
226

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

Abstract-Web application scanners detect and provide some
diagnoses for specific vulnerabilities. However, scanner
performance as well as the damage potential of different
vulnerabilities varies. This undermines the development of
effective remediation solutions and the reliable sharing of
vulnerability information. This paper describes the
development of fuzzy classification metrics that are used to
grade web application scanners and vulnerabilities so that
scanner performance can be evaluated and confidence levels
can be computed for vulnerability reports. These metrics help
derive a level of assurance that will support security
management decisions as well as enhance effective remediation
efforts.

Keywords
Fuzzy classifiers, confidence level, calibration, scanner,
vulnerability, web application

I. BACKGROUND AND MOTIVATION

Contemporary detection of software vulnerabilities in web-
based systems is accomplished via web application scanners
[21, 25]. However, depending on the capabilities of these
scanners, different vulnerability reports generated will have
a widely varying level of trustworthiness. This raises critical
concerns especially when these reports are used to estimate
system risks for management decisions and the development
of remediation processes.

Risk analysis is inherently a complex process fraught with
ambiguity and uncertainty. Traditional risk approaches are
usually based on assumptions of known vulnerabilities or
threats and are thus not suitable for contemporary web
services and applications that exhibit a degree of platform
inter-operability and dynamic content. In different web
applications, some vulnerabilities are also more dangerous
than others in terms of potential damage/risks [1, ICIMP
2009]. These issues create a challenge to develop a quality
assurance mechanism for scanner generated reports.
Qualified reports can then support a trusted level of analysis
of system risk as well as being a more dependable resource
of shared system security information.

Our assurance mechanism described in this paper focuses on
supporting more reliable risk analysis of web-based systems

and is based on fuzzy metrics that are used to calibrate
scanner performance as well as vulnerabilities. Our
approach also forms part of a system framework that
achieves standardization of scanner reports across different
web technologies [2-4]. The standardization is necessary
since there has been a rise in the number and type of
scanners and vulnerabilities. Scanner algorithms evolve as
the vulnerabilities evolve. For any organization that had a
greater requirement for security, it would be more advisable
to rely on several algorithms instead of just one since these
algorithms perform differently in different scenarios. The
scanner results can then be collated to give a more
significant output in a standardized format. Our approach
would benefit the Security Administration and Audit groups
of an organization or enterprise in ensuring scalable security
enforcement and compliance against an unpredictable
vulnerability backdrop.

In this paper, our approach utilizes the standardized scanner
results generated, together with scanner performance and
vulnerability calibrations, to compute associated confidence
levels with these results.

The rest of the paper is organized as follows. Section II
presents a review of existing research. Section III sums up
the research issues based on the review and describes the
requirements. Section IV details the design of the quality
assurance metrics while section V presents the design of the
scanner and vulnerability grading systems. Section VI
exemplifies the calculation of the 1st and 2nd degree
confidence levels for vulnerability reports while Section VII
provides an illustrative example to describe the working of
the framework. Section VIII concludes the paper followed
by the references.

II. REVIEW OF EXISTING RESEARCH

It is difficult for decision makers to identify entire network
threats and collect precise and adequate data to estimate all
probable risks due to vulnerabilities or threats.
Furthermore, risk analysis for web service security and
applications is not only limited to determining recognized
web threats, but should also estimate potential risks. A

Assuring Quality in Vulnerability Reports
for Security Risk Analysis

Deepak Subramanian, Ha Thanh, Le and Peter, Kok Keong, Loh

School of Computer Engineering

Nanyang Technological University
Nanyang Avenue, Singapore 639798

Email: DEEP0018@ntu.edu.sg

 

227

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

review of the more recent works that have had some
influence in this research is described in this section.

In [14] an extended form of the Pseudo-Order Preference
Model (POPM) was used to estimate the imprecise risk of
web services based on richness of information and to
determine their ranking using a weighted additive rule. A
fuzzy logic based approach was used to calculate
information characteristics provided by the web service.
There are 3 models used in this process a) Pseudo-order
preference model, b) Semi-order preference model and c)
Complete-preorder preference model. Each model is
executed if and only if a condition is reached. Each model
was given an Outranking relation which the research states
would affect the decision making capabilities for the risk
analysis. The decision makers have been stated as useful
parameters in helping the experts making their decisions.
The future work in this model includes the selection of an
appropriate threshold for the preference relation, defining an
appropriate threshold for the Indifference preference. The
use of fuzzy logic by this research, however, does not
extend to measure differing security tool performance and
vulnerability severity.

In the research [15], the software code has been taken and
analyzed for security patterns. The paper shows the results
of experimenting with J2EE code with a MySQL back-end
and JBoss Application Server. The various software security
patterns of Intercepting Validator, Guard of Secure Proxy
with Secure Pipe, Container Managed Security and Secure
Logger have been analyzed with how implementation of
each affects the vulnerability being used on the system. A
fuzzy approach has been used by having a linguistic value
for every generated fuzzy equivalent range such as low,
medium, high, very high etc., This has been used to analyze
the effectiveness of the various security patterns. The
effectiveness of the patterns against primary attack evens
i.e. events that lead to execution of an attack has also been
analyzed. While each pattern has a varying effectiveness in
varying scenarios, the code with security patterns
implemented has been proven to always be more secure to
the ones that are not following the patterns. Future work of
the project involves the creation of newer patterns that have
not been mentioned above. This approach uses a whitebox
methodology to test for code patterns that have a less
likelihood of getting affected by certain vulnerabilities. Our
approach compliments this research by ensuring if these
code patterns have been designed and implemented
securely.

The research [16] describes the need to prevent or manage
the damage caused by security threats. The research
describes that the web-server based applications must be
made in such a way that they incorporate the ability to self-
heal after an attack. The authors describe how this can be
made possible by the basis of data obtained from anomaly

detection. The anomaly detection data is then processed
using a Discrete Finite Automate (DFA) to detect malicious
web requests. An anomaly based detection combined with
DFA needs to be trained in the beginning to find which
anomaly detection data matches a true positive attack and
the patterns of such requests are observed by the training
algorithm. The patterns are then detected after the training
and such requests are suggested to be blocked or sent to a
more secure, but less functional server to protect the found
and restored. This approach is suitable for systems that are
holding highly critical data that cannot be changed but
would need extensive training and validation and could be
expensive to implement. It needs to be implemented at
every server. It is not a preventive technique but a criterion
for recovery when an attack is observed. Our approach, on
the other hand, is a part of a framework that would be able
to provide remediation based on the observed attack but not
an automated recovery.

The research in [12] proposed a method for identifying and
charting software exposure to un-patched vulnerabilities.
Disclosed vulnerabilities are divided into 2 types. The first
comprises of vulnerabilities that are publicly known with no
patch available from the vendor. The second comprises of
vulnerabilities that are publicly known with a patch
available from the vendor. By calculating the Daily
Vulnerability Exposure (DVE) for all un-patched
vulnerabilities for a continuous period of time, an exposure
chart is obtained. Using the chart’s help, it is possible to
ascertain how long a vendor takes to patch and if the patch
is effective, by calculating the DVE after the patch date. The
exposure chart could also be used to calculate the severity
metrics used by the National Vulnerability Database (NVD).
The DVE is a severity metric that is based on how much the
vulnerability is graded in terms of time elapsed, from the
date it is discovered till the date a patch is available. The
vulnerabilities handled here are generally in the new and
Relatively new categories of our approach. These have been
described in the section V.

The research in [13] is oriented towards the quantitative
characterization of the vulnerabilities in operating systems.
A time-based model for the total vulnerabilities discovered
is proposed and fitted to the data for Windows 98 and
Windows NT 4.0. Being a time-based model, it is able to
obtain an indication of the expectancy of the vulnerability
being targeted based on the phase the system is in. An
alternative effort-based vulnerability model analogous to
software reliability growth models was also proposed. Both
models fit well and the fit is significant, however, further
development is necessary before confidence levels
associated with the detection of vulnerabilities can be
assessed.

228

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

III. RESEARCH ISSUES AND REQUIREMENTS

While data classification can act as an enabler for a more
effective diagnosis and calculation of DVE helps in
determining patch effectiveness [12], the widely varying
detection capabilities encountered during scanning as well
as the differing threat / risk levels posed by individual
vulnerabilities have not been addressed.

The approaches [10][5][11] have been influential in
validating the use of fuzzy logic in classification. The use of
a neural network is an effective method in developing an
inference engine. However, it needs to a lot of training data
and this data can influence the working in a very significant
way. By using suitable heuristics instead gives more
stability to the system against any misclassification errors
and also reduces any complexity that could be faced while
training a neural network.

The scanner output could be right or wrong depending upon
the algorithms used by the scanner and the database
supported by the scanner. From the intrusion detection
research stated above [5][11] it can be observed that the
intrusion detection models also use several tools to first
identify the various suspicious events and then have some
decision making processes to deal with such observed
events based on fuzzy diagnosis. This research also adopts
such an approach to deal with the web vulnerabilities
discovered by the scanners. However, this is the only
similarity between the approaches in this research and the
above stated works [10][5][11].

In our research, we address the variable detection capability
of scanners and different threat / risk levels posed by
individual vulnerabilities. Our approach grades web
vulnerabilities and scanners quantitatively via expressions
based on fuzzy truth values. The requirements of our
approach are stated as follows:

1. Metrics for vulnerabilities and scanner performance

may be calibrated empirically prior to analysis making
this a more practical and flexible methodology.

2. Web vulnerabilities and scanner performance may be

classified and ranked in a reliable and informative way.

3. Scales easily to cover new vulnerabilities, vulnerability

variants and scanners.

4. Supports more effective management and remediation

decisions and facilitates occurrence estimation of
classified vulnerability.

IV. PRELIMINARIES

In this section, we define and explain the terminologies that
will be used in the rest of the paper.

Scanners are applications that use suitable algorithms to
detect web vulnerabilities.
Fuzzy sets are sets whose elements have degrees of
membership. An element mapping to the value 0 means that
the member is not included in the fuzzy set, while a
mapping to the universe of disclose, where the universe of
disclose represents the entire set of members possible and
the fuzzy sets they belong to. A diagrammatic representation
is given in Figure 1. A value of 1 describes a fully included
member. Mapped values strictly between 0 and 1

characterize the fuzzy members.

Figure 1. Venn Diagram of a fuzzy set
A positive vulnerability refers to a vulnerability that is
present in the website at a specified instant and there is
evidence to support it.

A negative vulnerability refers to a vulnerability that is not
present in the website and can be proved to a satisfactory
level.

The calibration phase is the time period during which fuzzy
metrics are calibrated before the scanner is ready to generate
vulnerability reports.

An instance of a vulnerability detected present (absent) by a
scanner for a given website can be defined as that
manifestation (or non-manifestation) of the vulnerability
that occurs during a specified period of time where there has
been no change in scanner algorithm, scanned website or
vulnerability definition.

Test websites are those websites that have been custom
designed to contain or not contain specified vulnerabilities
for the purpose of testing the scanners. The test websites are
used mainly in the calibration phase.

  Universe of 
Disclose 
 
Set 1 
 
Set 2 
 
Member (Set 
1=>1; 
Set 2=>0) 

229

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

Ground truth is the true value of whether the vulnerability is
present or absent. It is an absolute value i.e. the vulnerability
is present or it is absent.

The Likelihood Ratio is the ratio of the probability that a
particular vulnerability would be predicted when it matches
the ground truth to the probability that it would be predicted
erroneously.

Sensitivity is the proportion of correct detections of
vulnerability presence out of all true instances of a particular
scanner’s detection. It can be computed in both a
vulnerability specific way as well as in a scanner specific
way. When calculated in a scanner specific way, it is
averaged over all the vulnerabilities. It corresponds to the
correct detection rate relative to ground truth.

Specificity is the proportion of false detections of
vulnerability presence out of all false instances of a
particular scanner’s detection. It can be computed in both a
vulnerability specific way as well as in a scanner specific
way. When computed in a scanner specific way, it is
averaged over all specified vulnerabilities.

Cross-site request forgery (CSRF) is an attack which forces
an end user to execute unwanted actions on a web
application in which the end user is currently authenticated.

Cross-site scripting (XSS) attacks occur when an attacker
uses a web application to send malicious code, generally in
the form of a browser side script, to a different end user.

V. DESIGN OF CLASSIFICATION METRICS

In our proposed design (Figure 2), calibration forms an
important and integral part of the framework. The
calibration process makes use of two grading systems:
scanner grading system and vulnerability grading system.
Scanner and vulnerability metrics are first calibrated by the
respective grading systems before any confidence levels and
diagnostics are computed.

Grading can increase the reliability of reports obtained by
allowing for their evaluation based on the grades of the
various scanners that detected the specified vulnerability
and threat/risk posed by the vulnerability. Grading of
scanners and vulnerabilities are computed based on scanner
specific truth-values and vulnerability specific truth-values,
respectively. Scanner specific and vulnerability specific
truth-values form fuzzy sets. The assurance of a scanner
based on the vulnerability it is able to detect can provide an
assurance of quality in the vulnerability reports provided by
various scanners.

Using the grading results, low performance scanners can be
selectively upgraded or omitted and vulnerabilities with
high damage potential can be identified and affected
systems isolated. Additionally, computation of report
confidence can also be carried out. For example, a low
confidence level obtained while the vulnerability is detected
would mean that there is a low likelihood that the
vulnerability is actually present. On the other hand, a high
confidence level implies that there is a high probability that
the detected vulnerability will not be a false positive. The
confidence level thus obtained is an assurance of the risk
analysis for the various vulnerabilities that has been done on
the particular website location.

In the next few sub-sections, we detail the development of
the framework design based on the requirements and from
the assertions made. The assertions form an integral part of
the system that provide a basis for the subsequently
proposed metrics.

A. Assertions made

Assertion 1:
Some vulnerabilities are more difficult to exploit than
others.

Not all vulnerabilities are equally susceptible to exploitation
and the potential damage that can be caused will also not be
the same. Hence, a vulnerability grade system needs to be
present to provide a better diagnosis of the various
vulnerabilities that are detected by the web application
scanners.

Assertion 2:
Web-based vulnerabilities can be classified into 4 types,
namely:

i. Evolved Vulnerability:
If there is recorded detection for the
vulnerability and there also exists at least
one recorded exploitation method that is
still usable.

ii. Dormant Vulnerability:

If all recorded exploitation methodologies
can no longer be used and there is at least
one recorded exploitation method.

iii. Relatively-new Vulnerability:
If there is no recorded detection but there
exists at least one recorded exploitation
method.

iv. New vulnerability:
If there is no recorded detection or
exploitation method for the vulnerability.

230

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

By classifying vulnerabilities into specific types, it is
possible to evaluate the capability of scanners as well in a
better way. For example, a less sophisticated scanner would
not be expected to find a new or even relatively-new
vulnerability. This would provide a credibility rating for the
scanner with specific scanner metrics defined in the sections
to follow. The severity of the vulnerability can also be
ascertained to a certain degree with this approach. For
example, a dormant vulnerability resulting from a series of
successful patches will have a lower severity than an
evolved one.

Assertion 3:
The difficulty of detection of an evolved vulnerability is
directly proportional to the difficulty of exploiting it.

The above assertion is influenced intuitively by the notion
that if a complex algorithm and/or extended process were
needed to detect the vulnerability, a proportionate effort
would be required in effectively exploiting it. In other
words, if the vulnerability can be easily detected or
observable then the skill level / effort needed for
exploitation is correspondingly less. Given the above
assertions and the fact that not all scanners will be able to
deal with a particular vulnerability with the same degree of
effectiveness, scanning capability must be graded. The
capability of a scanner to effectively detect a vulnerability is
represented by an index allocated to it known as SGRADE
(Scanner Grade). A scanner with a higher SGRADE is then
better suited to detect the vulnerability than one with a
lower SGRADE.

Figure 2: Overview of Framework Design

 
 

231

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

Assertion 4:
The impact level of a vulnerability (vulnerability-
exploitability measure) is likely to vary with varying
instances of detection and at varying locations.

It has been stated in assertion 1 as to how some
vulnerabilities may be more difficult to exploit than others.
It is also true that the same vulnerability may be present in a
more exploitable location than others. Consider cross-site
scripting at a site where the vulnerability may be exploitable
directly. At a later time, perhaps after changes in site
architecture, the same vulnerability may be exploitable only
after a series of authorization pages. Hence, the
exploitability of the cross-site scripting has changed for the
same website at different instances of detection. Similarly,
the exploitability of cross-site scripting may also vary due to
platform differences at various sites.

Assertion 5:
Existence of one vulnerability may influence the prevalence
of another.

Steps are usually taken to prevent some vulnerabilities in a
system. Some other vulnerabilities may, however, still exist.
These other vulnerabilities may directly or indirectly enable
the avoided vulnerabilities to bypass the previous prevention
schemes. An illustrative example is that of cross-site request
forgery (CSRF) and cross-site scripting (XSS) [19]. If
cross-site request forgery has been avoided by non-usage of
JavaScript and secret tokens at each level (which is quite an
effective methodology), the website is virtually protected
from CSRF and typical scanners will also declare the same.
However, if XSS has not been avoided, it can be used to get
the tokens ahead of time and a hybrid use of CSRF can be
realized which cannot be detected by the scanners.

Hence, we may define RV1(V2), where RV1(V2) is the
likelihood of occurrence of vulnerability V1 when
vulnerability V2 has occurred.

B. Vulnerability Specific Truth-Values

The various vulnerabilities have their own levels of
difficulty as defined by the assertion 3. It is therefore a
necessity to ascertain how scanners react to the various
vulnerabilities. The scanners themselves need to be graded
as well, which is described in the section V.C. After the
computation of the vulnerability specific truth values and
scanner specific truth values, the difficulty of detection of
the vulnerability can be ascertained. The difficulty of
detection is a useful estimation that can help in ascertaining
the importance of detection thus ensuring a quality-based
analysis of scanner detections.

Let the vulnerability specific truth values for vulnerability j
be represented by {V(j)TP, V(j)TN, V(j)FP& V(j)FN}. These

are also known as {True Positive, True Negative, False
Positive and False Negative}, respectively. These truth
values can be used to derive fuzzy metrics that would be
useful in dealing with discrepancies among different
scanners detecting vulnerabilities in the system. The
vulnerability with a higher TP value can be used to
determine the certainty of the vulnerability being present
and a high TN value indicates a high probability that the
vulnerability is absent.

The fuzzy classifiers are defined as,

(1)

(2)

 

(3)

(4)

(5)

(6)

Where,
D ()={1 if instance of vulnerability j is detected at
location i or

 0 if instance of vulnerability j is not detected at
location i }

is the number of instances of vulnerability j present at
location i during calibration

is the number of instances of vulnerability j falsely
detected at location i during calibration

Is the total number of instances of vulnerability j
used for calibration

is the total number of instances of vulnerability j
falsely detected during calibration

232

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

is the total number of test websites used for
calibration

, , & are the vulnerability
specific truth values which refer to the vulnerability specific
true positive, true negative, false positive and false negative,
respectively.
C. Scanner Specific Truth-Values

Different scanner’s output data differ in content, format and
organization [1, ICIMP 2009]. The data generated by
scanners depends, to an extent, on the algorithm being used
in the specific scanner. Some scanners with access to large
databases are equipped to detect more classes of
vulnerabilities. Others comprising lightweight
computational modules provide basic diagnoses while
several lie somewhere in between. For example, IBM
AppScan and HP WebInspect are scanners with access to
large databases while NStalker is associated with a
relatively smaller database. It is hence necessary to first
analyze and understand the scanning process as well as the
capability of the scanner in order to derive the required
metrics.

Let the scanner specific truth-values be represented by {
STP, STN, SFP, SFN }. These are also known as {True Positive,
True Negative, False Positive and False Negative},
respectively. These values form an important measure of the
vulnerability detection capability of the scanner. Derived
scanner metrics require calibration in order to grade the
scanner prior to its usage for adequate quality assurance
based on performance. Calibration of the detection

capabilities of the scanner is performed with a sample of
customized websites for positive or negative vulnerabilities
thus reflecting the performance of a scanner with expected
results providing a valid basis for a suitable quality check.

In the pre-calibration phase, the system would be unlikely to
produce results with the levels of reliability expected by the
user. The scanner metrics are defined with respect to a
scanner’s prediction capabilities. The prediction capabilities
of the scanner are then calibrated against the expected
prediction performance. Vulnerabilities are also calibrated
in this phase and their fuzzy metrics are defined in section V
(C.). It must be noted that the classification of
vulnerabilities in the calibration phase influences the scoring
by CVSS [7]. Once the calibration phase for the scanner is
completed, the reports from the scanner can be processed
for data in a more reliable manner. The fuzzy metrics for
scanners are defined as follows:

(7)

(8)

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1 

R1  R2 

R3 

Figure 3: Fuzzy Logic Diagram
 

233

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

(9)

 

(10)

 (11)

(12)

Where,

is the total number of unique vulnerabilities
incorporated for calibration.

is the total number of unique vulnerabilities falsely
detected by scanners.

={ , if the instance is unique for that vulnerability ||
0, otherwise}
EVT is the total number of vulnerability instances evaluated

and are vulnerability specific truth values
defined in section V.B

is the total number of instances of vulnerability j

used for calibration
STP, STN, SFP&SFN are the scanner specific truth values.

Figure 3 shows the graphical representation of the fuzzy
metrics for the scanner. A similar diagram can also be used
for vulnerability fuzzy metrics. The region R1 represents the
true positive STP, the region R2 represents the true negative
STN and the region R3 is the combined space of false
positive and false negative SFP and SFN.

VI. GRADING SYSTEMS

This section describes the design details of the two grading
systems: the scanner grading system and the vulnerability
grading system.

A. Scanner Grading System

The scanner grading system is used to grade the capability
of a web application scanner. The scanner grading system
makes use of a scanner database as well as the vulnerability
databases [17]. The scanner database comprises a table list
that is maintained for every graded scanner (see Figure 4). It
contains information on the scanner specific truth values as
well as the vulnerability specific truth values. The Scanner
Grade, SGRADE, may be computed for all web-based
vulnerabilities listed in the vulnerability database.

The overall sensitivity and specificity of the scanners can be
computed by using the equations, Eqn. 13 and Eqn. 14.
Sensitivity is the percentage of correctly detected activities
out of all true instances of a particular class, averaged over

Figure 4: Table List in Scanner Grading System

 

234

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

all activities. Specificity measures the proportion of
correctly identified negative occurrences to all true negative
occurrences. If a scanner is more sensitive, it has a greater
chance of discovering the vulnerability. Similarly, if a
scanner is more specific, it has a greater chance of
discovering the absence of the vulnerability.

�

SSpecificity =
STP

STP + SFN
 (13)

�

SSpecificity =
STN

STN + SFP

(14)

Where,
STP, STN, SFP&SFN are the scanner specific truth values
defined in section 5.3
Sensitivity is the sensitivity measure of the scanner
SSpecificity is the specificity measure of the scanner
However, a greater sensitivity could also mean greater
probability of false positives for the scanner. Similarly, a
higher specificity could mean there are a greater number of
false negatives for the scanner. For a given scanner, the
trade-off between sensitivity and specificity depends on the
vulnerability and the web application being scanned.

B.Vulnerability Grading System:

As mentioned previously, the representation for the
vulnerability specific truth values is also similar to Figure 3.
The vulnerability specific sensitivity and specificity for a
scanner are defined by Eqns. 15 and 16, respectively. We
also define the likelihood ratio for both true positive and
true negative results with the Eqns. 17 and 18, respectively.

(15)

(16)

 (17)

 (18)

Where,
VSensitivityis the vulnerability specific sensitivity measure for
the scanner

VSpecificityis the vulnerability specific specificity measure for
the scanner
VLR+is the likelihood ratio for positive detection
VLR- is the likelihood ratio for negative detection

VLR+ in Eqn. 17 gives the likelihood ratio of the
vulnerability to be present given the vulnerability specific
truth values for the specified scanner. VLR- in Eqn. 18 gives
the likelihood ratio of the vulnerability to be absent given
the vulnerability specific truth-values for the specified
scanner. Combined with the scanner metrics, these could be
used as a basis in predicting the levels of vulnerability
present. However, this will hold absolutely true only for
vulnerabilities that fall under the evolved-vulnerability
category.

The vulnerability specific sensitivity and the specificity
metrics can also be used to study the scanner’s performance
and behavioral characteristics with certain classes of
vulnerabilities. If the scanner is more sensitive towards a
specific vulnerability, it will exhibit better detection of the
presence of that particular vulnerability and if it is more
specific, it will be more able to detect the absence of the
particular vulnerability.

A positive vulnerability means that the vulnerability is
present in the website location at that instant and there is
evidence to support it. A negative vulnerability means that
the vulnerability is not present in the website and can be
proved to a satisfactory level. Assertion 3 implies that some
vulnerabilities may be more difficult to find and may
generate false negatives. Similarly, some vulnerabilities
may be more complex and can lead to the generation of
false positives. Hence, it is important to grade each
vulnerability to an adequate level.

Assertion 1 states the need to grade the various
vulnerabilities with a vulnerability grading system. The
system could create a list of known web-based
vulnerabilities from the online vulnerability databases [15],
classified into evolved, dormant, relatively-new or new
categories as defined in Assertion 2.

Such a grading would also provide a better understanding of
the vulnerability. The grading is a constantly changing one
as the scanner algorithms may change over time with
upgrades and there are also instances that the vulnerability
definitions themselves may change [23].

The difficulty of detection of a vulnerability j is given by

235

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

(19)

Where,
D(j) is the difficulty of detection of vulnerability j
Sn is the number of scanners used
V(j)TN is the vulnerability specific true negative value for
vulnerability j for a specific scanner
V(j)TP is the vulnerability specific true positive value for
vulnerability j for a specific scanner
The higher the value of D(j), the more difficult it is to detect
and the lower difficulty implies the easier detection by the
scanner.

TABLE 1: DETECTION EXAMPLE 1
Vulnerability Scanner1 Scanner2 Scanner3

Vul1 YES YES YES
Vul2 YES NO YES
Vul3 NO NO NO
Vul4 YES NO YES

! Vul1 NO NO NO
! Vul2 NO NO YES
! Vul3 NO YES NO
! Vul4 YES YES NO

In the table 1, “VulX” refers to the positive vulnerability
and “! VulX” refers to the negative vulnerability. Table 1
has been formed with the assumption that all the scanners
used in the calibration have been designed with their
respective algorithms to detect the stated vulnerabilities.
Applying Eqn. 19 to table 1, we can get
D(Vul1)=0; D(Vul2)=0.333; D(Vul3)=0.666; D(Vul4)=0.5;
From the above table we can conclude that the
D(Vul3)>D(Vul4)>D(Vul2)>D(Vul1)

VII. COMPUTATION OF SCANNER REPORT CONFIDENCE

While it is important for the end-user to be able to infer
from various diagnostic reports, it is also important to be
able to gauge the confidence of the information within the
report. Confidence levels are required to ascertain if the
report can be trusted and the extent of this trust. There needs
to be a confidence level associated with every vulnerability
detected by the various scanners. The grading systems are
used in the calculation of the confidence of the report.

It must be noted that not all scanners agree on the reports
generated. Some scanner algorithms may be better suited to
tackle some classes of vulnerability and they are effective
against these but the same algorithm may be the reason for
their weaker performance against other classes of

vulnerabilities. Some scanners have access to a very
comprehensive database while others suffer from inadequate
ones. Hence, using the SGRADE (defined in Assertion 3) we
can specify the performance of the scanner with respect to a
particular vulnerability. When the results of all scanners
agree on that vulnerability, the confidence on the report will
be higher than the confidence due to an individual scanner.
This factor is also moderated when scanners have a conflict
in results. The moderation, however, depends on the metric
values assigned to the scanners by the scanner grading
system.

The methodology for calculating the 1st and 2nd degree
confidence is detailed as follows :

To find 1st Degree Confidence.

The 1st degree confidence report gives a report based on the
various scanner reports on a website location. The various
scanner and vulnerability specific truth-values are used
along with the vulnerability reports to give a more useful
inference to the user.

There are two types of indices that the 1st Degree
Confidence report can have. They are the positive index and
the negative index. The report first tries to calculate the
positive index. This represents the possibility of the
vulnerability being present. It shows how confident the user
can be about the vulnerability being present in a scale
ranging from (>0%) to 100%. Only if the condition given in
step 7 of positive index is satisfied, the negative index is
calculated. The negative index represents the possibility of
vulnerability not being present. The computed output will
contain only one of the two indices. If any scanner is known
to lack the detection capability with regard to the
vulnerability, then the scanner must be excluded from the
computation.

Positive Index Computation:

1. Create the set A that contains the respective
Vulnerability specific VTP or VTN values depending
on whether the scanner detects the vulnerability or
not.

2. Let a0={largest VTP value in A}. If there are no VTP
values calculate negative index.

3. , Where – refers to set
subtraction.

4. Rearrange the remaining elements in descending
order.

5. A=a0±a1(1-a0)±(a2(1-(a0±a1(1-
a0)))±………….(an(1-(an-1(…(1-a2(1-(a0±a1(1-
a0))))…)))) where

� a gives the 1st degree confidence
report

�

(20)

236

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

6. If ai is a VTP value, it is added otherwise, it is
subtracted.

7. If a ≤ 0 calculate negative index.
8. The resultant value will give the confidence level

for the vulnerability being present from the scanner
reports obtained.

Negative Index Computation:

1. Create the set A that contains the respective
Vulnerability specific VTP or VTN values depending
on whether the scanner detects the vulnerability or
not.

2. A0={largest VTN value in A}
3. , Where – refers to set

subtraction.
4. Rearrange the remaining elements in descending

order.
5. A=a0±a1(1-a0)±(a2(1-(a0±a1(1-

a0)))±………….(an(1-(an-1(…(1-a2(1-(a0±a1(1-
a0))))…)))) where

� a gives the 1st degree confidence
report

�

(21)

6. If ai is a VTN value, it is added otherwise, it is
subtracted.

7. The resultant value will give the confidence level
for the vulnerability being absent from the scanner
reports obtained.

The value of a is the positive or negative index that is
associated with the report. The general idea behind the
derivation of a lies in the fact that the positive and negative
indices can never be a 100%. While the rule in itself does
not stop them from taking the value of 0%, it is that this
value could appear. This is because being 0% requires both
positive and negative indices to be 0 i.e. sufficient scanners
to nullify the true detection and sufficient scanners to nullify
the false detection. Hence, the value of a is restricted to be
always less than 1.

To find 2nd Degree Confidence.

A 1st degree confidence report covers the direct existence of
any vulnerability. However, a 2nd degree report is necessary

to cover Assertion 5. The 2nd Degree Confidence covers the
fact that one vulnerability can have a relationship to or
influence the existence of another.

Figure 6: XSS-CSRF Example

The 2nd Degree Confidence report is hence a result of
combining the confidence reports with the Assertion 5. The
relationship between two vulnerabilities is given by a value
ranging between 0 and 1. Every vulnerability has a
relationship of 1 with itself. The relationship with other
vulnerabilities is generally less than 1. However, there could
be exceptions as exemplified by Figure 5. If the
vulnerability “Use of a Resource after Expiration or
Release” is present, then the vulnerability “Improper
Validation of Certificate Expiration” has a lower likelihood
of presence but if the reverse situation occurs, the presence
of the vulnerability “Improper Validation of Certificate
Expiration” would mean the same (if not greater) likelihood
of the presence of “Use of a Resource after Expiration or
Release”. i.e. “Improper Validation of Certificate
Expiration” has a relationship of 1 towards “Use of a
Resource after Expiration or Release” but “Use of a
Resource after Expiration or Release” has a relationship of

“Use of a Resource after Expiration or Release” 
“Improper Validation of CertiOicate Expiration” 

Figure 5. Relationship example

 

237

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

<1 towards “Improper Validation of Certificate Expiration”.
Quality of the final result is enhanced by the use of these
relations since they take more factors into account than a
typical scanner-based risk analysis that are available
currently [6].

Figure 7: Calculation of 2nd degree report

From the Figure 5, the relation of “Failure to Follow Chain
of Trust in Certificate Validation” to “Failure to Validate
Certificate Expiration” can be defined as that of a subset-
superset where the former is the superset and the latter is the
subset. Such a relationship would also contain the fact that
the absence of the former does not mean the absence of the
latter. Another example is that of the Cross-site scripting
and Cross-site request forgery.

The Cross-site request forgery (CSRF or XSRF) and Cross-
site scripting (XSS) example is one that shows how
influential the relationships are in a system. From Figure 6,
it can be seen that even while CSRF is prevented for the
hacker, if XSS is not prevented, the CSRF cannot be
considered as an eliminated threat. It should also be noted
that the reverse is not true.

The Figure 7 shows the calculation of the 2nd degree
confidence report from the 1st degree report.

Let there be a list of related vulnerabilities for the
vulnerability v. This list includes both the ones that are
directly related and those that are indirectly related till a
satisfactory set of related vulnerabilities is formed.

Let the a(v) be the 1st degree confidence of vulnerability v.
If a(v) is a positive index value, then a0(v)=a(v). If a(v) is a
negative index value, then a0(v)=0.

The above step is the pre-operation step that needs to be
done to ensure that the fact that the steps taken against one
vulnerability do not reflect on the decrease in the 2nd degree
confidence if the Assertion 5 relates to it through another
vulnerability known to be present. The extent of confidence
on the vulnerability’s presence, however, depends on the
strength of the relationship value and the confidence level
on the vulnerability relating to it. A chain of related
vulnerabilities could be formed by relating one vulnerability
to another that is related to another and so on.

The Figure 8 shows the relationship between various
vulnerabilities obtained from a recent analysis.

(22)

Using the above equation, the a1(v) is calculated for the
entire set of related vulnerabilities {R}. In case of a closed
relation eg. v related to v1, v1 related to v2 and v2 related to
v, then v is not considered related to v2 during calibration of
v.

As the relationship keeps expanding eg.v related to v1, v1
related to v2 etc., the same procedure is repeated for a2(v)
replacing all a0(v) with a1(v), then a3(v) and so on. It is
repeated till an(v) is calculated. This gives the 2nd degree
confidence level.

The confidence levels have been found to be a useful
criteria for evaluation of any given website. A remediation
database is being designed to give a suitable remediation
based on the confidence level. Hence a more accurate
remediation can be provided to the user.

238

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

Figure 8: Analysis of relationship between vulnerabilities

 

239

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

VIII. ILLUSTRATIVE EXAMPLE

Let there be 3 scanners s1, s2, s3. Hence Sn=3.
Let there be 5 vulnerabilities detected and stored in the
database v1 v2 v3 v4 v5.

 
TABLE 2: S-V TABLE

 s1
Instance1 Instance 2

s2
Instance1 Instance 2

s3
Instance1 Instance 2

v1 Y Y Y Y Y Y
v2 Y Y Y Y Y N
v3 Y Y N N Y Y
v4 Y Y Y N N N
v5 Y N N N N Y

TABLE 3: S-!V TABLE

 s1
Instance1 Instance 2

s2
Instance1 Instance 2

s3
Instance1 Instance 2

! v1 N N N N N N
! v2 N N N N N Y
! v3 N N Y Y N N
! v4 N N N Y Y Y
! v5 N Y Y Y Y Y

Table 2 shows the detection for instances where the
vulnerability is known to be present. Table 3 shows the
detection where the vulnerability is known to be absent.

TABLE 4: VULNERABILITY SPECIFIC TRUTH-VALUES

 v1 v2 v3 v4 v5
s1 {.9 .9

.1 .1}
{.92 .8
.08 .2}

{.8 .7
.2 .3}

{.8 .7
.2 .3}

{.7 .6
.3 .4}

s2 {.8 .7
.2 .3}

{.7 .6
.3 .4}

{.7 .6
.3 .4}

{.6 .6
.4 .4}

{.5 .5
.5 .5}

s3 {.7 .6
.3 .4}

{.8 .71
.2 .3}

{.6 .6
.4 .4}

{.9 .8
.1 .2}

{.7 .6
.3 .4}

The Vulnerability specific truth-values in table 4 are
represented as {VTP, VTN, VFN, VFP}

D(v1)=1-(6/6)=0
D(v2)=1-(5/6)=1/6=0.1667
D(v3)=1-(2/3)=1/3=0.3333
D(v4)=1-(1/2)=1/2=0.5
D(v5)=1-(1/4)=3/4=0.75

Hence D(v5)>D(v4)>D(v3)>D(v2)>D(v1)

1st degree confidence.

In this example let us consider the 2nd instance of v2 from
the table 2.

The results from the 3 scanners are {Y Y N}
Hence A={.92 .71 .7} and a0=.92
Hence A={.71 .7}
a=.92-(.08(.71))+(1-.(92-(.08(.71))))(.7)=0.95896
In other words, we can be 95.896% certain that the result is
true. This could mean there is high need for appropriate
remediation.

2nd degree confidence.

TABLE 5: R-V TABLE

 v1 v2 v3 v4 v5
Rv1 - - - - -
Rv2 .08 - - - -
Rv3 - - - .05 .04
Rv4 - - - - .09
Rv5 - - .1 - -

The Table 5 shows the relationship between the various
vulnerabilities and the suitable relationship values.

Let us consider the 2nd instance in the Table 2 and calculate
the confidence for vulnerability v2. Since only v1 is related
to v2 (There are no indirect relations as v1 is not related to
any other vulnerability).

We know that for 2nd instance in Table 2,
a0(v1) =.987{Y YY , all scanners have detected the
vulnerability as positive}
a0(v) =.95896
a1(v) =.95896+.040506=.9994

Hence, the 2nd degree confidence report would suggest a
possibility of 99.94% for the vulnerability’s occurrence.
Since a1(v)>a0(v), it implies that other vulnerabilities are
also present and must be rectified to rectify this
vulnerability.

Let us consider another example using the 1st instance from
table 2.

For the vulnerability v5, A={Y N N}

1st Degree Confidence,
a0(v5) =.7-(.3(.6))-((1-(.7-(.3(.6))))(.5)) =0.28

It can be observed that when there is only one scanner
supporting the vulnerability, the confidence of report in the
presence of the vulnerability also drops to a great extent. In
the case shown above, the confidence report still remains in
the positive index.

2nd Degree Confidence,

240

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

The vulnerability v5 is related to v3, which in turn is related
to v4 and v5, and v4 is related to v5. The 1st degree
confidences for these vulnerabilities can be given for the 1st
instance of table 2 as

a0(v3) =.8+(.2(.6))-(1-(.8+(.2(.6))))(.6) =0.872
a0(v4) =.8-(.2(.8))+(1-(.8-(.2(.8))))(.6) =0.856

v=v5

a0(v) =0.28
a1(v) =a0(v)+(1-
a0(v))(0.1(a0(v3)))=0.28+(0.72)(0.1(0.872))=0.343
a2(v) =a1(v)+(1-a1(v))(0.1(a1(v3)))

a1(v3) can be given by,
a1(v3) =a0(v3)+(1-a0(v3))(.05(a0(v4))+(1-(1-
a0(v3))(.05(a0(v4)))(0.04(a0(v5))

but, since v=v5, the underlined portion of the
equation above cannot be considered

hence, a1(v3) becomes
=0.872+(.128)(.05(0.856))
=0.877

therefore,
a2(v) =0.343+0.657(0.1(0.877)) = 0.401

Hence the 2nd Degree Confidence report shows 40.1%
confidence in the presence of vulnerability v5 compared to
the 28% confidence showed by the 1st degree confidence
report.

IX.CONCLUSION

This research has enabled the improved risk analysis of
web-based vulnerabilities. While several scanners are
available to detect the vulnerabilities, their varying
algorithms and proprietary nature makes it difficult to
ascertain if the vulnerabilities found by them is true or false.
The methodology used in this paper is a practical approach
designed to work in spite of the proprietary nature of the
algorithms while still being able to grade the various
scanners. The variable nature of a vulnerability is also
accounted for and the proposed methodology uses fuzzy-
based classification and estimation metrics solve this
problem. Another problem is the lack of detection of
vulnerabilities whose presence is also influenced by other
vulnerabilities. The proposed methodology is an effective
one to tackle such problems as well. Five assertions have
been defined to help establish the theoretical aspects of the
approach. By using relationship between vulnerabilities
given by assertion 5, the 2nd degree confidence report can be
used to tackle such a problem. The confidence reports have
been able to provide the user with valuable information and
this has been tested with a successful implementation of the
system. The confidence reports also provide a greater

reliability of results than that of individual scanner reports.
The open issues faced in this research include the need to
grade every scanner for every vulnerability using test sites,
which can be a very tedious process. The methodology of
finding the relationship between vulnerabilities is still in
progress. The development of an inference engine to
compute the diagnosis is also in progress. The remediation
database to accurately provide the remediation based on
confidence level is being expanded to a sizable level of
vulnerabilities.

REFERENCES

[1] D. Subramanian, H.T. Le, P.K.K. Loh, “Fuzzy Heuristic Design

For Diagnosis Of Web-Based Vulnerabilities”, The Fourth
International Conference on Internet Monitoring and Protection
(ICIMP), May 2009, Venice/Mestre, Italy.

[2] H. T. Le and P. K. K. Loh, "Unified Approach to Vulnerability
Analysis of Web Applications," in International Electronic
Conference on Computer Science. AIP Conference Proceedings,
Volume 1060, pp. 155-159 (2008)

[3] H.-T. Le and P. K. K. Loh, "Realizing Web Application
Vulnerability Analysis via AVDL," in 10th International
Conference on Enterprise Information Systems (ICEIS 2008),
Barcelona, Spain, 2008, pp. 259-265.

[4] H. T. Le and P. K. K. Loh, "Evaluating AVDL Descriptions for
Web Application Vulnerability Analysis," in IEEE International
Conference on Intelligence and Security Informatics 2008
(IEEE ISI 2008), Taipei, Taiwan, 2008, pp. 279-281.

[5] Jonathan Gomez and Dipankar Dasgupta, “Evolving Fuzzy
Classifiers for Intrusion Detection”, Proceedings of the 3rd
Annual IEEE Information Assurance Workshop, New Orleans,
Louisiana: June, 2002.

[6] Larry Suto, “Analyzing the Effectiveness and Coverage of Web
Application Security Scanners”, White Paper, October 2007,
Publisher: Strategic Data Command,
http://www.stratdat.com/webscan.pdf

[7] P. Mell, K. Scarfone, and S. Romanosky, "The Common
Vulnerability Scoring System (CVSS) and its applicability to
federal agency systems," NIST Interagency Report, NIST-
IR7435, pg. 1-20, August 2007,
http://csrc.nist.gov/publications/nistir/ir7435/NISTIR-7435.pdf

[8] Quals, “Vulnerability Management for Dummies”, Copyright ©
2008 by John Wiley & Sons Ltd, Chichester, West Sussex,
England.

[9] Ramaswamy Chandramouli, Tim Grace, Rick Kuhn and Susan
Landau, “Emerging Standards: Common Vulnerability Scoring
System”, IEEE Security & Privacy, vol. 4, no. 6, pp. 85-89,
Nov/Dec, 2006.

[10] David Minnen, Tracy Westeyn, Thad Starner, Jamie A. Ward
and Paul Lukowicz, “Performance Metrics and Evaluation
Issues for Continuous Activity Recognition”, Performance
Metrics for Intelligent Systems (PerMis’06), Gaithersburg,
Maryland, United States of America, August 21-23, 2006,
www.cc.gatech.edu/~dminn/papers/minnen-permis2006.pdf

[11] Ambareen Siraj, Susan M. Bridges, Rayford B. Vaughn, “Fuzzy
Cognitive Maps for Decision Support in an Intelligent Intrusion
Detection System”, Proceedings of the Joint 9th International
Fuzzy Systems Association World
Congress and the 20th North American Fuzzy Information
Processing Society International Conference on Fuzziness and
Soft Computing in the New Millennium, vol. 4, pg. 2165-2170,
July 2001, Vancouver, Canada,

[12] Jeffrey R. Jones, “Estimating Software Vulnerabilities”, IEEE
Security & Privacy, Volume 5, Issue 4, pg. 28 – 32, July-Aug
2007.

241

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

[13] Omar H. Alhazmi, Yashwant K. Malaiya, “Quantitative
Vulnerability Assessment of Systems Software”, Proceedings of
the Annual Reliability and Maintainability Symposium, pg. 615-
620, Jan. 2005.

[14] P. Wang, K.-M. Chao, C.-C. Lo, C.-L. Huang, and M. Younas,
"A fuzzy outranking approach in risk analysis of web service
security ", Cluster Computing, vol. 10, pp. 47-55, 2007.

[15] S. T. Halkidis, A. Chatzigeorgiou, and G. Stephanides,
"Quantitative Evaluation of Systems with Security Patterns
Using a Fuzzy Approach", On the Move to Meaningful Internet
Systems 2006: OTM 2006 Workshops: Springer Berlin /
Heidelberg, 2006, pp. 554-564.

[16] Kenneth L. Ingham, Anil Somayaji, John Burge and Stephanie
Forrest, “Learning DFA representations of HTTP for protecting
web applications”, Computer Networks: The International
Journal of Computer and Telecommunications Networking,
Volume 51 , Issue 5, pg. 1239-1255 , April 2007

URLs

[17] CERT/CC Statistics 1988 – 2006, http://www.cert.org/stats/
[18] National Vulnerability Database (NVD) Statistics,

http://nvd.nist.gov/statistics.cfm
[19] DHS National Security Division, NIST, “Web Application

Vulnerability Scanners”,
https://samate.nist.gov/index.php/Web_Application_Vulnerabilit
y_Scanners

[20] Common Vulnerabilities and Exposures (CVE),
http://cve.mitre.org/

[21] Jeremiah Grossman, “WhiteHat Website Security Statistics
Report”, October 2007, Publisher: WhiteHat Security (United
States of America).
https://whitehatsec.market2lead.com/go/whitehatsec/WPStatsrep
ort_100107

[22] Jeremiah Grossman, “WhiteHat Website Security Statistics
Report”, August 2008, Publisher: WhiteHat Security (United
States of America).
https://whitehatsec.market2lead.com/go/whitehatsec/WPstats08
08

[23] Jeremiah Grossman, “WhiteHat presentation on XSRF”,
Publisher: WhiteHat Security (United States of America)
https://whitehatsec.webex.com/whitehatsec/nbrshared.php?actio
n=playback&recordID=21578512&recordKey=2E8BF7FFE535
56F277FD706294A7E3ED86F81580F46B5A0DDC7345881C9
B224C

[24] N-Stalker®, “Overview of N-Stalker Reports”,
http://nstalker.com/products/development/report-details,
Retrieved on 20th July 2009

[25] Accunetix web application Security, “In depth checking for SQL
Injection, Cross Site Scripting (XSS) and Other Vulnerabilities”,
http://www.acunetix.com/vulnerability-scanner/sql-injection-
ft.htm, Retrieved on 20th July 2009

[26] Wikipedia, XSS, http://en.wikipedia.org/wiki/Cross-
site_scripting, Retrievedon 20th July 2009.

