truth-values and vulnerability specific truth-values, 
respectively. Scanner specific and vulnerability specific 
truth-values form fuzzy sets. The assurance of a scanner 
based on the vulnerability it is able to detect can provide an 
assurance of quality in the vulnerability reports provided by 
various scanners.  
 

Using the grading results, low performance scanners can be 
selectively upgraded or omitted and vulnerabilities with 
high damage potential can be identified and affected 
systems isolated. Additionally, computation of report 
confidence can also be carried out. For example, a low 
confidence level obtained while the vulnerability is detected 
would mean that there is a low likelihood that the 
vulnerability is actually present. On the other hand, a high 
confidence level implies that there is a high probability that 
the detected vulnerability will not be a false positive. The 
confidence level thus obtained is an assurance of the risk 
analysis for the various vulnerabilities that has been done on 
the particular website location. 
 
In the next few sub-sections, we detail the development of 
the framework design based on the requirements and from 
the assertions made. The assertions form an integral part of 
the system that provide a basis for the subsequently 
proposed metrics. 
 
A. Assertions made 
 
Assertion 1: 
Some vulnerabilities are more difficult to exploit than 
others. 
 
Not all vulnerabilities are equally susceptible to exploitation 
and the potential damage that can be caused will also not be 
the same. Hence, a vulnerability grade system needs to be 
present to provide a better diagnosis of the various 
vulnerabilities that are detected by the web application 
scanners. 
 
Assertion 2: 
Web-based vulnerabilities can be classified into 4 types, 
namely: 
 

i. Evolved Vulnerability: 
If there is recorded detection for the 
vulnerability and there also exists at least 
one recorded exploitation method that is 
still usable. 

 
ii. Dormant Vulnerability: 

If all recorded exploitation methodologies 
can no longer be used and there is at least 
one recorded exploitation method. 
 

iii. Relatively-new Vulnerability: 
If there is no recorded detection but there 
exists at least one recorded exploitation 
method. 
 

iv. New vulnerability: 
If there is no recorded detection or 
exploitation method for the vulnerability. 
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By classifying vulnerabilities into specific types, it is 
possible to evaluate the capability of scanners as well in a 
better way. For example, a less sophisticated scanner would 
not be expected to find a new or even relatively-new 
vulnerability. This would provide a credibility rating for the 
scanner with specific scanner metrics defined in the sections 
to follow. The severity of the vulnerability can also be 
ascertained to a certain degree with this approach. For 
example, a dormant vulnerability resulting from a series of 
successful patches will have a lower severity than an 
evolved one.  
 
Assertion 3: 
The difficulty of detection of an evolved vulnerability is 
directly proportional to the difficulty of exploiting it. 

 
The above assertion is influenced intuitively by the notion 
that if a complex algorithm and/or extended process were 
needed to detect the vulnerability, a proportionate effort 
would be required in effectively exploiting it. In other 
words, if the vulnerability can be easily detected or 
observable then the skill level / effort needed for 
exploitation is correspondingly less. Given the above 
assertions and the fact that not all scanners will be able to 
deal with a particular vulnerability with the same degree of 
effectiveness, scanning capability must be graded. The 
capability of a scanner to effectively detect a vulnerability is 
represented by an index allocated to it known as SGRADE 
(Scanner Grade). A scanner with a higher SGRADE is then 
better suited to detect the vulnerability than one with a 
lower SGRADE. 

 
Figure 2: Overview of Framework Design 
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Assertion 4: 
The impact level of a vulnerability (vulnerability-
exploitability measure) is likely to vary with varying 
instances of detection and at varying locations. 
 
It has been stated in assertion 1 as to how some 
vulnerabilities may be more difficult to exploit than others. 
It is also true that the same vulnerability may be present in a 
more exploitable location than others. Consider cross-site 
scripting at a site where the vulnerability may be exploitable 
directly. At a later time, perhaps after changes in site 
architecture, the same vulnerability may be exploitable only 
after a series of authorization pages. Hence, the 
exploitability of the cross-site scripting has changed for the 
same website at different instances of detection. Similarly, 
the exploitability of cross-site scripting may also vary due to 
platform differences at various sites. 
 
Assertion 5: 
Existence of one vulnerability may influence the prevalence 
of another. 
 
Steps are usually taken to prevent some vulnerabilities in a 
system. Some other vulnerabilities may, however, still exist. 
These other vulnerabilities may directly or indirectly enable 
the avoided vulnerabilities to bypass the previous prevention 
schemes. An illustrative example is that of cross-site request 
forgery (CSRF) and cross-site scripting (XSS) [19]. If 
cross-site request forgery has been avoided by non-usage of 
JavaScript and secret tokens at each level (which is quite an 
effective methodology), the website is virtually protected 
from CSRF and typical scanners will also declare the same. 
However, if XSS has not been avoided, it can be used to get 
the tokens ahead of time and a hybrid use of CSRF can be 
realized which cannot be detected by the scanners. 
 
Hence, we may define RV1(V2), where RV1(V2) is the 
likelihood of occurrence of vulnerability V1 when 
vulnerability V2 has occurred. 
 
B. Vulnerability Specific Truth-Values 

The various vulnerabilities have their own levels of 
difficulty as defined by the assertion 3. It is therefore a 
necessity to ascertain how scanners react to the various 
vulnerabilities. The scanners themselves need to be graded 
as well, which is described in the section V.C. After the 
computation of the vulnerability specific truth values and 
scanner specific truth values, the difficulty of detection of 
the vulnerability can be ascertained. The difficulty of 
detection is a useful estimation that can help in ascertaining 
the importance of detection thus ensuring a quality-based 
analysis of scanner detections. 
 
Let the vulnerability specific truth values for vulnerability j 
be represented by {V(j)TP, V(j)TN, V(j)FP& V(j)FN}. These 

are also known as {True Positive, True Negative, False 
Positive and False Negative}, respectively. These truth 
values can be used to derive fuzzy metrics that would be 
useful in dealing with discrepancies among different 
scanners detecting vulnerabilities in the system. The 
vulnerability with a higher TP value can be used to 
determine the certainty of the vulnerability being present 
and a high TN value indicates a high probability that the 
vulnerability is absent. 
 
The fuzzy classifiers are defined as, 

 

 

(1) 

 

 

(2) 

 

 

 

(3) 

 

 

(4) 

 

(5) 

 

(6) 

 
Where,  
D ( )={1 if instance of vulnerability j is detected at 
location i or  

  0 if instance of vulnerability j is not detected at 
location i } 

is the number of instances of vulnerability j present at 
location i during calibration 

is the number of instances of vulnerability j falsely 
detected at location i during calibration 

Is the total number of instances of vulnerability j 
used for calibration 

is the total number of instances of vulnerability  j 
falsely detected during calibration 
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is the total number of test websites used for 
calibration 

, , & are the vulnerability 
specific truth values which refer to the vulnerability specific 
true positive, true negative, false positive and false negative, 
respectively. 
C. Scanner Specific Truth-Values 

Different scanner’s output data differ in content, format and 
organization [1, ICIMP 2009]. The data generated by 
scanners depends, to an extent, on the algorithm being used 
in the specific scanner. Some scanners with access to large 
databases are equipped to detect more classes of 
vulnerabilities. Others comprising lightweight 
computational modules provide basic diagnoses while 
several lie somewhere in between. For example, IBM 
AppScan and HP WebInspect are scanners with access to 
large databases while NStalker is associated with a 
relatively smaller database. It is hence necessary to first 
analyze and understand the scanning process as well as the 
capability of the scanner in order to derive the required 
metrics. 
 

Let the scanner specific truth-values be represented by { 
STP, STN, SFP, SFN }. These are also known as {True Positive, 
True Negative, False Positive and False Negative}, 
respectively. These values form an important measure of the 
vulnerability detection capability of the scanner. Derived 
scanner metrics require calibration in order to grade the 
scanner prior to its usage for adequate quality assurance 
based on performance. Calibration of the detection 

capabilities of the scanner is performed with a sample of 
customized websites for positive or negative vulnerabilities 
thus reflecting the performance of a scanner with expected 
results providing a valid basis for a suitable quality check. 
 
In the pre-calibration phase, the system would be unlikely to 
produce results with the levels of reliability expected by the 
user. The scanner metrics are defined with respect to a 
scanner’s prediction capabilities. The prediction capabilities 
of the scanner are then calibrated against the expected 
prediction performance. Vulnerabilities are also calibrated 
in this phase and their fuzzy metrics are defined in section V 
(C.). It must be noted that the classification of 
vulnerabilities in the calibration phase influences the scoring 
by CVSS [7]. Once the calibration phase for the scanner is 
completed, the reports from the scanner can be processed 
for data in a more reliable manner. The fuzzy metrics for 
scanners are defined as follows: 
 

 
 

(7) 
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Figure 3: Fuzzy Logic Diagram 
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(10) 

 (11) 

 

(12) 

 
 
Where,  

is the total number of unique vulnerabilities 
incorporated for calibration. 

is the total number of unique vulnerabilities falsely 
detected by scanners. 

={ , if the instance is unique for that vulnerability || 
0, otherwise} 
EVT is the total number of vulnerability instances evaluated  

and are vulnerability specific truth values 
defined in section V.B 

is the total number of instances of vulnerability  j 

used for calibration 
STP, STN, SFP&SFN are the scanner specific truth values. 
 
Figure 3 shows the graphical representation of the fuzzy 
metrics for the scanner. A similar diagram can also be used 
for vulnerability fuzzy metrics. The region R1 represents the 
true positive STP, the region R2 represents the true negative 
STN and the region R3 is the combined space of false 
positive and false negative SFP and SFN.  
 
 
 

VI. GRADING SYSTEMS 
 

This section describes the design details of the two grading 
systems: the scanner grading system and the vulnerability 
grading system. 
 
A. Scanner Grading System 

The scanner grading system is used to grade the capability 
of a web application scanner. The scanner grading system 
makes use of a scanner database as well as the vulnerability 
databases [17]. The scanner database comprises a table list 
that is maintained for every graded scanner (see Figure 4). It 
contains information on the scanner specific truth values as 
well as the vulnerability specific truth values. The Scanner 
Grade, SGRADE, may be computed for all web-based 
vulnerabilities listed in the vulnerability database. 
 
The overall sensitivity and specificity of the scanners can be 
computed by using the equations, Eqn. 13 and Eqn. 14. 
Sensitivity is the percentage of correctly detected activities 
out of all true instances of a particular class, averaged over 

Figure 4: Table List in Scanner Grading System 
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all activities. Specificity measures the proportion of 
correctly identified negative occurrences to all true negative 
occurrences. If a scanner is more sensitive, it has a greater 
chance of discovering the vulnerability. Similarly, if a 
scanner is more specific, it has a greater chance of 
discovering the absence of the vulnerability.  

  

� 

SSpecificity =
STP

STP + SFN
 (13) 

  

� 

SSpecificity =
STN

STN + SFP  
 

(14) 

Where, 
STP, STN, SFP&SFN are the scanner specific truth values 
defined in section 5.3 
Sensitivity is the sensitivity measure of the scanner 
SSpecificity is the specificity measure of the scanner 
However, a greater sensitivity could also mean greater 
probability of false positives for the scanner. Similarly, a 
higher specificity could mean there are a greater number of 
false negatives for the scanner. For a given scanner, the 
trade-off between sensitivity and specificity depends on the 
vulnerability and the web application being scanned. 
 
B.Vulnerability Grading System: 

As mentioned previously, the representation for the 
vulnerability specific truth values is also similar to Figure 3. 
The vulnerability specific sensitivity and specificity for a 
scanner are defined by Eqns. 15 and 16, respectively. We 
also define the likelihood ratio for both true positive and 
true negative results with the Eqns. 17 and 18, respectively. 
 

 
(15) 

 
(16) 

 (17) 

 (18) 

 
Where, 
VSensitivityis the vulnerability specific sensitivity measure for 
the scanner 

VSpecificityis the vulnerability specific specificity measure for 
the scanner 
VLR+is the likelihood ratio for positive detection 
VLR- is the likelihood ratio for negative detection 
 
VLR+ in Eqn. 17 gives the likelihood ratio of the 
vulnerability to be present given the vulnerability specific 
truth values for the specified scanner. VLR- in Eqn. 18 gives 
the likelihood ratio of the vulnerability to be absent given 
the vulnerability specific truth-values for the specified 
scanner. Combined with the scanner metrics, these could be 
used as a basis in predicting the levels of vulnerability 
present. However, this will hold absolutely true only for 
vulnerabilities that fall under the evolved-vulnerability 
category. 
 
The vulnerability specific sensitivity and the specificity 
metrics can also be used to study the scanner’s performance 
and behavioral characteristics with certain classes of 
vulnerabilities. If the scanner is more sensitive towards a 
specific vulnerability, it will exhibit better detection of the 
presence of that particular vulnerability and if it is more 
specific, it will be more able to detect the absence of the 
particular vulnerability.  
 
A positive vulnerability means that the vulnerability is 
present in the website location at that instant and there is 
evidence to support it. A negative vulnerability means that 
the vulnerability is not present in the website and can be 
proved to a satisfactory level. Assertion 3 implies that some 
vulnerabilities may be more difficult to find and may 
generate false negatives. Similarly, some vulnerabilities 
may be more complex and can lead to the generation of 
false positives. Hence, it is important to grade each 
vulnerability to an adequate level. 
 
Assertion 1 states the need to grade the various 
vulnerabilities with a vulnerability grading system. The 
system could create a list of known web-based 
vulnerabilities from the online vulnerability databases [15], 
classified into evolved, dormant, relatively-new or new 
categories as defined in Assertion 2. 
 
Such a grading would also provide a better understanding of 
the vulnerability. The grading is a constantly changing one 
as the scanner algorithms may change over time with 
upgrades and there are also instances that the vulnerability 
definitions themselves may change [23]. 
 
The difficulty of detection of a vulnerability j is given by 
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(19) 

 
Where,  
D(j) is the difficulty of detection of vulnerability j 
Sn is the number of scanners used 
V(j)TN is the vulnerability specific true negative value for 
vulnerability j for a specific scanner 
V(j)TP is the vulnerability specific true positive value for 
vulnerability j for a specific scanner 
The higher the value of D(j), the more difficult it is to detect 
and the lower difficulty implies the easier detection by the 
scanner. 

TABLE 1: DETECTION EXAMPLE 1 
Vulnerability Scanner1 Scanner2 Scanner3 

Vul1 YES YES YES 
Vul2 YES NO YES 
Vul3 NO NO NO 
Vul4 YES NO YES 

! Vul1 NO NO NO 
! Vul2 NO NO YES 
! Vul3 NO YES NO 
! Vul4 YES YES NO 

 
In the table 1, “VulX” refers to the positive vulnerability 
and “! VulX” refers to the negative vulnerability. Table 1 
has been formed with the assumption that all the scanners 
used in the calibration have been designed with their 
respective algorithms to detect the stated vulnerabilities. 
Applying Eqn. 19 to table 1, we can get 
D(Vul1)=0; D(Vul2)=0.333; D(Vul3)=0.666; D(Vul4)=0.5;  
From the above table we can conclude that the 
D(Vul3)>D(Vul4)>D(Vul2)>D(Vul1) 
 
 

VII. COMPUTATION OF SCANNER REPORT CONFIDENCE 
 
While it is important for the end-user to be able to infer 
from various diagnostic reports, it is also important to be 
able to gauge the confidence of the information within the 
report. Confidence levels are required to ascertain if the 
report can be trusted and the extent of this trust. There needs 
to be a confidence level associated with every vulnerability 
detected by the various scanners. The grading systems are 
used in the calculation of the confidence of the report. 
 
It must be noted that not all scanners agree on the reports 
generated. Some scanner algorithms may be better suited to 
tackle some classes of vulnerability and they are effective 
against these but the same algorithm may be the reason for 
their weaker performance against other classes of 

vulnerabilities. Some scanners have access to a very 
comprehensive database while others suffer from inadequate 
ones. Hence, using the SGRADE (defined in Assertion 3) we 
can specify the performance of the scanner with respect to a 
particular vulnerability. When the results of all scanners 
agree on that vulnerability, the confidence on the report will 
be higher than the confidence due to an individual scanner. 
This factor is also moderated when scanners have a conflict 
in results. The moderation, however, depends on the metric 
values assigned to the scanners by the scanner grading 
system.  
 
The methodology for calculating the 1st and 2nd degree 
confidence is detailed as follows : 
 
To find 1st Degree Confidence. 
 
The 1st degree confidence report gives a report based on the 
various scanner reports on a website location. The various 
scanner and vulnerability specific truth-values are used 
along with the vulnerability reports to give a more useful 
inference to the user. 
 
There are two types of indices that the 1st Degree 
Confidence report can have. They are the positive index and 
the negative index. The report first tries to calculate the 
positive index. This represents the possibility of the 
vulnerability being present. It shows how confident the user 
can be about the vulnerability being present in a scale 
ranging from (>0%) to 100%. Only if the condition given in 
step 7 of positive index is satisfied, the negative index is 
calculated. The negative index represents the possibility of 
vulnerability not being present. The computed output will 
contain only one of the two indices. If any scanner is known 
to lack the detection capability with regard to the 
vulnerability, then the scanner must be excluded from the 
computation. 
 
Positive Index Computation: 

1. Create the set A that contains the respective 
Vulnerability specific VTP or VTN values depending 
on whether the scanner detects the vulnerability or 
not. 

2. Let a0={largest VTP value in A}. If there are no VTP 
values calculate negative index. 

3.  , Where – refers to set 
subtraction. 

4. Rearrange the remaining elements in descending 
order. 

5. A=a0±a1(1-a0)±(a2(1-(a0±a1(1-
a0)))±………….(an(1-(an-1(…(1-a2(1-(a0±a1(1-
a0))))…)))) where   

� a gives the 1st degree confidence 
report 

�  

(20) 
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6. If ai is a VTP value, it is added otherwise, it is 
subtracted.  

7. If a ≤ 0 calculate negative index. 
8. The resultant value will give the confidence level 

for the vulnerability being present from the scanner 
reports obtained. 

 
Negative Index Computation: 

1. Create the set A that contains the respective 
Vulnerability specific VTP or VTN values depending 
on whether the scanner detects the vulnerability or 
not. 

2. A0={largest VTN value in A}  
3.  , Where – refers to set 

subtraction. 
4. Rearrange the remaining elements in descending 

order. 
5. A=a0±a1(1-a0)±(a2(1-(a0±a1(1-

a0)))±………….(an(1-(an-1(…(1-a2(1-(a0±a1(1-
a0))))…)))) where   

� a gives the 1st degree confidence 
report 

�  

(21) 

6. If ai is a VTN value, it is added otherwise, it is 
subtracted.  

7. The resultant value will give the confidence level 
for the vulnerability being absent from the scanner 
reports obtained. 

 
The value of a is the positive or negative index that is 
associated with the report. The general idea behind the 
derivation of a lies in the fact that the positive and negative 
indices can never be a 100%. While the rule in itself does 
not stop them from taking the value of 0%, it is that this 
value could appear. This is because being 0% requires both 
positive and negative indices to be 0 i.e. sufficient scanners 
to nullify the true detection and sufficient scanners to nullify 
the false detection. Hence, the value of a is restricted to be 
always less than 1.  
 
To find 2nd Degree Confidence. 
 
A 1st degree confidence report covers the direct existence of 
any vulnerability. However, a 2nd degree report is necessary 

to cover Assertion 5. The 2nd Degree Confidence covers the 
fact that one vulnerability can have a relationship to or 
influence the existence of another. 

Figure 6: XSS-CSRF Example 
 
The 2nd Degree Confidence report is hence a result of 
combining the confidence reports with the Assertion 5. The 
relationship between two vulnerabilities is given by a value 
ranging between 0 and 1. Every vulnerability has a 
relationship of 1 with itself. The relationship with other 
vulnerabilities is generally less than 1. However, there could 
be exceptions as exemplified by Figure 5. If the 
vulnerability “Use of a Resource after Expiration or 
Release” is present, then the vulnerability “Improper 
Validation of Certificate Expiration” has a lower likelihood 
of presence but if the reverse situation occurs, the presence 
of the vulnerability “Improper Validation of Certificate 
Expiration” would mean the same (if not greater) likelihood 
of the presence of “Use of a Resource after Expiration or 
Release”.  i.e. “Improper Validation of Certificate 
Expiration” has a relationship of 1 towards “Use of a 
Resource after Expiration or Release” but “Use of a 
Resource after Expiration or Release” has a relationship of 

“Use of a Resource after Expiration or Release” 
“Improper Validation of CertiOicate Expiration” 

Figure 5. Relationship example 
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<1 towards “Improper Validation of Certificate Expiration”. 
Quality of the final result is enhanced by the use of these 
relations since they take more factors into account than a 
typical scanner-based risk analysis that are available 
currently [6]. 

 
 

Figure 7: Calculation of 2nd degree report 
 
From the Figure 5, the relation of “Failure to Follow Chain 
of Trust in Certificate Validation” to “Failure to Validate 
Certificate Expiration” can be defined as that of a subset-
superset where the former is the superset and the latter is the 
subset. Such a relationship would also contain the fact that 
the absence of the former does not mean the absence of the 
latter. Another example is that of the Cross-site scripting 
and Cross-site request forgery.  
 
The Cross-site request forgery (CSRF or XSRF) and Cross-
site scripting (XSS) example is one that shows how 
influential the relationships are in a system. From Figure 6, 
it can be seen that even while CSRF is prevented for the 
hacker, if XSS is not prevented, the CSRF cannot be 
considered as an eliminated threat. It should also be noted 
that the reverse is not true.  
 
The Figure 7 shows the calculation of the 2nd degree 
confidence report from the 1st degree report. 
 
Let there be a list of related vulnerabilities for the 
vulnerability v. This list includes both the ones that are 
directly related and those that are indirectly related till a 
satisfactory set of related vulnerabilities is formed. 

Let the a(v) be the 1st degree confidence of vulnerability v. 
If a(v) is a positive index value, then a0(v)=a(v). If a(v) is a 
negative index value, then a0(v)=0. 
 
The above step is the pre-operation step that needs to be 
done to ensure that the fact that the steps taken against one 
vulnerability do not reflect on the decrease in the 2nd degree 
confidence if the Assertion 5 relates to it through another 
vulnerability known to be present. The extent of confidence 
on the vulnerability’s presence, however, depends on the 
strength of the relationship value and the confidence level 
on the vulnerability relating to it. A chain of related 
vulnerabilities could be formed by relating one vulnerability 
to another that is related to another and so on. 
 

 
The Figure 8 shows the relationship between various 
vulnerabilities obtained from a recent analysis. 

 

  

(22) 

 
 
Using the above equation, the a1(v) is calculated for the 
entire set of related vulnerabilities {R}. In case of a closed 
relation eg. v related to v1, v1 related to v2 and v2 related to 
v, then v is not considered related to v2 during calibration of 
v. 
 
As the relationship keeps expanding eg.v related to v1, v1 
related to v2 etc., the same procedure is repeated for a2(v) 
replacing all a0(v) with a1(v), then a3(v) and so on. It is 
repeated till an(v) is calculated. This gives the 2nd degree 
confidence level.  
 
The confidence levels have been found to be a useful 
criteria for evaluation of any given website. A remediation 
database is being designed to give a suitable remediation 
based on the confidence level. Hence a more accurate 
remediation can be provided to the user. 
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Figure 8: Analysis of relationship between vulnerabilities 
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VIII. ILLUSTRATIVE EXAMPLE 
 
Let there be 3 scanners s1, s2, s3. Hence Sn=3. 
Let there be 5 vulnerabilities detected and stored in the 
database v1 v2 v3 v4 v5. 

 
TABLE 2: S-V TABLE 

 s1 
Instance1  Instance 2 

s2 
Instance1  Instance 2 

s3 
Instance1  Instance 2 

v1 Y Y Y Y Y Y 
v2 Y Y Y Y Y N 
v3 Y Y N N Y Y 
v4 Y Y Y N N N 
v5 Y N N N N Y 
 
 

TABLE 3: S-!V TABLE 

 s1 
Instance1  Instance 2 

s2 
Instance1  Instance 2 

s3 
Instance1  Instance 2 

! v1 N N N N N N 
! v2 N N N N N Y 
! v3 N N Y Y N N 
! v4 N N N Y Y Y 
! v5 N Y Y Y Y Y 
 
Table 2 shows the detection for instances where the 
vulnerability is known to be present. Table 3 shows the 
detection where the vulnerability is known to be absent. 
 

TABLE 4: VULNERABILITY SPECIFIC TRUTH-VALUES 

 v1 v2 v3 v4 v5 
s1 {.9 .9 

.1 .1} 
{.92 .8 
.08 .2} 

{.8 .7 
.2 .3} 

{.8 .7 
.2 .3} 

{.7 .6 
.3 .4} 

s2 {.8 .7 
.2 .3} 

{.7 .6 
.3 .4} 

{.7 .6 
.3 .4} 

{.6 .6 
.4 .4} 

{.5 .5 
.5 .5} 

s3 {.7 .6 
.3 .4} 

{.8 .71 
.2 .3} 

{.6 .6 
.4 .4} 

{.9 .8 
.1 .2} 

{.7 .6 
.3 .4} 

 
The Vulnerability specific truth-values in table 4 are 
represented as {VTP, VTN, VFN, VFP} 
 
D(v1)=1-(6/6)=0 
D(v2)=1-(5/6)=1/6=0.1667 
D(v3)=1-(2/3)=1/3=0.3333 
D(v4)=1-(1/2)=1/2=0.5 
D(v5)=1-(1/4)=3/4=0.75 
 
Hence D(v5)>D(v4)>D(v3)>D(v2)>D(v1) 
 
1st degree confidence. 
 
In this example let us consider the 2nd instance of v2 from 
the table 2. 

The results from the 3 scanners are {Y Y N} 
Hence A={.92 .71 .7} and a0=.92 
Hence A={.71 .7} 
a=.92-(.08(.71))+(1-.(92-(.08(.71))))(.7)=0.95896 
In other words, we can be 95.896% certain that the result is 
true. This could mean there is high need for appropriate 
remediation. 
 
2nd degree confidence. 
 

TABLE 5: R-V TABLE 

 v1 v2 v3 v4 v5 
Rv1 - - - - - 
Rv2 .08 - - - - 
Rv3 - - - .05 .04 
Rv4 - - - - .09 
Rv5 - - .1 - - 
 
The Table 5 shows the relationship between the various 
vulnerabilities and the suitable relationship values.  
 
Let us consider the 2nd instance in the Table 2 and calculate 
the confidence for vulnerability v2. Since only v1 is related 
to v2 (There are no indirect relations as v1 is not related to 
any other vulnerability). 
 
We know that for 2nd instance in Table 2,  
a0(v1) =.987{Y YY , all scanners have detected the 
vulnerability as positive} 
a0(v) =.95896 
a1(v) =.95896+.040506=.9994 
 
Hence, the 2nd degree confidence report would suggest a 
possibility of 99.94% for the vulnerability’s occurrence. 
Since a1(v)>a0(v), it implies that other vulnerabilities are 
also present and must be rectified to rectify this 
vulnerability. 
 
Let us consider another example using the 1st instance from 
table 2. 
 
For the vulnerability v5, A={Y N N} 
 
1st Degree Confidence, 
a0(v5) =.7-(.3(.6))-((1-(.7-(.3(.6))))(.5)) =0.28 
 
It can be observed that when there is only one scanner 
supporting the vulnerability, the confidence of report in the 
presence of the vulnerability also drops to a great extent. In 
the case shown above, the confidence report still remains in 
the positive index. 
 
2nd Degree Confidence, 
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The vulnerability v5 is related to v3, which in turn is related 
to v4 and v5, and v4 is related to v5. The 1st degree 
confidences for these vulnerabilities can be given for the 1st 
instance of table 2 as 
 
a0(v3) =.8+(.2(.6))-(1-(.8+(.2(.6))))(.6) =0.872 
a0(v4) =.8-(.2(.8))+(1-(.8-(.2(.8))))(.6) =0.856 
 
v=v5 
 
a0(v) =0.28 
a1(v) =a0(v)+(1-
a0(v))(0.1(a0(v3)))=0.28+(0.72)(0.1(0.872))=0.343 
a2(v) =a1(v)+(1-a1(v))(0.1(a1(v3))) 
 
a1(v3) can be given by, 
a1(v3) =a0(v3)+(1-a0(v3))(.05(a0(v4))+(1-(1-
a0(v3))(.05(a0(v4)))(0.04(a0(v5)) 

but, since v=v5, the underlined portion of the 
equation above cannot be considered 

hence, a1(v3) becomes 
=0.872+(.128)(.05(0.856)) 
=0.877 

 
therefore,  
a2(v) =0.343+0.657(0.1(0.877)) = 0.401 
 
Hence the 2nd Degree Confidence report shows 40.1% 
confidence in the presence of vulnerability v5 compared to 
the 28% confidence showed by the 1st degree confidence 
report.  
 

IX.CONCLUSION 
 
This research has enabled the improved risk analysis of 
web-based vulnerabilities. While several scanners are 
available to detect the vulnerabilities, their varying 
algorithms and proprietary nature makes it difficult to 
ascertain if the vulnerabilities found by them is true or false. 
The methodology used in this paper is a practical approach 
designed to work in spite of the proprietary nature of the 
algorithms while still being able to grade the various 
scanners. The variable nature of a vulnerability is also 
accounted for and the proposed methodology uses fuzzy-
based classification and estimation metrics solve this 
problem. Another problem is the lack of detection of 
vulnerabilities whose presence is also influenced by other 
vulnerabilities. The proposed methodology is an effective 
one to tackle such problems as well. Five assertions have 
been defined to help establish the theoretical aspects of the 
approach. By using relationship between vulnerabilities 
given by assertion 5, the 2nd degree confidence report can be 
used to tackle such a problem. The confidence reports have 
been able to provide the user with valuable information and 
this has been tested with a successful implementation of the 
system. The confidence reports also provide a greater 

reliability of results than that of individual scanner reports. 
The open issues faced in this research include the need to 
grade every scanner for every vulnerability using test sites, 
which can be a very tedious process. The methodology of 
finding the relationship between vulnerabilities is still in 
progress. The development of an inference engine to 
compute the diagnosis is also in progress. The remediation 
database to accurately provide the remediation based on 
confidence level is being expanded to a sizable level of 
vulnerabilities. 
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