
Meta-Design with Safe and Secure Embedded System Networking

Miroslav Sveda
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic

sveda@fit.vutbr.cz

Radimir Vrba
Faculty of Electrical Engineering and Communication

Brno University of Technology
Brno, Czech Republic
vrbar@feec.vutbr.cz

Abstract—The paper presents several validated principles of a
meta-design support for end-user development of safe and
secure embedded system networking. The devised approach
offers a reusable framework for Internet-based embedded
system applications. Such resulting framework provides a
flexible development environment kernel that can be adapted
for various safety/security critical embedded system
application domains. It stems from the IEEE 1451.1 smart
transducer interface standard that provides an object-based
networking model mediating efficient and unified access to
distributed components through both wired and wireless
networks. The paper discusses this framework not only from
the viewpoint of framework builders, but also end-user
developers. In this context, it demonstrates how to use that
approach for a safety and security-critical application with
Internet and ZigBee.

Keywords-embedded system application; networking; security;
safety; meta-design

I. INTRODUCTION

Not surprisingly, meta-design relates to design in the
similar way as meta-modeling relates to modeling. But,
while modeling and meta-modeling are identical activities
with the only difference of interpretation, designing and meta-
designing are targeted differently. Model, which is the object
of modeling, remains an abstract notion in the similar sense as
meta-model with the only exception of abstraction level. On
the contrary, objects of design and meta-design differ: in the
former case the process produces an artifact, in the letter case
it is design of a design process including related development
environment.

This paper 1 discusses a deployment of meta-design
principles for building up a flexible design framework
focused on embedded systems and their components inter-
connected by Ethernet-based wired Internet and wireless
ZigBee. Necessarily under-designed open source tools and
techniques create design spaces for end-user developers.
Hence, the paper demonstrates both the use of this framework
for implementation of a development environment aimed at
Internet-supported smart sensor applications and,

1 The current manuscript extends and updates the paper [1].

concurrently, the utilization of this framework for
development of pressure and temperature measurements and
safety and security management along gas pipes.

The following section discusses end-user roles and
deployment of meta-design principles in an embedded
application development process, which is introduced from
the end-user viewpoints. After that, the section 3 restates
dependability principles characteristic for the considered
application domain containing also industrial, safety and
security critical applications.

The section 4 deals with related standards and standard
structures that create not only solution constraints, but also
design support. The subsections discuss subsequently the
family of standards IEEE 1451 and, in more detail, standard
IEEE 1451.1, which creates a framework foundation for
logical design structures, standard ZigBee/IEEE 802.15.4
protocol profile, and TCP/IP-ZigBee interconnection
structure.

The next section describes a case study based on a real
industrial application that demonstrates utilization and
refinement of the introduced design approach aiming at
Internet-based, tiered architecture with wireless sensor
networks. The applied design framework, which is
conceptually based on the IEEE 1451.1 environment, is
refined and extended to deal with pressure and temperature
measurement and safety and security management along gas
pipes. This section presents especially communication, safety
and security issues, and resulting structure of the 1451.1
implementation providing efficient and unified access to
distributed components through both wire and wireless
networks.

The case study discusses the developed framework not
only as a meta-design tool from the viewpoint of framework
builders, but also from the viewpoint of end-user developers.
In this context, it demonstrates how to use that approach for a
safety and security-critical application with Internet and
ZigBee.

II. META-DESIGN WITH END-USER

Typical system development process involves multiple
participant roles [2]. Framework builders create the
infrastructure for system components to interact; developers

8

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/



identify suitable domains and develop new components for
them; application assemblers select domain-specific
components and assemble them into applications; and end
users employ component-based applications to perform
daily tasks. Obviously, the fifth role can be included in this
pipe-line: end-user developers positioned between
application assemblers and end users. These end-user
developers are able to tailor applications at runtime because
they have both domain expertise and technical know-how.
They can interact with applications to adjust individual
components, and modify existing assemblies of components
to create new functionality. Furthermore, they can play a
critical role when component-based systems have to be
redesigned for new requirements. End-user development
activities can range from customization to component
configuration and programming.

Meta-design offers techniques and processes for creating
new environments allowing end users to act as designers
[3]. In all design processes, two basic stages can be
distinguished: design time and use time. At design time,
system developers create environments and tools. In
conventional design they create complete systems. Because
the needs, objectives, and situational contexts of users can
only be anticipated at design time, users often find the
system unfit for their tasks at use time. Thus, they require
adaptation of the existing environment and tools for new
applications. Meta-design extends the traditional notion of
system development to include users in an ongoing process
as co-designers, not only at design time but throughout the
entire life-cycle of the development process. Rather than
presenting users with closed development systems, meta-
design provides them with concepts and tools to extend the
system to fit their needs. Hence, meta-design promotes
designing the design process.

Evidently, meta-design not only promotes designing the
design process, but also can support the end-user
development of dependable embedded applications.

III. DEPENDABILITY

Dependability [4] is that property of a system that allows
reliance to be justifiably placed on the service it delivers. A
failure occurs when the delivered service deviates from the
specified service. Dependability measures consist namely of
reliability, availability, security, safety and survivability.
Availability is the ability to deliver shared service under
given conditions for a given time, which means namely
elimination of denial-of-service vulnerabilities. Security is the
ability to deliver service under given conditions without
unauthorized disclosure or alteration of sensitive information.
It includes privacy as assurances about disclosure and
authenticity of senders and recipients. Security attributes add
requirements to detect and avoid intentional faults. Safety is
the ability to deliver service under given conditions with no
catastrophic affects. Safety attributes add requirements to
detect and avoid catastrophic failures.

A failure occurs when the delivered service deviates from
the specified service. The failure occurred because the system
was erroneous: an error is that part of the system state which
is liable to lead to failure. The cause of an error is a fault.
Failures can be classified according to consequences upon the
environment of the system. While for benign failures the
consequences are of the same order of magnitude (e.g. cost)
as those of the service delivered in the absence of failure, for
malign or catastrophic failures the consequences are not
comparable.

A fail-safe system attempts to limit the amount of damage
caused by a failure [5]. No attempt is made to satisfy the
functional specifications except where necessary to ensure
safety. A mishap is an unplanned event (e.g. failure or
deliberate violation of maintenance procedures) or series of
events that results in damage to or loss of property or
equipment. A hazard is a set of conditions within a state from
which there is a path to a mishap.

A fail-stop system never performs an erroneous state
transformation due to a fault. Instead, the system halts and its
state is irretrievably lost. The fail stop model, originally
developed for theoretical purposes, appears as a simple and
useful conception supporting the implementation of some
kinds of fail-safe systems. Since any real solution can only
approximate the fail-stop behavior and, moreover, the halted
system offers no services for its environment, some fault-
avoidance techniques must support all such implementations.

Obviously, design of any safe system requires deploying
security to avoid intentional catastrophic failures. And vice
versa, system’s security can be attacked using a safety flaw.
The greater the assurance, the greater the confidence that a
security system will protect against threads, with an
acceptable level of risk [6].

The above statement deals with trust, which is assured
reliance on the character, ability, strength, or truth of someone
or something [7]. Trust can be defined as the belief that an
entity is capable of acting reliably, dependably, and securely
in a particular case. In frame of network systems, trust is a
complex subject that should be managed. Trust management
entails collecting the information necessary to establish a trust
relationship and dynamically monitoring and adjusting the
existing trust relationship. Principally, security represents the
combination of confidentiality, integrity and availability, and
necessarily complements safety in safety-critical industrial
applications.

IV. ENVIRONMENT

While preceding sections of this paper review
methodology, i.e. meta-design, and required properties, i.e.
safety and security, this section discusses architectural means
that enable refining the framework into straightforward
design and implementation of the networked sensor-based
systems.

Embedded system networking concepts stem from
hierarchically interconnected networks of various kinds:
Internet, local area wire and wireless networks, and wireless

9

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/



sensor networks. The logical hierarchy is usually based on
tiered architectures that bring cost-effectiveness and
scalability, and allow adapting straightforwardly to various
application requirements.

Actually, networking appears a basic feature of promising
embedded systems architectures. Internet access to individual
components of distributed embedded systems can be based on
both wire and wireless LAN technologies, predominantly on
IEEE 802.3 and related Ethernet standards, and on IEEE
802.11b WiFi and associated wireless LAN protocols.
Embedded systems and their components can be attached
directly to Ethernet with TCP/IP protocol stack, but also
indirectly or exclusively through various wired Fieldbuses or
wireless technologies such as IEEE 802.11b WiFi, IEEE
802.15.1 Bluetooth, and IEEE 802.15.4 with related ZigBee.
Sensor networks bring an important pattern with single base
station connected to a wired network on one side and
wirelessly to transducers, i.e. sensors and actuators, on the
other side. When sensors are clustered, the base station
communicates to cluster heads and through them to individual
sensors. Moreover, the applications can use also ad-hoc
wireless network architectures that enable to extend wireless
part of the system network over physical limits and bring new
dimension to fulfill application requirements.

The next subsections provide a brief outline of the IEEE
1451 and ZigBee communication architectures aimed at smart
sensors and fitting embedded system networks of which smart
sensor networks constitute essential subset.

A. IEEE 1451 Architecture

The IEEE 1451 consists of the family of standards for a
networked smart transducer interface that include namely (i) a
smart transducer software architecture, 1451.1, targeting
software-based, network independent, transducer
applications, and (ii) a standard digital interface and
communication protocol, 1451.2, for accessing the transducer
or the group of transducers via a microprocessor modeled by
the 1451.1. The next three standards extend the original hard-
wired parallel interface 1451.2 to serial multi-drop 1451.3,
mixed-mode (i.e. both digital and analog) 1451.4, and
wireless 1451.5 interfaces, see Figure 1.

Figure 1. Smart transducer networking

The document 1451.0 complements the above standard
set defining the structure of Transducer Electronic Data
Sheets (TEDS), and associations between 1451.1 on one side
and 1451.2/3/4/5 on the other side with message exchange
protocols and command set for transducers.

The IEEE 1451.1 software architecture [8] provides three
models of the transducer device environment: (i) the object
model of a network capable application processor (NCAP),
which is the object-oriented embodiment of a smart
networked device; (ii) the data model, which specifies
information encoding rules for transmitting information
across both local and remote object interfaces; and (iii) the
network communication model, which supports client/server
and publish/subscribe paradigms for communicating
information between NCAPs. The standard defines a network
and transducer hardware neutral environment in which a
concrete sensor/actuator application can be developed with
respect to a concrete network.

The object model definition encompasses the set of object
classes, attributes, methods, and behaviors that specify a
transducer and a network environment to which it may
connect. This model uses block and base classes offering
patterns for one Physical Block, one or more Transducer
Blocks, Function Blocks, and Network Blocks. Each block
class may include specific base classes from the model. The
base classes include Parameters, Actions, Events, and Files,
and provide component classes.

Block classes form the major blocks of functionality that
can be plugged into an abstract card-cage to create various
types of devices. One Physical Block is mandatory as it
defines the card-cage and abstracts the hardware and software
resources that are used by the device. All other block and
base classes can be referenced from the Physical Block.

The Transducer Block abstracts all the capabilities of each
transducer that is physically connected to the NCAP I/O
system. During the device configuration phase, the
description is read from the hardware device what kind of
sensors and actuators are connected to the system. The
Transducer Block includes an I/O device driver style interface
for communication with the hardware. The I/O interface
includes methods for reading and writing to the transducer
from the application-based Function Block using a
standardized interface. The I/O device driver provides both
plug-and-play capability and hot-swap feature for transducers.

The Function Block provides a skeletal area in which to
place application-specific code. The interface does not
specify any restrictions on how an application is developed.
In addition to a State variable that all block classes maintain,
the Function Block contains several lists of parameters that
are typically used to access network-visible data or to make
internal data available remotely.

The Network Block abstracts all access to a network
employing network-neutral programming interface
supporting both client-server and publish-subscribe patterns
for configuration and data distribution.

NCAP

Smart Transducer
Object Model (1451.1)

Smart Transducer
Interface Model (STIM)

Network

Network hardware + drivers Transducer interface
Specification (1451.2/3/4/5)

sensors and actuators

Transducer driver hardware

10

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/



B. ZigBee Architecture and Security

The ZigBee/IEEE 802.15.4 protocol profile [9], [10] is
intended as a specification for low-powered wireless
networks. ZigBee is a published specification set of high level
communication protocols designed to use small low power
digital radios based on the IEEE 802.15.4 standard for
wireless personal area networks. The document 802.15.4
specifies two lower layers: physical layer and medium access
control sub-layer. The ZigBee Alliance builds on this
foundation by providing the network layer and the framework
for application layer, which includes application support sub-
layer covering ZigBee device objects and manufacturer-
defined application objects.

Responsibilities of the ZigBee network layer include
mechanisms used to join and leave a network, to apply
security to frames and to route frames to their intended
destinations. In addition to discovery and maintenance of
routes between devices, including discovery of one-hop
neighbors, it stores pertinent neighbor information. The
ZigBee network layer supports star, tree and mesh topologies.
Star topology network is controlled by one single device
called ZigBee coordinator, which is responsible for initiating
and maintaining devices on the network. Those devices,
known as end devices, directly communicate with the ZigBee
coordinator. In mesh and tree topologies, the ZigBee
coordinator is responsible for starting the network and for
choosing key network parameters.

The ZigBee application layer includes application support
sub-layer, ZigBee device objects and manufacturer-defined
application objects. The application support sub-layer
maintains tables for binding, which is the ability to match two
devices together based on their services and their needs, and
forwards messages between bound devices. The
responsibilities of the ZigBee device objects include defining
the role of the device within the network (e.g., ZigBee
coordinator or end device), initiating and/or responding to
binding requests and establishing a secure relationship
between network devices. The ZigBee device object is also
responsible for discovering devices on the network and
determining which application services they provide.

The ZigBee specification defines also techniques and
services for safety and security support [11]. To increase
reliability of data transmission, DSSS (Direct Sequence
Spread Spectrum) is used. For keeping message integrity, it
is possible to use 0, 32, 64, 128 bits data integrity options.
Sequential data transmission guarantees the freshness that
protects the network against replay attack when the attacker
replays an older message to obtain answer. Each ZigBee
device manages counters for maintaining data freshness.

Authentication on the network level using a common
network cipher key protects the system against attacks from
outside of the network with minimal memory requirements.
Authentication on the device level is achieved by a unique
link key shared by two communicating devices. This is
prevention against attacks both from inside and outside of the
network, but it leads to higher memory requirements.

Confidence provides protection of the information in face of
unauthorized users by data encryption. Data encryption
prevents to learn only a part of message; we talk about
semantic security. One of the features of semantic security is
initial value, which is used with encryption. When the same
message is encrypted two times, two different crypto texts are
produced. ZigBee employs Advanced Encryption Standard
(AES) with 128 bits key. Encryption and decryption is
performed on the network level or on the device level. The
encryption on the network level employs network key, which
ensures protection against outside of the network. The second
option is a protection on the device level. In this case we used
a link key is used between two devices, what ensures
protection against attacks both from inside and outside of the
network.

C. TCP/IP-ZigBee Interconnection

According to the ISO Open Systems Interconnection
vocabulary, two or more sub-networks can be interconnected
using equipment called as intermediate system whose primary
function is to relay selectively information from one sub-
network to another and to perform protocol conversion where
necessary. A bridge or a router provides the means for
interconnecting two physically distinct networks, which differ
occasionally in two or three lower layers respectively. The
bridge converts frames with consistent addressing schemes at
the data-link layer while the router deals with packets at the
network layer. Lower layers of these intermediate systems are
implemented according to the proper architectures of
interconnected networks. When sub-networks differ in their
higher layer protocols, especially in the application layer, or
when the communication functions of the bottom three layers
are not sufficient for coupling, the intermediate system, called
in this case as gateway, contains all layers of the networks
involved and converts application messages between
appropriate formats.

An intermediate system represents typically a node that
belongs simultaneously to two or more interconnected
networks. The backbone network interconnects more
intermediate systems that enable to access different networks.
If two segments of a network are interconnected through
another network, the technique called tunneling enables to
transfer protocol data units of the end segments nested in the
proper protocol data units of the interconnecting network.

Gateways and bridges offer two different ways how to
provide connectivity in between TCP/IP and ZigBee
networks. In context of ZigBee, gateways provide a full
featured connectivity and allow a greater diversity of devices
and applications that can be interconnected by ZigBee
networks. Bridges are much simpler than gateways but serve
a smaller application space. Gateway is a device that allows
disparate networks to exchange information. Gateways allow
wireless sensor networks to use wireless protocols such as
ZigBee that are well suited for the harsh RF environment as
well as battery powered applications and allow them to be
integrated into existing applications. Gateways convert the

11

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/



wireless protocols and sensor data into various formats
necessary for industrial, commercial, and residential systems.

Figure 2. Gateway layered architecture

The ZigBee Gateway on Figure 2 provides an interface
between ZigBee and IP devices through an abstracted
interface on IP side. The ZigBee Gateway translates both
addresses and commands between ZigBee and IP.

V. CASE STUDY

This section describes a case study based on a real
industrial application that demonstrates utilization and
refinement of the introduced framework aiming at Internet-
based, tiered architecture with wireless sensor networks. The
framework, which is conceptually based on the IEEE 1451.1
environment, is refined and extended to deal with pressure
and temperature measurement and safety and security
management along gas pipes. The related implementation
stems directly from the IEEE 1451.1 model with Internet and
the IEEE 1451.5 wireless communication based on ZigBee
running over the IEEE 802.15.4.

The case study presents the framework both as a product
of meta-design and as a design means including its refinement
providing the final implementation.

A. Safety and Security Issues

The application architecture comprises several groups of
wireless pressure and temperature sensors with safety valve
controllers as base stations connected to wire intranets that
dedicated clients can access effectively through Internet, see
Figure 3. The WWW server supports each sensor group by an
active web page with Java applets that, after downloading,
provide clients with transparent and efficient access to
pressure and temperature measurement services through
controllers. Controllers provide clients not only with secure
access to measurement services over systems of gas pipes, but

also communicate to each other and cooperate so that the
system can resolve safety and security-critical situations by
shutting off some of the valves.

Each wireless sensor group is supported by its controller
providing Internet-based clients with secure and efficient
access to application-related services over the associated part
of gas pipes. In this case, clients communicate to controllers
using a messaging protocol based on client-server and
publish-subscribe patterns employing 1451.1 Network Block
functions. A typical configuration includes a set of sensors
generating pressure and temperature values for the related
controller that computes profiles and checks limits for users
of those or derived values. When a limit is reached, the safety
procedure, which is derived from the fail-stop model
discussed above, closes valves in charge depending on safety
service specifications. Examples include too low pressure for
a pipeline segment, which means a gas leakage, or too high
temperature, which means a danger of explosion. In both
cases the safety procedure provides a pipeline reconfiguration
by shutting off/opening some of the valves.

Security configurations in this case can follow the tiered
architecture mentioned previously. To keep the system
maintenance simple, all wireless communication uses
standard ZigBee hop-by-hop encryption based on single
network-wide key because separate pressure and/or
temperature values, which can be eavesdropped, appear
useless without the overall context. Not surprisingly, the
application deploys standard ZigBee authentication.

WWW
Server

Client
A1

Client
A2

ZigBee

Controller
+

Sensor
Group 1

Controller
+

Sensor
Group 2

Controller
+

Sensor
Group 3

Controller
+

Sensor
Group 4

Controller
+

Sensor
Group i

ZigBee
..
ZigBee

..

..
Digital
Outputs

..

In
te

rn
e

t

Client
An

Figure 3. Network configuration

ZigBee Gateway Application

ZigBee Gateway Transport

TCP, UDP

IP

802.15.4
MAC

E
th

er
ne

t

W
ire

le
ss

802.15.4
PHY

App.Support

Network
Layer

DHCP.SNMP

Application (Java, …)

802.15.4
PHY

802.15.4
MAC

App.Support

Network
Layer

Embedded
Application

TCP/IP-ZigBee Gateway

ZigBee Node

12

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/



Security support in frame of Intranet subnets stems from
current virtual private network concepts. The discussed
application utilizes ciphered channels based on tunneling
between a client and a group of safety valve controllers. The
tunnels are created with the support of associated
authentications of each client.

B. Structure of the 1451.1 Implementation

The 1451.1 network model provides an application
interaction mechanism supporting both client-server and
publish-subscribe paradigms for event and message
generation and distribution. Controllers play the role of
clients or subscribers for the wireless part of the system
network, and the role of servers or publishers for the wired
part. Moreover, they compute temperature and pressure
profiles, check the limit values and handle the safety valves.

In the transducer’s 1451.1 object model, basic Network
Block functions initialize communication between a client,
which passed an authentication procedure, and the controller
identified by a unique unicast IP address. The client-server
style communication, which in this application covers both
the configuration of controllers and initialization actions, is
provided by two basic Network Block functions: execute and
perform. The standard defines a unique ID for every function
and data item of each class. If the client wants to call some
function on server side, it uses command execute with
appropriate parameters. On server side, this request is
decoded and used by the function perform. That function
evaluates the requested function with the given arguments
and, in addition, it returns the resulting values to the client.
Those data are delivered by requested variables in execute
arguments.

The publish-subscribe style of communication, which in
this application covers primarily distribution of measured
data, but also distribution of group configuration commands,
employs IP multicasting. All regular clients wishing to
receive messages from a controller, which is joined with an IP
multicast address, register themselves to this group. After
that, when this controller generates a message by Block
function publish, this message is delivered to all members of
this group, without unnecessary replications.

Each controller communicates wirelessly with its sensors
through 1451.5 interfaces by proper communication protocol.
In the discussed case the P1451.5-ZigBee protocol, which
means ZigBee over IEEE 802.15.4, was selected because it
fits application requirements, namely those dealing with
power consumption, response timing, and management.

C. Sensor Node Implementation

A typical node configuration, depicted on Figure 4,
consists of STIM (Smart Transducer Interface Module)
connected with a PSD sensor for differential pressure
measurements, and with auxiliary temperature sensor for
signal conditioning.

Of course, NCAP can be either embedded in a complex
smart sensor, or shared among more simple smart sensors. On
the other hand, from the viewpoint of Internet, only NCAP is

directly addressable being equipped by its own IP address.
Therefore, we can also denote as smart sensor the device
consisting of an NCAP accessing one or more STIMs with
connected sensors.

This example discusses the pressure sensors with reflected
laser beam and diffractive lens. The sensitive pressure sensor
is based on a nitride membrane and an optoelectronic read-out
subsystem. Measured pressure values are transformed into
related thick-layer nitride membrane deflections. The nitride
membrane serves as a mirror for laser beam, and it can move
the related reflected laser mark. The mark’s position is sensed
using position-sensing device, which is a photo-lateral diode.
Diode double current signal is amplified and conditioned
digitally by the ADuC812 microcontroller. This
microcontroller provides also the IEEE 1451.5 interface.

The sensing subsystem combines two principles that
provide both high precision and wide range pressure
measurements. Large displacements are measured by the
position of reflected focused laser beam. Small position
changes are measured by one-side layer diffractive lens
principle. Sensor output signal is conditioned in digital by the
ADuC812 single-chip microcontroller, which provides, with a
simple hardware support, the IEEE1451.5 interface as one of
its communication ports. This microcontroller calculates the
position of the light spot and converts that position on the
measured pressure using an internal table. Figure 4 depicts
principles of the implementation of that smart sensor. The
STIM contains (1) a PSD sensor with two analog
differential transducers (XDCR), (2) a microcontroller
ADuC812 with nonvolatile memory containing a TEDS
field (Transducer Electronic Data Sheet) that props IEEE
1451.5 storing sensor specifications, (3) a TII (Transducer
Independent Interface), (4) a temperature sensor necessary

Figure 4. Sensor node example

13

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/



for signal conditioning, (5) an analogue-to-digital
conversion units (ADC), and (6) a logic circuitry to
facilitate communication between the STIM and related
NCAP.

The ADuC812 microcontroller, the basic building block
of the smart pressure sensor electronics, includes on-chip
high performance multiplexers, ADCs, FLASH program
and data storage memory, an industrial standard 8052
microcontroller core, and supports several serial ports. The
microcontroller may also utilize nonvolatile memory
containing a TEDS field.

In this case, STIM represents a smart sensor serially
interconnected with NCAP that provides controller
functions and accesses Internet. Of course, each NCAP may
be connected to many smart sensors, can access dedicated
WWW server, and can be accessed by clients registered in
related multicast group.

D. Design Pattern

In conclusion of this case study it could be helpful to
restate the crucial architectural refinements of the proposed
framework through building up a design pattern based on its
basic abstract components, i.e. IEEE 1451 architecture,
communication procedures and IP multicasting on the
Internet side, and ZigBee Gateway on ZigBee side, which
introduce a more detailed structure reusable for similar
applications.

The 1451.1 object model provides skeleton supporting
individual components. Its Network Block is refined so that
it enables to access data-link layer communication services
through unicast on IP with client-server procedure for start-
up configuration and run-time maintenance, or through IP
multicast with publish-subscribe procedure for run-time
process measurements on both application data users and
transducers sides. This refinement covers also selection of
the most appropriate multicast routing protocol for local
Internet traffic in case when the relevant parts of the
network are accessible through routers.

The Transducer Block includes methods for reading and
writing to transducers from the application-based Function
Block using the standardized interfaces. The I/O device
driver provides both plug-and-play capability and hot-swap
feature for each transducer. It enables run-time
reconfiguration of sensors that can support robustness of the
system or improve measurement efficiency.

The Function Block contains a measurement application
code. In the current case it prescribes sampling times, data
filtering, linearization, conversions and transformations
improving measurement accuracy and stability. The
Function Block contains lists of parameters used to access
net-work-visible data and, concurrently, to make internal
data available remotely. The Function Block enables in this
case to compute pressure profiles along the pipeline,
pressure or temperature gradients, and the speed of pressure
or temperature changes in time.

The ZigBee Gateway provides a prototypical interface
between ZigBee and IP devices through an abstracted
interface on IP side. The gadget translates both addresses and
commands between ZigBee and IP standard architectures.
Instead of that gateway, much more simple bridge can be
used; unfortunately, such type of interconnection restricts
substantially functionality of the application.

From more general viewpoint, the design pattern provides
embodiment of meta-design principles for creating flexible
design environments that can support development of various
dependable applications respecting not only special functional
requirements, but also requirements on system’s safety and
security. Necessarily under-designed open source tools and
techniques create an open design space for end-user
developers in various application domains of networked
embedded systems.

VI. CONCLUSION

Internet technologies complemented by wireless access
networks are rapidly becoming the preferred choice for
building next generation distributed measurement and control
systems. The framework, which can provide for current
trends, stems from the IEEE 1451.1 standard specifying smart
transducer interface architecture that enables to unify
interconnecting smart sensors and sensor-based embedded
systems with various wireless networks, and their direct
coupling to recent Ethernet-based Intranets. Supporting
techniques included in the frame-work, namely publish-
subscribe messaging by IP multicast and security
maintenance, offer scalable and traffic-saving solution
important from viewpoint of the contemporary Internet. The
schemes discussed can properly interplay with each other and
can supply suitable support for design of networked, sensor–
based embedded system applications.

This paper discusses a deployment of meta-design
principles for building up an adaptable design framework
focused on embedded systems and their components
interconnected by Internet and ZigBee. Necessarily under-
designed open source tools and techniques create design
spaces for end-user developers. In that way the meta-design
approach supports reusability among various application
domains. Explicitly, the paper demonstrates both the use of
this framework for implementation of development
environment aimed at Internet-based smart sensor
applications and, concurrently, the utilization of this
framework for development of pressure and temperature
measurement and safety and security management along gas
pipes. The paper brings this design approach in manner
suitable not only for framework builders, but also for end-
user developers in a variety of application domains.

The current manuscript, which extends and updates the
paper [1], stems partly from the previous research tasks
published in [12], [13], and [14]. As a main contribution it
delivers meta-design approach to a real world example of the
design framework’s stepwise refinement for a safety and
security-critical sensor networking application.

14

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/



A. Future Work

The next related research will be focused on the
deployment of formal specification techniques including
related tools for the industrial embedded systems domain, in
more detail mentioned in the paper [15]. We will strive to
create a design and development environment supporting
automatic or semi-automatic generation of executable
prototypes with behaviors satisfying not only functional
requirements, but also safety and security constraints, from
verified formal specifications.

ACKNOWLEDGMENT

The research has been supported by the Czech Ministry of
Education in frame of the Research Intentions MSM
0021630528: Security-Oriented Research in Information
Technology and MSM 0021630503: MIKROSYN -- New
Trends in Microelectronic Systems and Nanotechnologies,
and by the Grant Agency of the Czech Republic through the
grant GACR 102/08/1429: Safety and Security of Networked
Embedded System Applications.

The authors acknowledge also contributions to this
research by their colleagues from the Networks and
Embedded Systems Research Group and from the Secure and
Reliable Network Architectures Research Group at the
Department of Information Systems, Faculty of Information
Technology of the Brno University of Technology, and from
the Department of Microelectronics, Faculty of Electrical
Engineering and Communication of the Brno University of
Technology.

Initially, this work was supported also by the Grant
Agency of the Czech Republic through the grants GACR
102/05/0723: A Framework for Formal Specifications and
Prototyping of Information System’s Network Applications
and GACR 102/05/0467: Architectures of Embedded
Systems Networks.

REFERENCES

[1] M. Sveda and R. Vrba, “Meta-Design Support for Safe and
Secure Networked Embedded Systems”, Proceedings Third
International Conference on Systems, ICONS 2008, IARIA,
Published by the IEEE Computer Society, 2008, pp. 69-74.

[2] A.I. Morch, et al., “Component-Based Technologies for End-
User Development”, Communications of the ACM, Vol.47,
No.9, 2004, pp.59-62.

[3] G. Fischer, et. al., “Meta-Design: A Manifesto for End-User
Development”, Communications of the ACM, Vol.47, No.9,
2004, pp.33-37

[4] B. Melhart and S. White, “Issues in Defining, Analyzing,
Refining, and Specifying System Dependability
Requirements”, Proceedings of the IEEE Conference and
Workshop ECBS'2000, IEEE Computer Society, Edinburgh,
Scotland, 2000, pp.334-340.

[5] N.G. Leveson, “Software Safety in Computer-Controlled
Systems”, IEEE Computer, February 1984, pp.48-55.

[6] I.-G. Kim, et al., “Formal Verification of Security Model
using SPR Tool”, Computing and Informatics, Vol.25, No.5,
2006, pp.353-368.

[7] Li, H. and M. Singhal, “Trust Management in Distributed
Systems”, IEEE Computer, Vol.40, No.2, 2007, pp.45-53.

[8] IEEE 1451.1, Standard for a Smart Transducer Interface for
Sensors and Actuators -- Network Capable Application
Processor (NCAP) Information Model, IEEE, New York,
USA, 2000.

[9] IEEE 802.15.4, Wireless Medium Access Control and
Physical Layer Specification for Low-Rate Wireless Personal
Area Networks, IEEE, New York, USA, 2003.

[10] ZigBee: ZigBee Specification. ZigBee Alliance Board of
Directors, 2006, Website http://www.zigbee.org/.J. Clerk
Maxwell, A Treatise on Electricity and Magnetism, 3rd ed.,
vol. 2. Oxford: Clarendon, 1892, pp.68–73.

[11] P. Baronti, et al., “Wireless Sensor Networks: A Survey on
the State of the Art and the 802.15.4 and ZigBee Standards”,
Computer Communications, Vol. 30, 2007, pp.1655-1695.

[12] M. Sveda, “End-User Development Framework for
Embedded System Applications”, Proceedings 14th IEEE
International Conference on the Engineering of Computer-
Based Systems ECBS07, IEEE Computer Society, Tucson,
Arizona, USA, 2007, pp.186-192.

[13] M. Sveda and R. Vrba, “Dependability-driven Embedded
Systems Networking”, Proceedings 6th International
Conference on Networking ICN 2007, IARIA, Published by
the IEEE Computer Society, 2007, pp.483-488.

[14] M. Sveda and R. Trchalik, “Safety and Security-driven
Design of Networked Embedded Systems”, Proceedings 10th
Euromicro Conference on Digital Systems, Digital System
Design Architectures, Methods and Tools, IEEE Computer
Society, Lübeck, Germany, 2007, pp.420-423.

[15] M. Sveda, O. Ryšavý, and R. Vrba, “Pattern-driven Reuse of
Behavioral Specifications in Embedded Control System
Design”, Frontiers in Robotics, Automation and Control,
Vienna, AT, IN-TECH, 2008, pp.151-164.

15

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/


