
DATA FORMAT DESCRIPTION AND ITS APPLICATIONS IN IT SECURITY

Michael Hartle1, Andreas Fuchs2, Marcus Ständer1, Daniel Schumann1, Max Mühlhäuser1

Telekooperation1,

Dept. of Computer Science, TU Darmstadt / Germany,

{mhartle, staender, max}@tk.informatik.tu-darmstadt.de

Fraunhofer-Institut SIT2, Darmstadt / Germany,

andreas.fuchs@sit.fraunhofer.de

ABSTRACT

Data formats play a central role in information processing,

exchange and storage. Security-related tasks such as the doc-

umentation of exploits or format-aware fuzzing of files de-

pend on formalized data format knowledge. In this article, we

present a model for describing arbitrary data format instances

as well as arbitrary data formats as a whole. Using the Bit-

stream Segment Graph (BSG) model and the BSG Reasoning

approach, we describe a PNG image serving as exploit for

Adobe Photoshop CS2 (CVE-2007-2365). We furthermore

show directions how our work can be applied to secure data

format design as well as formal security analysis.

Index Terms— Data format description, finite bit se-

quences, documentation of exploits, formal security valida-

tion

1. INTRODUCTION

1.1. Motivation

The concept of data formats is central to information process-

ing, exchange and storage. A data format defines how in-

formation is represented as bits, bytes or characters and thus

shapes every format-compliant process that determines syntax

and semantics of data in order to access information. When a

bit sequence is transmitted, both sender and receivers need to

agree on its data format for interoperability.

1.2. Use Cases

Knowledge regarding syntax and semantics of data is relevant

to IT Security as can be shown through several use cases re-

lated to data format knowledge:

• Documentation of exploits describe the composition of

malicious crafted data. Such a documentation helps de-

velopers to explore syntax and semantics of malicious

data, understand the delivery mechanism of the exploit,

and so to fix processing bugs in affected applications.

• The definition of a data format can include security-

relevant flaws hidden in the complexity of a specifica-

tion, which may lead to exploitable implementations.

A visual refined representation can aid security experts

with the identification of tripwires such as redundant

information. If applied during during the modelling

phase, such flaws may be prevented or at least be lim-

ited by adding security-related programming advice to

the specification.

• Similarly, good knowledge about utilized data formats

is necessary in the area of formal security validation,

which is among others required for certain Assurance

Levels in Common Criteria. Formally based data for-

mat descriptions can therefor fullfill the requirements

for reasoning about assumptions and abstractions made

in this process.

1.3. Problem

For such use cases, a vast, growing number of existing and

evolving data formats turns designing, implementing and

maintaining format-specific solutions into a repetitive, nev-

erending task. We can improve the situation by separating

data format knowledge into reusable declarative, machine-

processible descriptions for format-agnostic solutions. Re-

alizing this idea requires formalized models on data format

instances as well as on data formats as a whole, where we

define a data format instance as a finite bit sequence and a

data format as a (possibly infinite) set of data format instances

[1].

Data formats have been subject of research in various do-

mains like Multimedia or Telecommunication, including re-

lated work on describing data formats. In Digital Preserva-

tion, substantial related work for managing data formats ex-

ists like the Open Archival Information System (OAIS) [2],

data format registries such as Global Data Format Registry

(GDFR) [3] and PRONOM [4], or the Typed Object Model

(TOM) [5] for managing format-related operations on data.

90

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

Yet, existing approaches for formally describing data formats

is domain-specific and not applicable for arbitrary data for-

mats in general.

1.4. Contribution

We present two contributions for describing both data format

instances as well as data formats in the context of IT Security.

The first contribution is the Bitstream Segment Graph (BSG)

model for describing arbitrary data format instances. The sec-

ond contribution is the BSG Reasoning approach for describ-

ing arbitrary data formats. We extend previous publications

[1, 6, 7] with an analysis on modelling arbitrary data formats

in general, the Apeiron BSG editor as tool support for creat-

ing, exploring and manipulating BSG instance descriptions,

as well as a RDF/N3-based notation for BSG instances which

makes them interchangeable and machine-processible.

1.5. Outline

We start with surveying related work in literature on data for-

mat description from the domains of Multimedia, Telecom-

munication and Grid Computing in Section 2, focusing on

their descriptive capabilities. We then abstract and analyse

elemental properties of both data formats and their instances.

Here, we investigate how to guarantee these properties in for-

mal models in Section 3, showing theoretical limits given by

formal language and computational theory. Building on our

analysis, we present the BSG model for describing data for-

mat instances, and our rule-based BSG Reasoning approach

for describing data formats in Section 4. Subsequently, the

presented contributions are put in the context of IT Security

by giving an example of their application on an PNG image

exploit for Adobe Photoshop CS2 based on CVE-2007-2365

in Section 5. In addition, we describe further applications

such as flaw detection during design and formal security val-

idation in Section 6 and close with a summary in Section 7.

2. RELATED WORK

2.1. Data Format Description

We present related work on describing data formats from

the research domains of Multimedia, Telecommunication and

Grid Computing.

Here, our focus is on the descriptive capabilities of each

approach regarding structures, transcodes, fragments and

primitives, as well as handling functional dependencies be-

tween them. Quite self-explanatory, a structure represents

a concatenation of data. A primitive is encoded data which

represents some information with defined semantics. We de-

fine a transcode as data which is compressed, encrypted or

the result of another reversible, information-preserving block

transformation. Moreover, we define a fragment as data that

is part of a larger composite. Functional dependencies in-

clude cases where the length of a data segment is determined

by another, or where the value of a data segment depends on

a computation of another, as for CRCs.

For describing the composition of data format instances in

general, all these descriptive capabilities are required. For ex-

ample, the PNG image shown in Figure 5 carries transformed

and compressed image data which is fragmented in two seg-

ments.

2.1.1. Multimedia

Primary motivation for research in Multimedia on data for-

mat description is the standardization of data formats, and

the adaptation of digital items for Universal Media Access

(UMA). Both the MPEG 1/2 methodology and the MPEG

SDL and Flavor/XFlavor approach belong to the former

line of research, whereas the latter contributed the Bitstream

Syntax Description Language (BSDL). There are further

approaches such as BFlavor and gBFlavor [8, 9] as recom-

binations of BSDL and Flavor, but which do not provide

significant extentions regarding their descriptive capabilities.

2.1.1.1. MPEG 1/2 methodology

The “MPEG-1/2 methodology” [10] was used for describ-

ing data formats in various parts of the MPEG-1 (ISO/IEC

11172) and MPEG-2 (ISO/IEC 13818) standards.

It is a notation similar to C struct definitions, used in a

tabular form to describe elements of a data structure with the

respective name, data type and size in bits. As the method-

ology does not cover functional dependencies between ele-

ments, these are typically described textually.

The methodology is a “visual language” and targets hu-

mans as audience. It is intended for static data structures fea-

turing bit granularity description, but does not handle func-

tional dependencies such as variable-length data ocurring for

the Exponential Golomb integer encoding, in PNG chunks or

in MPEG-4 boxes.

2.1.1.2. MPEG SDL and Flavor/XFlavor

The Syntactic Description Language (SDL) was proposed

for describing variable-length data in MPEG-4 data formats

[11], was included as part of the MPEG-4 Systems and De-

scription Languages (MSDL) [12] and used in the specifica-

tion of MPEG-4. It later became the Formal Language for

Audio-Visual Object Representation (Flavor) with its XML-

based extension XFlavor [13, 14].

In Flavor code, data structures are described as classes,

mixing data declarations with procedural flow-control state-

ments. Flavor enables the translation to Java and C++ code by

generating appropriate methods for parsing and serialization.

The language focuses on H.263 or MPEG-2 Video which do

not need data to be decoded during parsing, and therefore lim-

91

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

its itself to parsing only without any decoding, circumventing

this “high-level context” problem [15].

Flavor code is procedural and targets machine-processing.

It allows for bit granularity of description, covers both struc-

tures and primitives, and handles simple functional dependen-

cies such as variable-length data structures. It does neither

handle complex functional dependencies such as CRCs, nor

does it explicitly support transcoded data or fragmentation.

2.1.1.3. Bitstream Syntax Description Language (BSDL)

The Bitstream Syntax Description Language (BSDL) ad-

dresses the Universal Media Access (UMA) vision as part of

the MPEG-21 Digital Item Adaptation standard in Multime-

dia [16]. It allows for the adaptation of digital items to en-

able timely delivery of and access to multimedia resources in

highly heterogenous, resource-contrained environments.

BSDL extends XML Schema for describing binary data.

It focuses on so-called scalable data formats, where an spe-

cific adaptation of a bitstream is generated through compu-

tationally simple filtering rather than re-encoding. Where

BSDL supports the definition of format-specific schemata,

the generic BSDL (gBSDL) variant defines a format-agnostic,

general-purpose alternative for use on low-resource environ-

ments such as mobile phones.

BSDL allows for bit granularity and is declarative. It sup-

ports structures and primitives, but does not explicitly cover

transcoded data or fragmentations. Functional dependencies

are described using XPath and are evaluated during runtime

on an in-memory XML Document Object Model (DOM) rep-

resentation of parsed data which may still be incomplete. As

a consequence, adapting digital items using the BSDL refer-

ence implementation suffers from performance and scalabil-

ity issues [8].

2.1.2. Telecommunication

Similar to Multimedia, the primary motivation on data for-

mat description in Telecommunication is the standardization

of data formats for enabling interoperability in communica-

tions between different parties. Yet here, the focus is on repre-

senting data in a defined way rather than describing arbitrary

representations in their own composition.

Related work includes the External Data Representa-

tion (XDR), the well-known Abstract Syntax Notation One

(ASN.1) including the Encoding Control Notation (ECN)

and other approaches such as the Concrete Syntax Notation 1

(CSN.1) or Transfer Syntax Notation One (TSN.1).

2.1.2.1. External Data Representation (XDR)

The External Data Representation (XDR) is currently de-

fined in RFC 4506 [17] and standardizes a language for de-

scribing data and its encoding. It has been used in the defini-

tion of network protocols Sun Remote Procedure Call (RPC)

[18], the Network File System (NFS) [19] and others.

The XDR language somewhat resembles the C program-

ming language, but does not include flow-control statements

and is declarative. It intends to provide support for the ex-

change of messages using common high-level data types

rather than describing arbitrary data.

XDR provides support for structures and primitives from

a limited set of data types. It does neither provide bit-level

granularity nor explicitly support transcoded data or fragmen-

tation. Regarding simple functional dependencies, it supports

variable-length data through specific data types.

2.1.2.2. Abstract Syntax Notation One (ASN.1) and Encod-

ing Control Notation (ECN)

The Abstract Syntax Notation One (ASN.1) has been

defined by the International Telecommunication Union,

Telecommunication Standardization Sector (ITU-T) [20] and

allows the definition of data models as ASN.1 modules. In

combination with encoding rules such the Packed Encoding

Rules (PER) [21], an ASN.1 module defines a specific data

format. Alternativ encoding rules can be specified through

the Encoding Control Notation (ECN) [22]. ASN.1 is used

in the definition of numerous file formats and network proto-

cols, such as for X.509 security certificates [23] or for H.225

and H.245 messages used in the H.323 video conferencing

protocol [24].

ASN.1 allows the definition of an abstract data model in

a declarative manner. The design of ASN.1 and its encoding

rules follow the separation of Application layer and Presen-

tation layer in the ISO OSI stack, which allows for the re-

negotation of representations [25]. While the separation of

ASN.1 module definition and its encoding makes sense in an

interactive scenario where encodings can be renegotiated, it

provides no benefit for data formats in general, as the defi-

nition of data models and its representation is often fixed in

advance and without means for renegotiation.

ASN.1 allows the description of structures and primitives,

yet it does not natively cover transcoded data or fragmenta-

tion. Quite specific functional dependencies are supported

such as for variable-length data.

2.1.2.3. Concrete Syntax Notation 1 (CSN.1)

The Concrete Syntax Notation 1 (CSN.1) is a language

used in the definiton of messages for GSM and UMTS com-

munication protocols by the European Telecommunication

Standards Institute (ETSI). CSN.1 has a published specifica-

tion [26] and is informally described in Annex B of ETSI TS

100 939 [27].

CSN.1 is declarative and describes the composition of

data on the bit level quite similar to a formal language gram-

mar. Although similar in naming to ASN.1, CSN.1 directly

describes the composition of data on the bit level, whereas

ASN.1 describes an abstract data model.

CSN.1 provides support for structures, primitives and of-

fers quite extensive support of functional dependencies com-

92

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

pared to all other approaches. However, it does not provide

explicit support for transcoded data or fragmentation of data.

2.1.2.4. Transfer Syntax Notation One (TSN.1)

The Transfer Syntax Notation One (TSN.1) has been speci-

fied by the company Protomatics, Inc [28] and is used in their

commercial product offerings. It defines a language for de-

scribing the composition of data, yet to our knowledge, it has

not been used for existing, published specifications of well-

known data formats.

Naming of TSN.1 follows the ASN.1 and CSN.1 acronyms,

but the language describes data in a procedural way not unlike

the Flavor approach from Multimedia, mixing data declara-

tions with flow-control statements.

TSN.1 is intended for machine-processing and is capable

of describing structures and primitives including the simple

functional dependency of variable-length data. As with oth-

ers, it does not explicitly handle transcoded data or fragmen-

tation.

2.1.3. Grid Computing

Last but not least, describing existing data sets for exchange

of research results is of interest in Grid Computing. It in-

cludes approaches such as Binary Format Description (BFD)

and the Data Format Description Language (DFDL).

2.1.3.1. Binary Format Description (BFD)

Binary Format Description (BFD) is an XML-based lan-

guage intended for describing “arbitrary” data formats of sci-

entific datasets [29]. It was developed under funding of Pa-

cific Northwest National Laboratory (PNNL) in 2000 and was

part of the Scientific Annotation Middleware (SAM) project

by the U.S. Department of Energy [30].

BFD extends the Extensible Scientific Interchange Lan-

guage (XSIL) with flow-control statements and enables func-

tional dependencies through XPath-based references to be re-

solved during runtime. It is intended for machine consump-

tion, is procedural and covers both structures and primitives.

It does not explicitly handle transcoded data or fragmentation.

2.1.3.2. Data Format Description Language (DFDL)

The Data Format Description Language (DFDL) is a for-

mat description language with the explicit goal of describing

any data format [31]. It is an extension to XML Schema and

is currently defined in working draft 032 of its initial version

1.0.

Similar to the BSDL approach, DFDL extends the XML

Schema with application-specific annotations. In its current

form, DFDL focuses on “hierarchical nested data”, providing

support for both structures and primitives. It also handles

functional dependencies through XPath-based references.

Yet, it does not explicitly handle transcoded data or fragmen-

tation.

2.1.4. Summary

The descriptive capabilities of related work presented from

Multimedia, Telecommunication and Grid Computing are

summarized in Table 1. There are several aspects we ob-

served that are interesting to note:

• Related work focuses on specific aspects of data for-

mats, such as simple adaptation of scalable data formats

in Multimedia, or ensuring interoperability through

defining data models in Telecommunication, often lim-

iting their descriptive capabilities to these aspects. A

thorough analysis on modelling data formats in general

is notably absent from all of them.

• The distinction between representing and describing

data is sometimes blurred in literature, although both

tasks are conceptually different. Representing data can

be limited to specific representations of information,

whereas describing data requires complete support of

arbitrary information representations and thus is more

complex to achieve.

• Next to no cross-pollination apparently occurs between

domains in this regard, although several approaches

across domain boundaries have adopted the use of

XML, XML Schema and XPath.

There are sufficient machine-processible, declarative ap-

proaches that both handle structures and primitives on bit

granularity as well as functional dependencies on a simple

level. Yet, explicit support for transcoded data and fragmen-

tations is missing from all these approaches. The former is

required for handling compressed, encrypted, or otherwise

transformed data, whereas the latter is required for inter-

leaved data typical for multimedia files. These cases can be

observed in PNG images or MPEG-4 movies.

3. ANALYSIS

3.1. Abstraction

Let D denote the set of all data formats, d ∈ D denote a data

format, α denote a sender and β denote a receiver.

HYPOTHESIS 3.1: The current state-of-the-art on data for-

mat description can be improved by considering a data format

d as a normative set of lossless information representations for

purposes of storage and transmission between a sender α and

a receiver β.

Following the hypothesis, the basic usage scenario of a

data format shown in Figure 1 can be stated as follows:

• A sender α has an internal representation mα of infor-

mation. The sender ensures the validity of mα with

respect to a data format d and maps mα to an external

representation md, which is then sent over a channel c.

93

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

M
P

E
G

1
/2

(X
)F

la
v
o

r

B
S

D
L

X
D

R

A
S

N
.1

&
E

C
N

C
S

N
.1

T
S

N
.1

B
F

D

D
F

D
L

Support of structures 4 4 4 4 4 4 4 4 4

Support of primitives 4 4 4 4 4 4 4 4 4

Support of transcodes 2 2 2 2 2 2 2 2 2

Support of fragments 2 2 2 2 2 2 2 2 2

Machine-processible 2 4 4 4 4 4 4 4 4

Declarative, not procedural 4 2 4 4 4 4 2 4 4

Table 1. Comparison of descriptive capabilities

sender α channel c receiver β

mα

md

m′

β

m′

d

internal

external

vα
d , fα→d

fc

vd, f−1

β→d

Fig. 1. Abstract information transport using a data format

• A receiver β eventually obtains an external represen-

tation m′

d from c, which may be invalid due to an er-

ronous sender, or be different from the originally sent

md in case of a noisy channel. The receiver therefore

ensures the validity of m′

d and maps m′

d to an internal

representation mβ .

Both sender and receiver necessarily share information con-

cerning the data format d. Moreover, depending on d, both α
and β may share additional context information required for

deciding the validity, or for mapping from and to an external

representation md. Example use cases are the identification

of embedded data formats through a separate channel, or the

use of encryption in a data format.

3.1.1. Lossless versus lossy data formats

In this regard, it is necessary to clarify the expression “lossless

information representation” from our hypothesis with regards

to the distinction between lossless and lossy data formats.

A lossless data format represents an original information,

whereas a lossy data format represents an approximation of

original information according to a defined metric. In either

case, the actually represented information is to be recovered

by the receiver, be it original or an approximation, so map-

pings from and to md are necessarily information-preserving.

For the course of this article, we therefore define a data for-

mat d to specify the representation of information in a lossless

manner. Aspects regarding the preprocessing of information

to be represented through a data format, such as approxima-

tions and related metrics for lossy data formats, are not within

the scope of this article.

3.2. Formalization

Informally, we define a data format instance as a mapping

between an internal representation mγ and an external repre-

sentation md, and define a data format through a set of such

instances. Formalizing both terms in that order, the following

definitions are given step-wise as follows:

94

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

3.2.1. Encoding data

As a first step, a way to represent data in an encoded form.

DEFINITION 3.1 (BIT SEQUENCE): A bit sequence b is de-

fined as finite and non-empty. The set of all finite, non-empty

bit sequences is defined as B (Eq. 1).

b = {0, 1}n, n ≥ 1, b ∈ B (1)

DEFINITION 3.2 (ENCODING): An encoding e is a bijec-

tive function which maps between an element x ∈ Xe and its

corresponding bit sequence b (Eq. 2).

e : Xe ↔ Be, Be ⊆ B (2)

3.2.2. Representing information

A bit sequence represents encoded data, but does not describe

its meaning by itself, as it depends on the actual context. In

order to represent data including its semantics as information,

some sort of “labeling” is needed.

DEFINITION 3.3 (LABEL): A label l is a symbol that de-

notes some given semantics. The set of all labels is defined as

L.

DEFINITION 3.4 (LABELED BIT SEQUENCE): A labeled

bit sequence i is defined as a pair i = (b, Li), where b ∈ B

is a bit sequence and Li ⊆ L is a subset of labels that denote

the meaning of b (Eq. 3). The set of all labeled bit sequences

is defined as I.

i = (b, Li), b ∈ B, Li ⊆ L, i ∈ I (3)

A labeled bit sequence represents information by making

the meaning of encoded data explicit regarding the specific

context of d. A labeled bit sequence can be categorized de-

pending on whether its information is part of the message to

be transported, or whether it is used as “packaging” to enable

transportation.

DEFINITION 3.5 (PAYLOAD): A labeled bit sequence i =
(b, Li) is payload if the value of its bit sequence b is function-

ally independent from other labeled bit sequences.

DEFINITION 3.6 (PACKAGING): A labeled bit sequence

i = (b, Li) is packaging if the value of its bit sequence b is

functionally dependent on one or more labeled bit sequences,

such as depending on their (relative) location, length, labels

or bit sequences.

3.2.3. Representing complex information

Labeled bit sequences serve as building blocks for more com-

plex representations, which are used either as internal repre-

sentation at a sender or receiver γ, or used as external repre-

sentation for exchanging information between a sender and a

receiver.

DEFINITION 3.7 (INTERNAL REPRESENTATION): An in-

ternal representation mγ represents information in a way that

is specific to some sender / receiver γ and is defined as a tu-

ple of one or more labeled bit sequences (Eq. 4) which are

semantically distinct. The set of all internal representations is

defined as IR.

mγ = {i1, . . . , in}, n ≥ 1, ix ∈ I, mγ ∈ IR (4)

Different internal representations may represent the same

information, yet in varying granularity.

DEFINITION 3.8 (GRANULARITY): The granularity of

an internal representation mγ is a relative measure on how

fine-grained information is represented. Higher granularity is

achieved by a more fine-grained description. The actual gran-

ularity of mγ may vary depending on the sender or receiver

γ.

EXAMPLE 3.1: Let mγ,1 = {i}, i = (b, Li) be an inter-

nal representation, where i represents the color of a pixel as

a 24 bit RGB value composed of 8 bits for each color com-

ponent of red, green and blue. Let mγ,2 = {i1, i2, i3}, ix =
{bx, Li,x} be an internal representation, where i1, i2 and i3
represent the color of a pixel as a 24 bit RGB value as sepa-

rate 8 bit red, green and blue color components. In this case,

mγ,2 has a higher granularity than mγ,1.

Packaging is typically present in a data format in order

to describe variable aspects of payload required during the

parsing process, such as the length of a variable-length pay-

load. In order to compute packaging information during gen-

eration and process packaging information during parsing, a

certain minimum granularity of internal representation is re-

quired which separates packaging from payload.

DEFINITION 3.9 (EXTERNAL REPRESENTATION): An ex-

ternal representation md represents information as norma-

tively defined by a data format d. It is defined as a tuple con-

taining exactly one labeled bit sequence (Eq. 5). The set of

all external representations is defined as ER.

md = {i}, i ∈ I, md ∈ ER (5)

An external representation md typically carries some ag-

gregation of information rather than a single primitive value.

An external representation md is exchanged between sender

and receiver over some channel.

DEFINITION 3.10 (CHANNEL): An channel c passes an ex-

ternal representation md = {i}, i = {b, Li} from a sender α
to a receiver β, including the bit sequence b and its labels Li.

It is modelled as a channel function fc (Eq. 6).

fc : ER → ER (6)

95

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

A channel c handles the transmission of an external rep-

resentation md = {i}, i = {b, Li} by transferring both the

bit sequence b and its labels Li. A specialized channel c may

only pass external representations for a specific set of data for-

mats. Furthermore, a channel c may be noisy and introduce

errors into the bit sequence or the set of labels.

3.2.4. Mapping between representations

In order to map between internal and external representations,

some means for a bijective transformation is needed.

DEFINITION 3.11 (TRANSFORMATION): A transforma-

tion t is a bijective function which maps between input

and output as two ordered tuples of bit sequences (Eq. 7).

As shown in Figure 2, transformations can be categorized

through the cardinality of the input and output tuples as

• a segmentation of structured data (1 : m),

• a block transformation of transcoded data (1 : 1), and

• a concatenation of fragmented data into a composite

(n : 1).

Arbitrary n : m transformations can be composed from seg-

mentations, block transformations and concatenations. A

transformation may optionally have additional parameters

that control the bijective mapping.

t : B
n ↔ B

m, n ≥ 1, m ≥ 1 (7)

The bijective mapping between an internal representation

mγ and an external representation md as defined through

transformations gives rise to a data format instance.

DEFINITION 3.12 (DATA FORMAT INSTANCE): Given a

pair of representations (md, mγ) with md = {i0}, mγ =
{i1, . . . , in}, n ≥ 1, a data format instance is a rooted,

directed, acyclic graph as a causality graph on labeled bit

sequences. The graph has root in i0 and has i1, . . . , in as its

leaves. It is composed from a finite set of transformations,

where each transformation t defines directed arcs from its in-

put to its output bit sequences. Regarding intermittent nodes

in the causality network, their bit sequences is the result of

transformations, while their labels functionally depend on

neighbouring labeled bit sequences as well as on optional

context information depending on d.

As we now have defined the concept of a data format in-

stance, we can proceed towards data formats as potentially

infinite sets of data format instances.

3.2.5. Mapping between sets of representations

DEFINITION 3.13 (INTERNAL VALIDATION FUNCTION):

For a given sender α and data format d, an internal validation

function is defined as vα
d (Eq. 8). An internal representation

mα is valid iff vα
d (mα) = 1. The subset of all valid internal

representations of α for d is defined as IR
α
d ⊆ IR.

vα
d : IR → {0, 1} (8)

As a data format typically does not provide means for

transporting arbitrarily labeled bit sequences, a sender α tests

whether an internal representation is valid or not prior to cre-

ating a corresponding external representation.

DEFINITION 3.14 (EXTERNAL VALIDATION FUNCTION):

For a given d ∈ D, we define an external validation func-

tion vd (Eq. 9). An external representation md is valid iff

vd(md) = 1. The subset of all valid external representations

for d is defined as ERd ⊆ ER.

vd : ER → {0, 1} (9)

A received external representation m′

d may be invalid, for

example due to a degrading storage medium or due to inter-

ference on a network link. A receiver β thus must test whether

the received m′

d is valid.

In order to transport information from the internal rep-

resentation mα ∈ IR
α
d to the external representation md ∈

ERd, and vice versa from a valid external representation

m′

d ∈ ERd to the internal representation m′

β ∈ IR
β
d , a suited

mapping between both sets becomes necessary.

DEFINITION 3.15 (MAPPING FUNCTION): For a given

sender α and data format d ∈ D, a bijective mapping function

fα→d (Eq. 10) maps from IR
α
d to ERd through encoding and

serialization. For a given receiver β and data format d ∈ D,

its inverse f−1

β→d (Eq. 11) maps from ERd to IR
β
d through

parsing and decoding.

fα→d : IR
α
d → ERd (10)

f−1

β→d : ERd → IR
β
d (11)

Both sets ERd and IR
α
d have the same size due to the bi-

jectivity of export and import functions. Both sets ER and IR

are infinite. Depending on the data format d, the sets ERd and

IR
α
d may be finite. Building on the previous definitions, the

notion of a data format can now be defined.

DEFINITION 3.16 (DATA FORMAT): A data format d is a

possibly infinite set of data format instances, which map be-

tween a normative ERd ⊆ ER and a canonical IR
γ
d ⊆ IR and

which makes assumptions on the underlying channel c.

3.3. Elemental properties

We can observe elemental properties of a data format for

sender and receiver along the flow of information in Figure 1:

• The sender α can decide whether the internal repre-

sentation mα is valid using function vα
d . For example,

given GIF89a as data format and mα as an image, the

96

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

(b0)

(b1, . . . , bn+1)

segmentation

(b0)

(b1)

block transformation

(b0, . . . , bm)

(bm+1)

concatenation

Fig. 2. Transformations ordered by input and output cardinality.

md = {i}

. . .

{i1, . . . , im}, m ≥ 1

. . .

mα = {i1, . . . , in}, n ≥ 1

fα→d(mα) f−1

α→d(md)

Fig. 3. Bijective mapping between mα and md

IR

IR
α
d

ER

ERd

mα md

fα→d

f−1

α→d

Fig. 4. Bijective mapping between internal representations IR
α
d and external representations ERd through mapping function

fα→d and its inverse f−1

α→d

97

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

validation function vα
d would fail if the width of the im-

age were 65536 pixels, as the data format constraints it

to 216 − 1 = 65535 pixels or less.

• The sender α can compute a valid external representa-

tion md from a valid internal representation mα using

the bijective function fα→d. This computation includes

steps such as encoding values and serializing the exter-

nal representation.

• The receiver β can decide whether the external repre-

sentation m′

d is valid using function vd. The channel c
may have introduced errors that invalidate the external

representation m′

d, such as bit flips during storage on a

deteriorating medium, or interference on a network link

during transmission.

• The receiver β can compute a valid internal represen-

tation m′

β from a valid external representation m′

d us-

ing the bijective function f−1

β→d. This mapping includes

steps such as parsing the external representation and de-

coding its values.

For a formalization of data formats, it thus is desirable for

a model on data formats to guarantee bijectivity, decidability

as well as its overall consistency.

3.4. Limits for modelling arbitrary data formats

An ideal model would guarantee both the decidability of func-

tions vα
d , vd, fα→d and f−1

β→d as well as the bijectivity of

functions fα→d and f−1

β→d. Moreover, it would guarantee the

consistency of validation and mapping functions. Based on

established results from formal languages and computational

theory, we will now show to which degree this is possible.

3.4.0.1. Decidability

To guarantee decidability, we ideally would like to model

the set of deciders, that is, machines that always halt. Yet, the

problem of deciding whether an Turing Machine (TM) ac-

cepts a given input is the well-known Halting Problem ATM

(Eq. 12), which is undecidable [32, 33].

ATM = {〈M, w〉 |M is a TM and accepts w} (12)

Reducing the computational power of a TM to a linear-

bounded automaton (LBA), decidability can be guaranteed

again, as the corresponding problem ALBA is decidable [33].

Yet, a reduction from TMs to LBAs excludes valid deciders

from being modelled as well.

3.4.0.2. Bijectivity

To guarantee bijectivity, we can represent a mapping func-

tion as a reversible automaton, where reversibility is ensured

through its bijective transition function σ. Due to a finite set

of states and an alphabet of finite size, the transition function

consists of a finite number of transition formulas, which can

be represented as tuples and for which bijectivity can be de-

cided. Bennett proved the Reversible Turing Machine (RTM)

as equivalent to the TM in computational power by showing

that a three-tape RTM can compute a single-tape TM [34].

3.4.0.3. Consistency

Consistency between bijective mapping functions fα→d

and its inverse f−1

α→d can be guaranteed through a reversible

automaton. As well, consistency between fα→d and vα
d for

sending as well as f−1

α→d and vd for receiving can be guaran-

teed for decidable bijective mapping functions by defining vα
d

and vd to return 1 iff the respective fα→d and f−1

α→d accepts

and thus decides the input, and 0 otherwise.

3.4.0.4. Summary

Computational theory places significant limits on mod-

elling arbitrary data formats in general. A model can guar-

antee bijectivity, yet no model can both cover arbitrary data

formats and still guarantee decidability. We thus opt for a

second-best approach by dropping guaranteed decidability as

property in favor of a generic approach.

4. MODELS

4.1. Data Format Instances

The following definition of the Bitstream Segment Graph

from the original publications in [1, 6] has been adapted to

the context of this article and extended with a list of opera-

tions and an RDF/N3-based storage representation.

4.1.1. Definition

For defining a model to describe the composition of data in

a canonic form, we now define the Bitstream Segment Graph

building on the causality network idea from the analysis.

DEFINITION 4.1 (BITSTREAM SEGMENT): Given a bit-

stream segment v ∈ V , the set of bitstream segments V ,

the set of finite consecutive bit sequences B = {0, 1}n, n ∈
N \ {0} and ϕ : V 7→ B, then the bitstream segment v
represents a finite consecutive bit sequence ϕ(v) ∈ B.

DEFINITION 4.2 (BITSTREAM SOURCE): A bitstream

source is a root bitstream segment vRoot ∈ V with a de-

fined ϕ(vRoot).

A bitstream source represents a digital item which is com-

posed according to a data format. Files, network packets or

file systems on some storage medium are examples for octet-

aligned bitstream sources.

DEFINITION 4.3 (BITSTREAM ENCODING): Given a bit-

stream encoding e = (rel, v, l) ∈ RE , v ∈ V, l ∈ L, where

RE is the set of bitstream encodings and L is the set of literals,

98

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

Used in encoding e ∈ RE? Used in transformation t ∈ RT ? Type RDF Type

no no (as input) Generic bsg:generic

yes no (as input) Primitive bsg:primitive

no segmentation (as input) Structure bsg:structure

no transformation (as input) Transcode bsg:transcode

no concatenation (as input) Fragment bsg:fragment

no concatenation (as output) Composite bsg:composite

Table 2. Types of bitstream segments.

then for a given v, e specifies a mapping relation rel(ϕ(v), l),
required to be bijective. It is abbreviated with φ(v) = l, where

φ : V 7→ L.

A bitstream segment can represent an encoded literal that

is part of the data contained in a bitstream source (a primitive).

For example, there are two bitstream segments within a PNG

file which contain encoded integers that represent the width

and height of the image.

DEFINITION 4.4 (BITSTREAM TRANSFORMATION): Given

a bitstream transformation t = (rel, Vin, Vout, P) ∈ RT ,

where Vin, Vout are totally ordered sets with Vin ⊂ V, Vout ⊂
V, Vin 6= ∅, Vout 6= ∅, Vin ∩ Vout = ∅, RT is the set of

bitstream transformations and P is the set of parameters, then

t specifies a mapping relation rel(Vin, Vout, P), required to

be bijective, between Vin and Vout under application of P .

In general, a bitstream transformation t bijectively maps

a set of input bitstream segments Vin as predecessors to a a

set of new bitstream segments Vout as successors as result

of the transformation. Normalized bitstream transformations

categorized by |Vin| : |Vout| cardinality are

• the concatenating transformation of multiple fragment

segments into one composite segment (m : 1) (for frag-

ments),

• a class of block transformations such as decompression

or decryption (1:1) (for transcodes) and

• segmenting transformation of a structured segment into

multiple separate bitstream segments (1 : n) (for struc-

tures).

Arbitrary transformations of m : n cardinality can be com-

posed by concatenating two or more normalized transforma-

tions.

DEFINITION 4.5 (BITSTREAM SEGMENT GRAPH): Given

a set of bitstream transformations RT and a set of bitstream

encodings RE , then RT and RE induce a bitstream segment

graph (BSG). It is a weakly connected, directed acyclic rooted

graph G = (V, E) with a set of bitstream segments V as ver-

tices and a set of directed edges E ⊂ V × V , connecting

transformation input/output pairs of bitstream segments. A

BSG describes the composition of a bitstream source and is

complete iff

∀v ∈ V : (∃!t = (relt, Vin, Vout, P) ∈ RT , v ∈ Vin) ⊕

(∃!e = (rele, ve, l) ∈ RE , v = ve)

A BSG is composed from bitstream transformations and

encodings, which are required to have bijective mapping re-

lations. It therefore provides a bijective mapping between its

bitstream source and its contained literals.

4.1.1.1. Types of Bitstream Segments

In a BSG instance, bitstream segments are categorized into

one of 6 types as generic, primitive, structure, transcode,

fragment and composite, depending on their participation in

normalized bitstream transformations and bitstream encod-

ings as shown in Table 2. While the concept of primitives,

structures, transcodes and fragments have been previously

defined in Section 2, a generic serves for data of yet unknown

type in an incomplete description, and a composite describes

the aggregation of two or more fragments.

To prevent a conflicting type assignment for bitstream

segments that have both the “upward” type and another

“downward” type such as a composite that contains a struc-

ture, an identity transformation is inserted after the composite

and the “downward” type such as the structure is assigned to

the newly inserted bitstream segment.

4.1.1.2. Coverage of Bitstream Segments

The coverage of a bitstream segment is a measure in the

range between 0 and 1 and expresses how completely a bit-

stream segment is mapped to encoded literals through its suc-

cessor(s). It is defined as 1 for primitives, 0 for generics,

and computed as length-weighted sum over the coverage of

all successors otherwise. For example, for a structure bit-

stream segment a with two primitive segments as successors,

the coverage of a would be 1. In case of one primitive seg-

ment and a generic segment of equal length as successors, the

coverage of a would be 0.5. The coverage of a BSG instance

refers to that of its bitstream source.

99

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

4.1.2. Composition Algorithm

Using definitions 4.1 to 4.5, we are able to describe the bijec-

tive mapping between a bitstream source and its set of con-

tained literals. The following simple algorithm constructs a

BSG step-by-step. For a construction at step x, the tuple

(vRoot, Vx, Vleafx
, Vliteralx , RTx

, REx
)

describes a designated root bitstream segment vRoot, a set

of bitstream segments Vx, a set of leaf bitstream segments

Vleafx
, a set of literal bitstream segments Vliteralx , a set of

bitstream transformations RTx
and a set of bitstream encod-

ings REx
, whereas initial values are

V0 = {vRoot}

Vleaf0
= {vRoot}

Vliteral0 = ∅

RT0
= ∅

RE0
= ∅

Starting at step x = 1, each step either adds a transfor-

mation or an encoding through an operation. For a trans-

formation, the addition of t = (rel, Vin, Vout, P) /∈ RTx−1
,

Vin ⊆ Vleafx−1
results in

Vx = Vx−1 ∪ Vout

Vleafx
= Vleafx−1

∪ Vout \ Vin

Vliteralx = Vliteralx−1

RTx
= RTx−1

∪ {t}

REx
= REx−1

whereas the addition of an encoding e = (rel, v, l) /∈
REx−1

, v ∈ Vleafx−1
results in

Vx = Vx−1

Vleafx
= Vleafx−1

\ v

Vliteralx = Vliteralx−1
∪ {l}

RTx
= RTx−1

REx
= REx−1

∪ {e}

For step y, the tuple induces a BSG Gy = (Vy, Ey) where

Ey is defined as follows:

∀t = (rel, Vin, Vout, P) ∈ RTy
,

∀vs ∈ Vin, ∀vt ∈ Vout : e = (vs, vt) ∈ Ey

For a complete BSG, these steps are repeated until

Vleafz
= ∅, where the algorithm terminates as no further ad-

dition of either transformation or encoding to leaf bitstream

segments is possible.

4.1.3. Operations

For manual annotation of a bitstream source, it is helpful to

break up transformations into a number of smaller, incremen-

tal operations. For that purpose, we define a set of parameter-

ized operations under which a BSG instance is closed. List-

ing these with their respective inverse in pairs, these are as

follows:

• initial_split, final_join: Replaces a generic segment a
with a structure segment b, splits a into two consecutive

generic segments a1, a2 and adds both in that order as

successors to the structure b.

• split, join: Under a structure a, replaces a generic seg-

ment b with two consecutive generic segments b1, b2 in

that order which result from splitting b in two.

• tie, untie: Replaces a consecutive set of segments A
with a structure segment b that has A as its successors.

• declare_primitive, undeclare_primitive: Transforms

a generic segment a into a primitive segment a.

• expand, compress: Transforms a generic segment a
into a transcode segment a and adds a generic segment

b as its successor.

• declare_fragment, undeclare_fragment: Transforms

a generic segment a into a fragment segment a.

• compose, decompose: Aggregates an ordered set of

fragments A into a composite segment b, assigns b as

sole successor to each fragment a ∈ A, and adds a

generic segment c as sole successor of b.

4.1.4. Storage Representation

For exchanging a BSG instance which describes the compo-

sition of binary data, we can now define an RDF vocabulary

for the Bitstream Segment Graph model. For expressing a

BSG instance using RDF, bitstream segments are represented

as RDF resources, belonging to certain classes and having

certain properties. For storing BSG instances in RDF, Nota-

tion 3 is used [35]. In the following definitions and examples,

namespaces and prefixes are used according to Table 3.

4.1.4.1. RDF Classes

Every bitstream segment has a rdf:type value of both

bsg:segment and the specific RDF class corresponding to

its type as listed from Table 4, such as bsg:primitive.

A root bitstream segment additionally has a rdf:type

of bsg:source. It is worth noting that the normalized

bitstream transformations of segmentation, block transfor-

mation and concatenation from Definition 4.4 correspond

to the classes bsg:structure, bsg:transcode and

bsg:composite, respectively.

100

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

Prefix Namespace Comment

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# Standard RDF namespace

bsg http://www.dataformats.net/2009/01/25-bsg-syntax-ns# BSG namespace

bsge http://www.dataformats.net/2009/01/25-bsg-ext-ns# BSG Extension namespace

Table 3. RDF namespace declarations

RDF Class Description

bsg:source Class for bitstream sources

bsg:segment Abstract base class for bitstream segments

bsg:generic Class for bitstream segments where the purpose is undefined

bsg:primitive Class for bitstream segments representing an encoded literal

bsg:structure Class for bitstream segments composed from two or more bitstream segments with separate, distinct

meaning

bsg:transcode Class for bitstream segments representing a transcoded bit sequence

bsg:fragment Class for bitstream segments representing a fragment of a larger bit sequence with a uniform meaning

bsg:composite Class for bitstream segments representing a bit sequence with a uniform meaning aggregated from

two or more fragments

Table 4. RDF classes for bitstream segments.

RDF Class RDF Property Cardinality Description

bsg:source bsg:href 1..1 Reference to a bitstream source

bsg:segment bsg:start 1..1 Start position in bits (inclusive)

bsg:length 1..1 Length in bits

bsg:end 1..1 End position in bits (exclusive)

bsg:semantics 0..n (size of list) Identifier for format-specific semantics

bsg:predecessor 0..n (size of list) Ordered list of predecessors (input)

bsg:successor 0..n (size of list) Ordered list of successors (output)

bsg:generic bsg:predecessor 0..1 (size of list) Restriction: Generics have at most one predecessor

bsg:successor 0..0 Restriction: Generics do not have successors

bsg:primitive bsg:encoding 1..1 Identifier for the encoding used

bsg:predecessor 0..1 (size of list) Restriction: Primitives have at most one predecessor

bsg:successor 0..0 Restriction: Primitives do not have successors

bsg:structure bsg:predecessor 0..1 (size of list) Restriction: Structures have at most one predecessor

bsg:successor 2..n (size of list) Restriction: Structures have at least two successors

bsg:transcode bsg:codec 1..1 Identifier for the codec used

bsg:predecessor 0..1 (size of list) Restriction: Transcodes have at most one predecessor

bsg:successor 1..1 (size of list) Restriction: Transcodes have exactly one successor

bsg:fragment bsg:predecessor 1..1 (size of list) Restriction: Fragments have exactly one predecessor

bsg:successor 1..1 Restriction: Fragments have exactly one successor

bsg:composite bsg:predecessor 2..n (size of list) Restriction: Composites have at least two predecessors

bsg:successor 1..1 (size of list) Restriction: Composites have exactly one successor

Table 5. RDF properties for bitstream segments.

101

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

4.1.4.2. RDF Properties

Depending on the RDF class, bitstream segments have spe-

cific properties according to Table 5. For placement, every

bitstream segment has a bsg:start, bsg:length and

bsg:end property with integer values. These refer to its

exact placement within the bit sequence composed from its

predecessor(s), or within its defined bit sequence in case of a

bitstream source. A root bitstream segment always starts at

0. All three properties are measured in bits, whereas the start

position is included and the end position excluded, which sim-

plifies testing two bitstream segments for neighbourship.

Regarding their composition, every bitstream segment

besides the bitstream source has a bsg:predecessor

property refering to a nonempty RDF list of bitstream seg-

ment URIs. Likewise, every bitstream segment besides

bsg:generic or bsg:primitive segments have a

bsg:successor property referring to a nonempty RDF

list of bitstream segment URIs. Class-specific restrictions

listed in Table 5 apply which correspond to the underlying

BSG model. Only the bitstream source has the bsg:source

property.

The meaning of a bitstream segment can be assigned a

bsg:semantics property referring to a nonempty RDF

list of string literals. For example, this could refer to PNG

Signature semantics using png:signature as value. For

bsg:primitive and bsg:transcode bitstream seg-

ments, the identification of the actual encoding or codec used

is given through the bsg:encoding and bsg:codec

properties, respectively. For example, this could include an

unsigned integer encoding (most significant bit first), referred

to by bsge:encoder-msbfuint or a gzip transformation

as bsge:transcoder-gzip. The normative definition

of concrete identifiers for semantics, encodings and codecs

depends on the data format to be described and is a standard-

ization effort which is not within the scope of this publication.

4.1.5. Visual Representation

Depending on the type, segments in a BSG are depicted as

shown in Figure 6, where start and end denote inclusive start

and exclusive end bit positions relative to the parent bitstream

segment(s), type denotes the bitstream segment type, param-

eter denotes a parameter for some types and id denotes some

plaintext identification.

start end

type

id

start end

role

parameter

id

Fig. 6. Visual representations; generic, structure and com-

posite bitstream segments (left); fragment, primitive and

transcode bitstream segments (right)

4.1.6. Tool Support

We have developed the Apeiron BSG Editor as a tool for the

annotation of bitstreams using the BSG model through a com-

bination of graph visualization and table representation of bi-

nary data, where operations can be applied. It is written in

Java, is based on the Open Services Gateway initiative (OSGi)

R4 specification and uses the Prefuse Visualization Toolkit

[36]. Apeiron is available online and can be launched from

http://www.dataformats.net via Java WebStart.

4.2. Data Formats

The following definition of BSG Reasoning originally pub-

lished in [7] has been adapted to the context of this article.

4.2.1. Definition

For defining a data format, we need to define a (potentially

infinite) set of data format instances which we can represent

using the BSG approach. We define such a set through the

BSG Reasoning approach as the set of stable models result-

ing from first-order logic rules on the BSG model, expressed

as implications or biconditionals. For rules, predicates are

used that refer to either deduced or computed facts. In terms

of existing logic languages, the BSG Reasoning approach re-

sembles Datalog [37] extended with functions.

4.2.1.1. Facts

A fact is represented as a predicate where all parameters are

ground. For example, the start position of a bitstream segment

a1 at bit 0 is represented as bsg:start(a1,0).

4.2.1.2. Predicates

Deducible predicates refer to facts that were either given

initially or subsequently deduced through rules. They are not

limited to BSG-related properties and relations only, but may

also include predicates for intermittent facts which may be

needed for deducing a BSG instance. For deduced predicates,

the open world assumption applies, as a currently unknown

fact may become known later. Computable predicates refer

to facts that can be computed directly, listed in Table 6. They

handle aspects such as decoding the literal ?l of a primi-

tive bitstream segment ?x from the so-far deduced, partial

BSG instance through bsg:value(?x,?l), or for solv-

ing the equation ?v=?u+1 through math:sum(?u,1,?v)

if either ?u or ?v are known. These predicates can choose

between the open world assumption and the closed world as-

sumption, as they can decide to refute facts that will always

fail, such as math:sum(1,2,4).

Predicates have parameters that can either be ground

and thus have a specific value, or be a variable. A mode

of a predicate states for each of its parameters whether it is

ground or variable. Computable predicate may support ar-

bitrary modes, eg. allowing math:sum the computation of

102

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

0 1.432

Structure

File

0 64

Structure

Signature

64 264

Structure

IHDR

264 392

Structure

gAMA

392 1.000

Structure

IDAT #1

1.000 1.336

Structure

IDAT #2

1.336 1.432

Structure

IEND

0 32

Primitive

int

Len #1

32 64

Primitive

byte[4]

Type #1

64 576

Fragment

#1

Data #1

576 608

Primitive

byte[4]

CRC #1

0 32

Primitive

int

Len #2

32 64

Primitive

byte[4]

Type #2

64 304

Fragment

#2

Data #2

304 336

Primitive

byte[4]

CRC #2

0 752

Composite

Composite

0 752

Transcode

zlib

Compressed

0 16.640

Transcode

PNG Filter

Scanlines

0 16.384

Primitive

short[32][32]

Pixels

Fig. 5. Partial bitstream segment graph for file “oi2n0g16.png”, showing the bijective mapping of two PNG IDAT chunks to a

16 bit grayscale image with a resolution of 32 × 32 pixel.

math:sum(?u,4,5) as well as math:sum(1,?v,5)

and math:sum(1,4,?w).

4.2.1.3. Rules

Using these types of predicates, we can build rules as

implications or biconditionals. These rules can be parti-

tioned into model-specific rules that capture properties and

relations inherited from the BSG model itself, and format-

specific rules that represent data format knowledge. For

example, a BSG-specific rule is that two neighbouring bit-

stream segments b and c share a boundary, so from the

facts bsg:follows(b,c) and bsg:end(b,512), the

fact bsg:start(c,512) follows. In Figure 5, a format-

specific rule of PNG is that if a segment a represents a PNG

file as stated by the factbsg:semantics(a,png:file),

then its first successor b is a PNG signature, which is ex-

pressed by the facts bsg:firstSuccessor(a,b) and

bsg:semantics(b,png:signature).

4.2.1.4. Reasoning process

For deducing a BSG instance, initial knowledge on a bit-

stream source is given, such as the fact bsg:source(a,

’oi2n0g16.png’). Through a series of iterative steps,

the set of rules is applied in a monotone deduction process. In

each step for every rule, it is tried to match the antecedents of

a rule previously deduced knowledge. If the antecedents of a

rule matches, then for its conclusion, the computable pred-

icates are tested and the deducible predicates are deduced.

Should a computable predicate fail in this test, the reasoning

process aborts, as a conclusion does not hold. This allows the

use of validation rules that assert certain properties, eg. that

for all bitstream segments, its respective bsg:start and

bsg:length have to sum up to its bsg:end, which can

be violated in case of contradictory information contained in

a damaged or maliciously crafted bitstream source. When no

new facts are deduced in a step, then a fixed point consisting

of the deducible facts of a BSG instance is reached.

If a fixed point is reached, the resulting BSG facts can

then be translated into a BSG instance for that bitstream

source. This requires post-processing steps such as assigning

the generic bitstream segment type whenever no type was

deduced for a bitstream segment. The deduction of a BSG

instance therefore can either

• abort with a computable predicate refuting a fact in a

rule conclusion, indicating that a conclusion does not

hold and thus the bitstream source does not conform to

the specified data format,

• reach a fixed point with a coverage x < 1, indicating

that there are bitstream segments in this data format in-

stance not specified in the set of rules, or

• reach a fixed point with a coverage x = 1, indicating

that this data format instance is completely covered by

the set of rules.

103

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

Building a set of rules as data format knowledge is typi-

cally an incremental process. It starts with the collection of

bitstream sources for a corpus that represents a specific for-

mat, and the definition of an initial set of rules. This set of

rules can be improved step-by-step by computing the BSG in-

stance for every bitstream source in the corpus and computing

its coverage. One then can select BSG instances with a cov-

erage x < 1 and focus on generic bitstream segments which

need to be described further through additional rules. Ac-

tual knowledge on how these generic bitstream segments are

actually composed may come from consulting textual spec-

ifications, existing implementations or through try-and-error

reverse engineering efforts. Repeating this process increases

the overall coverage of BSG instances in the corpus. For a

corpus, an fitting set of rules is found if the coverage reaches

1 for all of its BSG instances.

4.2.2. Implementations

In order to test the BSG Reasoning approach in practice,

we have developed a suited fixed-point reasoning system in

Java for BSG reasoning. We thereby defined suited inter-

faces for processing bitstream transformations and bitstream

encodings, and implemented components for handling trans-

formations and encodings as required for the PNG image file

format.

5. EXAMPLES

5.1. Describing the composition of data automatically

In order to demonstrate the BSG Reasoning approach, we

describe a small subset of the Portable Network Graphics

(PNG) image format. We required that of this subset, some

data format instances should at least be sufficiently com-

plex as to require all four types of descriptive capabilities

(structures, primitives, transcodes and fragments) including

functional dependencies as provided by the BSG model.

5.1.1. Setup

We identified a suited subset of PNG images, namely those

where compressed image data is stored as separate fragments

in so-called IDAT chunks. For building a suited corpus, we

examined the PNG Test Suite [38] with 156 PNG images

for compliance testing, including corrupted files and ex-

treme variants, and selected 8 images with filename pattern

oi??????.png.

Regarding the granularity of description, we allowed

primitive bitstream segments to represent arrays of encoded

literals. Without this consideration, the decomposition of

arrays such as pixel data into individual pixels would have

bloated the resulting description of a data format instance

without substantial benefit.

5.1.2. Data format rules

We built a fitting set of rules for our corpus, consisting of 17

model-specific rules (see Table 7) and 36 format-specific rules

(see Table 8 for an excerpt).

Regarding model-specific rules, we start with rules on

placement regarding a bitstream segment. This begins

with a rule for deducing bsg:start and bsg:length

from an initially given bsg:source (M1). If any two of

bsg:start, bsg:length and bsg:end are given for a

bitstream segment, the remaining fact can be deduced (M2-

M4). Moreover, if all facts are given for a bitstream segment,

it can be validated for ensuring consistency (M5). Further

rules include aspects of neighbourship of bitstream segments

in a structure (M6 & M7), successorship of bitstream seg-

ments (M8-M12), placement in a structure (M13-M15) and

resolvability (M16 & M17), which is necessary for decoding

the contained literal of primitive bitstream segments.

Finally, we come to format-specific rules on our PNG sub-

set. We start with a rule that deduces the PNG-specific type

of ’png:root’ for a bitstream source (F1). For such a bitstream

segment, we can deduce that there exists a first successor ?s

with bsg:semantics(?s,’png:signature’) (F2).

For a ’png:signature’, there exists a following ’png:chunk’

structure (F3) as shown in Figure 7, which again always

begins with a ’png:chunk-length’ bitstream segment (F4),

followed by a ’png:chunk-type’ bitstream segment (F5).

0 256

Structure

PNG chunk

0 32

Primitive

Integer

Length

32 64

Primitive

ASCII

Type

64 224

Structure

Data

224 256

Primitive

Integer

CRC

Fig. 7. BSG instance for a PNG chunk.

If the value of a ’png:chunk-length’ is 0, then the ’png:chunk-

type’ is followed directly by the ’png:chunk-crc’ bitstream

segment as last successor of the chunk (F6). Otherwise,

the ’png:chunk-type’ bitstream segment is followed by a

variable-length ’png:chunk-data’ bitstream segment and

again the ’png:chunk-crc’ bitstream segment (F7). Details on

bitstream segments such as their type, encoding and length

are provided for ’png:signature’ (F8), ’png:chunk-length’

(F9), ’png:chunk-type’ (F10) and ’png:chunk-crc’ (F11) bit-

stream segments. The PNG-specific type of the chunk is

deduced from the ’png:chunk-type’ value and assigned as

bsg:semantics to the chunk (F12). The remaining rules

listed in Table 8 state that if there is space left after a chunk,

there exists another one following (F13), otherwise the chunk

is the last successor of the bitstream source (F14). Further

rules handle chunk-specific aspects, eg. for the IHDR chunk

104

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

Predicate Behaviour

math:lt(?a,?b) Tests the formula ?a < ?b.

math:lte(?a,?b) Tests the formula ?a ≤ ?b.

math:product(?a,?b,?c)

Computes the formula ?a · ?b = ?c if two parameters are ground and no division by

zero occurs, and assigns the result to the third variable parameter. Tests the formula if

all parameters are ground.

math:sum(?a,?b,?c)
Computes the formula ?a + ?b = ?c if two parameters are ground and assigns the

result to the third variable parameter. Tests the formula if all parameters are ground.

util:concat(?a,?b,?c)

Concatenates ground strings ?a and ?b and binds the result to variable ?c. Tests

whether the concatenation of ?a and ?b corresponds to ?c if all parameters are

ground.

util:sourceLength(?a,?b)
Gets the length in bits of the ground file ?a and binds it to variable ?b. Tests whether

file ?a has length ?b in bits if both are ground.

util:skolem(?a,...,?c)

Skolem function providing for existential quantification. Maps the set of ground pa-

rameters (?a, . . .) to a value and binds it to variable ?c. Maps a ground ?c to a set of

values and binds them to variables (?a, . . .). Tests whether (?a, . . .) and ?c map to

each other if all parameters are ground.

util:value(?a,?b)

Decodes the contained literal of a ground primitive bitstream segment ?a if it is

bsg:resolved, and assigns the result to variable ?b. Tests whether the bitstream

segment ?a contains the literal ?b if both parameters are ground.

Table 6. List of computable predicates.

Rule

M1 bsg:source(?a,?f) ∧ util:sourceLength(?f,?l)→ bsg:start(?a,0)

∧ bsg:length(?a,?l)

M2 bsg:length(?a,?l) ∧ bsg:end(?a,?e) ∧ math:sum(?s,?l,?e)→ bsg:start(?a,?s)

M3 bsg:start(?a,?s) ∧ bsg:end(?a,?e) ∧ math:sum(?s,?l,?e)→ bsg:length(?a,?l)

M4 bsg:start(?a,?s) ∧ bsg:length(?a,?l) ∧ math:sum(?s,?l,?e)→ bsg:end(?a,?e)

M5 bsg:start(?a,?s) ∧ bsg:length(?a,?l) ∧ bsg:end(?a,?e)→ math:sum(?s,?l,?e)

M6 bsg:leads(?a,?b)↔ bsg:follows(?b,?a)

M7 bsg:leads(?a,?b) ∧ bsg:end(?a,?p)↔ bsg:follows(?b,?a) ∧ bsg:start(?b,?p)

M8 bsg:firstSuccessor(?a,?b)→ bsg:successor(?a,?b)

M9 bsg:lastSuccessor(?a,?b)→ bsg:successor(?a,?b)

M10 bsg:successor(?a,?b)→ bsg:predecessor(?b,?a)

M11 bsg:successor(?a,?b) ∧ bsg:leads(?b,?c)→ bsg:successor(?a,?c)

M12 bsg:successor(?a,?b) ∧ bsg:follows(?b,?c)→ bsg:successor(?a,?c)

M13 bsg:firstSuccessor(?a,?b)→ bsg:start(?b,0)

M14 bsg:lastSuccessor(?a,?b) ∧ bsg:length(?a,?c)→ bsg:end(?b,?c)

M15 bsg:lastSuccessor(?a,?b) ∧ bsg:end(?b,?c)→ bsg:length(?a,?c)

M16 bsg:start(?a,?s) ∧ bsg:length(?a,?l) ∧ bsg:end(?a,?e) ∧ bsg:type(?a,?t)

∧ bsg:source(?a,?f)→ bsg:resolved(?a)

M17 bsg:successor(?a,?b) ∧ bsg:start(?b,?s) ∧ bsg:type(?b,?t)

∧ bsg:resolved(?a)→ bsg:resolved(?b)

Table 7. List of model-specific rules.

105

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

Rule

F1 bsg:source(?a,?f)→ bsg:semantics(?a,’png:root’)

F2 bsg:semantics(?r,’png:root’)→ util:skolem(’F2’,?r,?s)

∧ bsg:type(?r,’bsg:structure’)∧ bsg:firstSuccessor(?r,?s)

∧ bsg:semantics(?s,’png:signature’)

F3 bsg:semantics(?s,’png:signature’)→ util:skolem(’F3’,?s,?f)∧ bsg:leads(?s,?f)

∧ bsg:semantics(?f,’png:chunk’)

F4 bsg:semantics(?c,’png:chunk’)→ util:skolem(’F4’,?c,?l)

∧ bsg:firstSuccessor(?c,?l)∧ bsg:semantics(?l,’png:chunk-length’)

F5 bsg:semantics(?l,’png:chunk-length’)→ util:skolem(’F5’,?l,?t)

∧ bsg:leads(?l,?t) ∧ bsg:semantics(?t,’png:chunk-type’)

F6 bsg:semantics(?l,’png:chunk-length’)∧ bsg:value(?l,0) ∧ bsg:leads(?l,?t)

∧ bsg:successor(?ch,?l)→ util:skolem(’F6’,?l,?t,?ch,?cr)

∧ bsg:lastSuccessor(?ch,?cr)∧ bsg:leads(?t,?cr)

∧ bsg:semantics(?cr,’png:chunk-crc’)

F7 bsg:semantics(?l,’png:chunk-length’)∧ bsg:value(?l,?v) ∧ math:lt(0,?v)

∧ bsg:leads(?l,?t) ∧ bsg:successor(?ch,?l) ∧ math:product(?v,8,?lv)

→ bsg:leads(?t,?d) ∧ bsg:leads(?d,?cr) ∧ bsg:lastSuccessor(?ch,?cr)

∧ bsg:length(?d,?lv) ∧ bsg:semantics(?d,’png:chunk-data’)

∧ bsg:semantics(?cr,’png:chunk-crc’)

F8 bsg:semantics(?t,’png:signature’)→ bsg:type(?t,’bsg:primitive’)

∧ bsg:encoding(?t,’http://www.dataformats.net/2008/04/bsg-encodings#

ascii-string’) ∧ bsg:length(?t,64)

F9 bsg:semantics(?l,’png:chunk-length’)→ bsg:type(?l,’bsg:primitive’)

∧ bsg:encoding(?t,’http://www.dataformats.net/2008/04/bsg-encodings#

msbf-uint’) ∧ bsg:length(?l,32)

F10 bsg:semantics(?t,’png:chunk-type’)→ bsg:type(?t,’bsg:primitive’)

∧ bsg:encoding(?t,’http://www.dataformats.net/2008/04/bsg-encodings#

ascii-string’) ∧ bsg:length(?t,32)

F11 bsg:semantics(?cr,’png:chunk-crc’)→ bsg:type(?t,’bsg:primitive’)

∧ bsg:encoding(?t,’http://www.dataformats.net/2008/04/bsg-encodings#

msbf-uint’) ∧ bsg:length(?cr,32)

F12 bsg:semantics(?ch,’png:chunk’)∧ bsg:semantics(?t,’png:chunk-type’)

∧ bsg:successor(?ch,?t)∧ bsg:value(?t,?v)→ util:concat(’png:chunk:’,?v,?ct)

∧ bsg:semantics(?ch,?ct)

F13 bsg:semantics(?c, ’png:chunk’) ∧ bsg:end(?c,?ce) ∧ bsg:successor(?r,?c)

∧ bsg:length(?r,?rl) ∧ math:lt(?ce,?rl)→ util:skolem(’F13’,?c,?ce,?r,?rl,?nc)

∧ bsg:leads(?c,?nc) ∧ bsg:semantics(?nc,’png:chunk’)

F14 bsg:semantics(?c, ’png:chunk’) ∧ bsg:end(?c,?ce) ∧ bsg:successor(?r,?c)

∧ bsg:length(?r,?rl) ∧ math:eq(?ce,?rl)→ bsg:lastSuccessor(?r,?c)

Table 8. Excerpt of format-specific rules for a limited PNG subset. Due to length considerations, the excerpt is limited to a set

of rules capable of describing a PNG image to the level of chunk structures.

106

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

which contains information on image width and height.

5.1.3. Example deduction steps

For a given initial fact

bsg:source(’root’,’oi2n0g16.png’) (13)

the deduction process tries to apply all rules to deduce new

facts. In the first step, only the rules F1 and M1 are applicable,

which yield the following new facts:

bsg:semantics(’root’,’png:root’)∧

bsg:start(’root’,0)∧

bsg:length(’root’,1432) (14)

Again, the deduction process tries to apply all rules, this

time on an increased set of facts. In step 2, the rules F2 and

M4 yield the following:

bsg:type(’root’,’bsg:structure’)∧

bsg:firstSuccessor(’root’,’_sc1’)∧

bsg:semantics(’_sc1’,’png:signature’)∧

bsg:end(’root’,1432) (15)

The process of deduction is repeated until either no new

facts can be deduced, or a computable predicate refutes a

fact in a conclusion. The resulting facts from the reached

fixed point describe a BSG instance for the PNG image

oi2n0g16.png, which is part of the corpus and has a coverage

of 1.0.

5.1.4. Result

After building a fitting set of rules with coverage of 1.0 for

our corpus, we tested the set on all remaining PNG images

from the PNG Test Suite. We obtained a coverage of 1.0 for

64 images, with the remaining 89 valid images having an av-

erage coverage of 0.79. Three corrupt images belonging to

the test suite were excluded from the evaluation, as the fitting

set of rules did not contain verifying rules for PNG-specific

properties.

For a fitting set of rules over the entire PNG Test Suite, ad-

ditional rules need to be included for palette handling (PLTE

and sPLT chunks), transparency (tRNS chunk), background

colour (bKGD chunk), textual data (tEXt and zTXt chunks)

and other aspects. To estimate the effect of adding further

rules, we added two preliminary rules for handling PLTE

chunks and re-evaluated our rules on the corpus. We obtained

a coverage of 1.0 for 78 images, with the remaining 75 valid

images having an average coverage of 0.91.

During evaluation, the deduction process computed a

fixed point and halted on all instances. Since errors may be

present in a set of rules preventing a fixed point to be reached,

a primitive approach on handling the Halting Problem is to

place a limit on the iteration steps and abort the deduction

beyond that limit. We discovered that the typical number of

iterative steps required for our set of rules to reach a fixed

point on valid PNG images ranges from 72 up to 170 steps.

In case of the image file oi9n2c16.png, the number of itera-

tive steps required was 3000+, as compressed image data is

fragmented into bitstream segments with a length of 8 bit,

each encapsuled into a separate IDAT chunk. This can be

considered an extreme example, but demonstrates what is

still considered legal in terms of the original specification.

Since data format instances of other data formats such as Ap-

ple QuickTime movies have a more complex structure which

requires an even higher number of iterations, the use of a

semi-naive evaluation method for the deduction process as

known from Datalog [37] is absolutely essential.

5.2. Documentation of an exploit

In this section, we give a practical example for documenting

an exploit using Bitstream Segment Graphs. We have cho-

sen the vulnerability CVE-2007-2365 [39] which utilizes a

crafted PNG image to run malicious code. We use a spe-

cific version of this exploit that targets products from Adobe

(Photoshop CS2, Photoshop CS3, Photoshop Elements 5) and

Corel (Paint Shop Pro 11.20), but focus on the exploit section

targetted for Adobe Photoshop CS2. The exploit itself was

generated from an exploit generator which is available in C

source code [40]. The exploit generator allows to select from

two payloads, one starting the Windows Calculator, and an-

other one binding a shell to port 4444, where we chose the

former variant for annotation. For the documentation process,

we consulted the PNG W3C specification [41] in addition to

the crafted PNG image and the C source code of the exploit

generator.

We use Apeiron introduced in Section 4.1.6 for creating

a BSG instance as annotation on the crafted PNG image file.

Splitting the file into its chunks according to the file specifi-

cation, we arrive at the partial BSG instance shown in Figure

8. It consists of a PNG image signature and several chunks,

which consist of a 32 bit length descriptor, a 32 bit type in-

dicator, data of a length as indicated by the length descriptor,

and a 32 bit CRC on the type and data field, if its length is

non-zero.

At the current stage, the exploit contains three recogniz-

able chunks, namely the “IHDR” chunk for describing basic

information about the image, the “tIME” chunk for describing

the last modification date, and the “pHYs” chunk describing

the physical dimensions of pixels. The first two chunks are

seemingly valid, describing an image of 509 pixel× 438 pixel

with 256 indexed colors from a palette with standard values

for the PNG compression, filtering and interlacing methods,

which was last modified on 2007-04-15, 16:16:21 o’clock.

The third “pHYs” chunk violates the PNG specification, as

its length descriptor is expected to be 9 bytes, yet the ac-

107

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

Fig. 8. Apeiron showing the crafted PNG image exploit struc-

ture with a signature, a “IHDR” chunk, a “tIME” chunk, an

invalid “pYHs” chunk and junk data as its successors.

tual value is 0x4409 bytes. Taking this value for granted, the

next location for a chunk contains plain invalid values, with

a length descriptor value which is far beyond the actual file

length (0xb67d641e), but which does not explain the actual

execution of the Photoshop CS2 shellcode.

By either masking the length descriptor to the least signif-

icant byte or by assuming its specified length, we observe that

the “pHYs” chunk is followed by a valid “gAMA” chunk, de-

scribing the gamma value of the purported image, a “PLTE”

chunk, which is intended to describe the colors of the indexed

palette for the image, shown in Figure 9. As each color is

described from a red, green and blue color component each

requiring 1 byte, an image with 256 colors should have a

“PLTE” chunk no larger than 768 bytes, yet the actual value

is 0x160060, which is well beyond the remaining file.

Interestingly, the exploit generator fragments its shell-

code one byte at a time every three bytes in the “PLTE”

chunk, corresponding to the red color component of the (in-

valid) indexed colors 1496+, which requires active reassem-

bly through the targetted Photoshop CS2. In Figure 10, the

annotation is shown for the first four bytes of the shellcode.

We can therefore assume that the exploit at hand effectively

overflows the buffer allocated for the red color component of

indexed colors.

Another interesting aspect is that if we were to repeat the

masking of the length descriptor to the least significant byte

for the “PLTE” chunk as well, then the “PLTE” chunk is fol-

lowed by an “IDAT” chunk, which normally would contain

the filtered and compressed image data. We therefore assume

that the “IDAT” chunk is actually carrying another exploit for

a target application that performs the described masking of the

chunk length descriptor for the invalid “pHYs” and “PLTE”

chunks.

Fig. 9. Apeiron showing the crafted PNG image exploit struc-

ture as in Figure 8, adding a “gAMA” chunk and an invalid

“PLTE” chunk to its successors when adjusting the “pYHs”

length descriptor interpretation.

This example demonstrates the use of the Bitstream Seg-

ment Graph approach, as it allows a security expert to syste-

mantically analyse the composition of data and document it

appropriately.

6. APPLICATIONS IN IT SECURITY

6.1. Flaw Detection during Design

Just recently, the SANS and MITRE institutes performed a

study in which “experts from more than 30 US and interna-

tional cyber security organizations jointly released the con-

sensus list of the 25 most dangerous programming errors”

[42]. According to the consulted experts, “Improper Input

Validation” was considered the most harmful.

Even though the topic is well known since the end of the

1980s [43], buffer overruns are still among the most harm-

ful vulnerabilities. While many countermeasures have been

researched and implemented, such as Java’s ArrayOutOf-

BoundsException [44] or static and dynamic C code analysis

[45], the data format itself has almost never been considered

as a source of problems. Buffer overruns are usually consid-

ered to be programming mistakes, but they often result from

the inherent complexity of data formats to be implemented.

At this point, BSGs can step in. For one, the systematic

design process with tool-aided visualizations helps to make

the structure and complexity of the data format apprehensive

more easily. As well, it reduces the possibility of contradic-

tory informations, which is often an issue in textual specifi-

cations. A self-consistent format specification eliminates one

source of improper validation causing security flaws.

Second, it is hard to determine if an implementation con-

forms to a specification, but automatically generated parsers

108

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

Fig. 10. Apeiron showing the start of fragmented exploit

shellcode stored in the red color component of (invalid) in-

dexed colors 1496+.

may often be infeasible or an implementation may already

exist. This is where BSGs can be of help to identify extraor-

dinary dangerous parts within a specification. To do so, we

analyze a format specification regarding their level of redun-

dancies. Redundant informations within format specifications

may naturally lead to security vulnerabilities in a later imple-

mentation. Whenever there is e.g. several ways to conclude

the length of a datum, a programmer might use one way to

reserve memory and the second for the copy length, and a

buffer overrun flaw is born. Too often, the programmer is not

even aware of this change in informational context. For the

programmer, the fast processing of data and an elegant code

has the highest priority. By the formal description of parsing

rules for BSGs with a underlying grammar, a specification de-

signer can see and reason about the level of danger, i.e. the

number of vulnerability-prone redundancies better. Hence,

the specification can point out the most dangerous flaws to

programmers from the start.

Third, data formats tend to be re-used in a way, other than

their original objective. BSGs provide the means to analyze

the behavior of nested data-formats and reason about the new

situation. When a streaming-format is written to disk, for ex-

ample, it might provide it’s payload-size in the beginning, and

the programmer would reserve memory accordingly. But due

to the fact, that the filesystem provides the file’s length as

well, the payload can be read to EndOfFile, which may over-

run reserved memory. The original format might not even

have had a security relevant redundancy, but due to the nest-

ing into a file, additional information has become available

and a new vulnerability is introduced. The framework around

BSGs provide a basis on which this kind of possible flaws can

be analyzed in advance, but also for existing implementations.

6.2. Data Formats in Formal Security Validation

In the area of formal security validation, researchers as well

as practitioners see themselves confronted with very complex

computational and communication systems. Reasoning about

security properties of a formal model for a full system can

usually be considered infeasible. Therefore, the system model

use in formal validation usually is based on an abstraction

of the concrete system. Nevertheless, the completeness and

soundness of the formal validation process demands a com-

pletely formally proven validation cycle requiring formaliza-

tions of these abstractions. However, most approaches for

security verification neglect these abstractions and leave them

out completely from their formal methodology. It is being as-

sumed that the security expert, in order to be one, does not fail

on assumptions done during the abstraction. A few however

make these abstractions explicit. For example, [46], [47] and

[48] present approaches on security preserving abstractions

of system behavior based on alphabetic language homomor-

phisms. Still, the application of these formal concepts to the

formalization of the abstraction of data formats is not straight-

forward. Ongoing research is trying to incorporate BSGs with

the other to formalize the complete cycle from real to abstract

systems and back in order to get evidence on the satisfaction

of properties in the real system.

7. SUMMARY

In this article, we have presented the Bitstream Segment

Graph and BSG Reasoning approaches for describing both

data format instances and data formats. In contrast to re-

lated work, our approach is capable of handling arbitrary

data format instances, providing the descriptive capabilities

for structures, primitives, transcodes and fragments as well

as functional dependencies. Moreover, we have shown sig-

nificant limits from computational theory in our analysis,

and chosen a feasible approach for modelling arbitrary data

formats in general. We have presented examples of our ap-

proaches in use, describing a subset of the PNG data format

as well as documenting a malicious crafted PNG image file

targetting a vulnerability in Adobe Photoshop CS2. Last but

not least, we have shown directions towards further applica-

tions and ongoing research regarding data format description

in the area of formal security validation.

8. ACKNOWLEDGEMENTS

The authors would like to acknowledge the contribution of

several students to our research and thank Arsene Botchak,

Benno Kröger, Friedrich-Daniel Möller and Slaven Travar in

strict alphabetic order for their master and diploma theses.

109

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

9. REFERENCES

[1] Michael Hartle, Daniel Schumann, Arsene Botchak,

Erik Tews, and Max Mühlhäuser, “Describing Data For-

mat Exploits using Bitstream Segment Graphs,” in Pro-

ceedings of The Third International Multi-Conference

on Computing in the Global Information Technology

(ICCGI), Athens, Greece, March 2008, IARIA, pp.

119–124, IEEE Press, New York, NY.

[2] Reference Model for an Open Archival Information Sys-

tem (OAIS), vol. Blue Book, Consultative Committee

for Space Data Systems, January 2002.

[3] Stephen L. Abrams and David Seaman, “Towards a

Global Digital Format Registry,” in World Library and

Information Congress: 69th IFLA GeneralConference

and Council, Berlin, August 2003.

[4] Adrian Brown, “File Format Registries and the

PRONOM Service,” in ERPANET Seminar, Vienna,

2003.

[5] John Marc Ockerbloom, Mediating Among Diverse

Data Formats, Ph.D. thesis, Carnegie Mellon Computer

Science, 1998.

[6] Michael Hartle, Friedrich-Daniel Möller, Slaven Travar,

Benno Kröger, and Max Mühlhäuser, “Using Bitstream

Segment Graphs for Complete Data Format Instance

Description,” in Proceedings of The Third International

Conference on Software and Data Technologies (IC-

SOFT), José Cordeiro, Boris Shishkov, Alphes Kumar

Ranchordas, and Markus Helfert, Eds., Porto, Portugal,

August 2008, Institute for Systems and Technologies of

Information, Control and Communication, pp. 198–205.

[7] Michael Hartle, Arsene Botchak, Daniel Schumann, and

Max Mühlhäuser, “A Logic-based Approach to the

Formal Description of Data Formats,” in Proceedings

of The Fifth International Conference on Preservation

of Digital Objects (iPRES), London, United Kingdom,

September 2008, The British Library, pp. 292–299.

[8] Wesley De Neve, Davy Van Deursen, Davy De Schri-

jver, Sam Lerouge, Koen De Wolf, and Rik Van de

Walle, “BFlavor: A harmonized approach to media

resource adaptation inspired by MPEG-21 BSDL and

XFlavor,” EURASIP Signal Processing: Image Com-

munication, vol. 21, no. 10, pp. 862 –889, 11 2006.

[9] Davy De Schrijver, Wesley De Neve, Koen De Wolf,

Robbie De Sutter, and Rik Van de Walle, “An opti-

mized MPEG-21 BSDL framework for the adaptation of

scalable bitstreams,” Journal of Visual Communication

and Image Representation, vol. 18, no. 3, pp. 217–239,

2007.

[10] Alexandros Eleftheriadis, “Flavor: a language for media

representation,” in MULTIMEDIA ’97: Proceedings of

the fifth ACM international conference on Multimedia,

New York, NY, USA, 1997, pp. 1–9, ACM Press.

[11] Alexandros Eleftheriadis, “A Syntactic Descrip-

tion Language for MPEG-4,” Contribution ISO/IEC

JTC1/SC29/WG11 MPEG95/M0546, November 1995.

[12] O. Avaro, P. A. Chou, Alexandros Eleftheriadis, C. Her-

pel, C. Reader, and J. Signes, “The MPEG-4 Systems

and Description Languages: A Way Ahead in Audio Vi-

sual Information Representation,” SP:IC, vol. 9, no. 4,

pp. 385–431, May 1997.

[13] Alexandros Eleftheriadis and Danny Hong, “Flavor:

a formal language for audio-visual object representa-

tion,” in MULTIMEDIA ’04: Proceedings of the 12th

annual ACM international conference on Multimedia,

New York, NY, USA, 2004, pp. 816–819, ACM Press.

[14] Alexandros Eleftheriadis and Danny Hong, “XFlavor:

Bridging bits and objects in media representation,” in

Proceedings of the IEEE International Conference on

Multimedia and Expo, 2002, 2002, vol. 1, pp. 773–776.

[15] Alexandros Eleftheriadis, “The Benefits of Us-

ing MSDL-S for Syntax Description,” Contribution

ISO/IEC JTC1/SC29/WG11 MPEG96/M1555, Novem-

ber 1996.

[16] Anthony Vetro, Christan Timmerer, and Sylvain Dev-

illers, The MPEG-21 Book, chapter Digital Item Adap-

tation - Tools for Universal Multimedia Access, pp.

243–281, John Wiley and Sons Ltd, 2006.

[17] M. Eisler, “RFC 4506: XDR: External Data Represen-

tation Standard,” http://tools.ietf.org/html/rfc4506, Jan-

uary 2006.

[18] R. Srinivasan, “RFC 1831: RPC: Remote Pro-

cedure Call Protocol Specification Version 2,”

http://tools.ietf.org/html/rfc1831, August 1995.

[19] B. Callaghan, B. Pawlowski, and P. Staubach,

“RFC 1813: NFS Version 3 Protocol Specification,”

http://tools.ietf.org/html/rfc1813, June 1995.

[20] ITU-T, “Recommendation X.680 (12/97) — Abstract

Syntax Notation One (ASN.1): Specification of Basic

Notation,” ITU-T, Geneva, December 1997.

[21] ITU-T, “Recommendation X.691 (07/02) — ASN.1 En-

coding Rules: Specification of Packed Encoding Rules

(PER),” ITU-T, Geneva, July 2002.

[22] ITU-T, “Recommendation X.692 (03/02) — ASN.1 En-

coding Rules: Specification of Encoding Control Nota-

tion (ECN),” ITU-T, Geneva, March 2002.

110

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

[23] ITU-T, “Recommendation X.509 (03/00) — The Direc-

tory: Public-key and attribute certificate frameworks,”

ITU-T, Geneva, March 2000.

[24] ITU-T, “Recommendation H.323 (06/06) — Packed-

based multimedia communications systems,” ITU-T,

Geneva, June 2006.

[25] John Larmouth, ASN.1 Complete, Morgan Kaufmann,

1999.

[26] Michel Mouly, CSN.1 Specification Version 2, Cell &

Sys, January 2002.

[27] ETSI, “Digital cellular telecommunications system

(Phase 2+); Mobile radio interface signalling layer

3; General aspects (GSM 04.07 version 7.3.0 Release

1998),” December 1999.

[28] Protomatics, The Transfer Syntax Notation One Specifi-

cation, Protomatics, Inc., 2006.

[29] James D. Myers and Alan Chappell, “Binary Format

Description (BFD) Language,” 2003.

[30] James D. Myers, Alan Chappell, Matthew Elder,

Al Geist, and Jens Schwidder, “Re-integrating the re-

search record,” Computing in Science and Engg., vol. 5,

no. 3, pp. 44–50, 2003.

[31] Michael Beckerle and Alan Powell, “Data

Format Description Language (DFDL) v1.0

Core Specification, Working Draft 032,”

http://forge.gridforum.org/sf/go/doc15262?nav=1,

June 2008.

[32] John E. Hopcroft and Jeffrey D. Ullman, Introduc-

tion to Automata Theory, Languages and Computation,

Addison-Wesley, 1979.

[33] Michael Sipser, Introduction to the Theory of Computa-

tion, PWS Publishing, 1997.

[34] Charles H. Bennett, “Logical reversibility of computa-

tion,” IBM Journal of Research and Development, vol.

17, no. 2, pp. 525–532, 1973.

[35] Tim Berners-Lee, “Notation 3,” March 2006.

[36] Jeffrey Heer, Stuart K. Card, and James A. Landay,

“Prefuse: A Toolkit for Interactive Information Visu-

alization,” in Proceedings of ACM Human Factors in

Computing Systems, 2005, pp. 421–430.

[37] Jeffrey D. Ullman, Principles of Database and

Knowledge-Base Systems, Volume II, Computer Science

Press, 1989.

[38] Willem van Schaik, “PngSuite - the offi-

cial set of PNG test images,” December 1998,

http://www.schaik.com/pngsuite/pngsuite.html, last

accessed 2008-01-02.

[39] MITRE, “CVE-2007-2365,” http://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2007-2365, 2007.

[40] Marsu, “Photoshop CS2/CS3, Paint Shop

Pro 11.20 .PNG File Buffer Overflow,”

http://milw0rm.com/exploits/3812, 2007.

[41] “Portable Network Graphics (PNG) Specification (Sec-

ond Edition): Information technology – Computer

graphics and image processing – Portable Network

Graphics (PNG): Functional specification. ISO/IEC

15948:2003 (E),” November 2003.

[42] Bob Martin, “CWE/SANS TOP 25

Most Dangerous Programming Errors,”

http://www.sans.org/top25errors/, January 2009.

[43] Mark W. Eichin and Jon Rochlis, “With Microscope and

Tweezers: An Analysis of the Internet Virus of Novem-

ber 1988,” in Proceedings of the 1989 IEEE Computer

Society Symposium on Security and Privacy, Oakland,

Ohio, 1989, pp. 326–343, IEEE Computer Society.

[44] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha,

The Java Language Specification (3rd Edition), Addison

Wesley, 2005.

[45] David Wagner, Jeffrey S Foster, A. Eric Brewer, and

Alexander Aiken, “A First Step towards Automated De-

tection of Buffer Overrun Vulnerabilities,” in Network

and Distributed System Security Symposium, San Diego,

California, USA, February 2000, pp. 3–17.

[46] Sigrid Gürgens, Peter Ochsenschläger, and Carsten

Rudolph, “Abstractions Preserving Parameter Confi-

dentiality,” in Proceedings of the 10th European Sym-

posium on Research in Computer Security (ESORICS)

2005, Milan, Italy, September 2005, vol. 3679 of Lec-

ture Notes in Computer Science, pp. 418–437, Springer

Verlag.

[47] Peter Ochsenschläger, Jürgen Repp, and Roland Rieke,

“Abstraction and composition: a verification method for

co-operating systems,” Journal of Experimental and

Theoretical Artificial Intelligence, vol. 12, pp. 447–459,

2000.

[48] Andreas Fuchs, Sigrid Gürgens, and Carsten Rudolph,

“On the Security Validation of Integrated Security Solu-

tions,” in Proceedings of IFIP Sec 2009, 2009.

111

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

