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Abstract—This work presents one of the products of the
Confiance.ai research program which addresses an end-to-end
method for engineering trustworthy ML-based systems [1]. The
proposed methodology revisits software and systems engineering
as it encompasses all development phases of the system while
integrating the specificities related to the development of ML-
based components within the system. The method leverages vastly
researched and deployed standard procedures from design to
validation and maintenance in order to provide rigor, structure,
and traceability when developing ML-models.
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I. INTRODUCTION

The term "AI" (Artificial Intelligence) was first used in a
workshop held at Dartmouth College in 1956. It was intro-
duced as a branch of computer science that tries to mimic
human thinking by using symbols and knowledge bases that
are also symbol-based. Any technology, even AI, is developed
to provide a service fulfilling some needs. The AI discipline
aims to embed cognitive capacities such as perception, learn-
ing, reasoning, planning, decision and dialogue, to an artificial
system. In February 2025, the European Commission defines
an AI system (see Figure 3) as the following: a machine-
based system that is designed to operate with varying levels
of autonomy that may exhibit adaptiveness after deployment
and, for explicit or implicit objectives, infers from the input it
receives how to generate outputs, such as predictions, content,
recommendations or decisions that can influence physical or
virtual environments.

Figure 1. The European Commission AI-system definition comprises seven
main elements (Feb. 2025)

In our context, an AI-based system is defined as a system
that incorporates AI components. AI-based critical systems,
which can have severe consequences in case of failure, are

considered to be "high risk" under the European regulation
known as the "EU AI Act" [2]. These systems can, for exam-
ple, represent safety components of regulated products which
are required to undergo a third-party conformity assessment.
Examples of such systems can be found in the fields of
transportation, healthcare, defense, and security in general.
The deployment of such systems is contingent upon their
demonstrated capacity to deliver the anticipated service in a
secure manner, while meeting user expectations with regard
to quality and continuity of service. Furthermore, users might
consider negative any surprising or unexpected actions from
the system.

In order to characterize such systems with a view to qual-
ity assurance, [3] proposed considering several dimensions,
including the artifact type dimension, the process dimension
and the trustworthiness characteristics, which are relevant to
software product or system quality. Furthermore, the focus of
the series of standards SQuaRE (Systems and Software Quality
Requirements and Evaluation) is on software quality [0]. In
addition, the specific nature of AI is addressed in order to
provide a quality model for AI systems. Consequently, the
design of critical AI systems requires the demonstration of
their trustworthiness, as asserted by [4].

Trustworthy AI is based on these three components [5]:
it must comply with all applicable laws, adhere to ethical
principles, and be robust. This shift is driving the new dis-
cipline of AI engineering [6] to support the industrial design
of such systems. Therefore, the development of AI-enabled
systems is heavily dependent on the application of specific
traditional software and system engineering practices. For ex-
ample, engineering teams must conceptualize AI systems that
can handle the inherent uncertainty of their components, data,
models, and outputs — particularly when implementing data-
driven AI. The user experience with AI systems is dynamic
[7]. Interfaces must clearly show what the system is doing,
how outputs are generated (dataset quality), and when the
system is not behaving as expected (monitoring throughout
the lifecycle). Therefore, engineering teams must account for
the different rhythms of change, including changes in data,
models, systems, and business processes.

This discipline aims to ensure that critical AI-based systems
in safety-, mission- and business-related domains are valid,
explainable, resilient, safe, secure, and compliant with regu-
lations, standards, and responsible practices (ethics, sustain-
ability, etc.). When dealing with critical systems, additional
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Figure 2. From ethics to the end-to-end methodology through regulation and standards

constraints must be considered. In the context of system de-
sign, processes must be optimized, justified, replicated where
possible, and improved. However, it is also essential to ensure
that the system meets the appropriate level of trustworthiness
[8] [9]. This includes robustness (the ability of a system to
withstand errors during execution and cope with erroneous
input), cybersecurity, and dependability (including reliability,
availability, maintainability, and safety properties), among
others.

Thus, in the following, we will first remind the current
context of AI regulation and standardization of the definition
of "trustworthiness" as "the ability to meet stakeholders’
expectations in a verifiable way". To determine whether a
given risk is as such, it should be first identified. Then it should
be analyzed with respect to the "intended purpose" which is
defined as "the use for which an AI system is intended by the
provider". It also includes "the specific context and conditions
of use".

It is imperative that a well-established engineering discipline
oversees AI capabilities. "AI Engineering" is an emerging
discipline that focuses on applying AI in real-world contexts.
AI engineering involves applying engineering principles and
methodologies to create scalable, efficient, trustworthy and
responsible AI-based solutions. It merges aspects of data engi-
neering, knowledge engineering, algorithm engineering, soft-
ware engineering, system engineering, cyber-security, safety
and ethical engineering and also cognitive engineering in-
cluding human factors to accelerate the development and the
deployment of AI-based capabilities. It also speeds up the mat-
uration of individual tools. This is particularly evident in high-
stakes scenarios such as responding to national security threats
and military operations. Therefore, to maximize the potential
of AI in such situations, we must address the unique challenges

that AI systems encounter. While the capability to develop AI
systems has increased due to greater computing power and
more extensive datasets, these systems often only function in
controlled environments and are difficult to replicate, verify
and validate in real-world scenarios. AI Engineering aims
to provide a framework and tools to proactively design AI
systems to function in environments characterized by high
degrees of complexity, ambiguity, and dynamics.

Then, we present an end-to-end methodology to support
"trustworthy AI engineering", which encompasses the entire
lifecycle of AI-based systems, from operational design domain
(ODD) specification to maintenance [1]. This holistic metho-
dology covers the design, development and deployment of AI
systems in critical environments, including data engineering,
algorithm design and development, deployment and moni-
toring. By integrating the principles outlined in international
and national initiatives with our advanced internal engineering
practices, this lifecycle ensures that AI systems perform their
intended functions with the desired level of performance.
It also makes AI-powered solutions transparent, responsible,
and ethical. This systematic approach involves organizing
multidisciplinary and fragmented approaches to trusted AI
and applying a continuous workflow. Measures to improve AI
trustworthiness must be implemented at every stage, including
data sanitization, robust algorithms, anomaly monitoring, and
risk auditing.

II. REGULATION AND STANDARDIZATION

To ensure safety, reliability, availability, and maintainabi-
lity, AI systems must perform, and continue to perform, as
intended under sufficient conditions. Hazard analysis and risk
assessment must be tailored to the unique characteristics of AI
systems. This includes identifying potential critical errors in
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Figure 3. European Data and AI Regulation

the training data or knowledge representation and assessing
the AI model’s ability to generalize to unseen operational
data. Performance requirements for AI algorithms are often
driven by safety objectives, which limit the worst credible
approximation error to an acceptable threshold.

However, trustworthiness is closely linked to accountability,
which can be considered a measure of trust or an alternative to
it. In [10], dependability is used to represent a system’s overall
quality based on four sub-attributes: security, safety, reliability,
and maintainability. Subsequently, security and dependability
became key attributes of trust in computer-based systems [11].

Another requirement relates to the quality of datasets used
to train, validate and test models for high-risk AI systems.
This considers a non-exhaustive list of issues, such as data
collection processes, data engineering activities (e.g., anno-
tation, labeling, cleaning, enrichment and aggregation), data
quality assessment and identification of possible data gaps or
shortcomings and how these can be addressed. Last but not
least is the mitigation of possible biases likely to affect the
health and safety of individuals or lead to discrimination.

In 2019, the U.S. National Artificial Intelligence Research
and Development Strategic Plan [12] stressed the importance
of standard metrics for quantifying AI technologies. "Standard
metrics are required to define quantifiable measures in order
to characterize AI technologies". As a matter of fact, [13]
have recently stated that "a great deal of effort is required to
determine which suitable measurements should be utilized to
evaluate system performance across characteristics for respon-
sible AI and across profiles for specific applications/contexts".
Governments are responding with regulations typically as-
sociated with human rights. In 2024, the European Union
adopted the AI Act (see Figure 3). These regulations set
out long-term, high-level requirements, sometimes based on
recommendations from organizations such as UNESCO [14]
and the OECD [15] [16], or from High-Level Expert Groups
(HLEG) [5].

These high-level requirements need to be operationalized for
companies and developers. As shown in Figure 3, standards

and regulatory frameworks define more detailed requirements,
but they focus on what to do rather than how to do it.
This leaves the choice of tooled, end-to-end methodology for
developing AIs that fulfill these requirements to companies
and developers.

The Assessment List for Trustworthy AI considers 7 pillars
of trustworthiness: 1) human agency and autonomy, 2) tech-
nical robustness and safety, 3) privacy and data governance,
4) transparency, 5) diversity, non discrimination and fairness,
6) societal and environmental well-being, 7) accountability.
This List is one of the basis of the AI Act [2] which requires
companies to take measures to ensure that their products
developed or deployed in the European Union are safe and
comply with ethical principles.

In the aeronautic domain, EASA [17] proposes a model of
trustworthiness based on the characterization of the machine
learning (ML) application (high-level function/task, concept of
operations, functional analysis, classification of the ML appli-
cation), safety assessment, information security management,
and ethics-based assessment (which includes the 7 pillars of
the ALTAI [18]). The Fraunhofer [19] offered an analysis
of the standard [20] on management system for AI, stating
compliance to the standard can contribute to ensuring AI
trustworthiness since it encompasses the pillars of the ALTAI,
provided that a third-party verification has been performed and
along with an adapted quality management system.

In the same period, the characteristics of trustworthy AI
system specified by the NIST include: "valid and reliable,
safe, secure and resilient, accountable and transparent, ex-
plainable and interpretable, privacy-enhanced and fair with
harmful bias managed". Then the NIST produced an analysis
of the components of trust [21] and highlighted several top
level aspects for the design of a trustworthiness model, that
should encompass the user experience, the perceived technical
trustworthiness, the pertinence of each trustworthiness charac-
teristic in the user’s specific context of use...

Standards provide a framework for legislation and rules
by recording the current state of the art and recommended
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Figure 4. High-level view of the end-to-end methodology (source: https://bok.Confiance.ai).

practices, and offering a foundation for showing adherence
and accreditation. Several organizations and initiatives, such
as ISO/IEC, IEEE and NIST, are currently working on de-
veloping relevant AI standards. The standards developed by
ISO/IEC [20] cover a wide range of AI aspects. These include
terminology, performance metrics, data quality, ethics, and
human-AI interaction. The ethical implications of AI technolo-
gies are the focus of the IEEE P7000 series of standards [22].
The NIST framework [21], meanwhile, provides guidance on
managing risks, ensuring data quality, and promoting trans-
parency and accountability in AI systems.

In 2019, ETSI set up an Industry Specification Group on
Securing AI (ISG SAI) [23] to provide existing and potential
mitigation against threats for AI-based systems. Robust se-
curity measures must protect AI systems from cyber-attacks,
data breaches and unauthorised manipulation. These should
include advanced threat detection and mitigation strategies and
resilience mechanisms to operate securely in hostile environ-
ments. Cybersecurity should be embedded in the system and
data pipelines. The lines between security and safety are not
always clear when it comes to AI. Incorrect outputs can be
caused by malicious actions or natural events.

Ethical engineering focuses on the need for fairness, trans-
parency, and accountability in AI. This involves ensuring
that algorithms are unbiased, produce explainable results, and
adhere to societal and legal values. This engineering requires
ongoing review by engineers, ethicists and domain experts.

However, it is crucial to recognize that the transfer of AI
technology, particularly ML, must adhere to specific standards
and processes to successfully transform research outcomes into

industrial products fit for purpose that meet customer needs.
For example, since data collection and analysis are crucial for
developing any ML-based system, prioritizing data quality is
essential. This requires adherence to compliance regulations,
such as those relating to data privacy. Concurrently, operational
requirements encompassing maintenance must be addressed. It
is therefore evident that developing and implementing AI/ML
systems involves both technical and business aspects, from
problem conception to customer delivery. The development
and operation of critical AI systems therefore requires an end-
to-end, tool-based AI engineering methodology, which will be
outlined subsequently.

III. THE END-TO-END METHODOLOGY

The version of the methodology presented herein has been
produced as a result of the work within the French program
Confiance.ai [1] [25] [26] [27] which was a pillar of the
Grand Défi “AI for industry” initiative, which is pioneering
methodologies for the development of trustworthy AI sys-
tems across sectors. Its associated roadmap is nourished by
industrial needs and the evolution of the state-of-the-art [28].
Namely, several industrial projects and research initiatives
have derived from Confiance.ai, generating the emergence
of an ecosystem for the engineering of trustworthy AI for
critical systems. In addition, the European Trustworthy
AI Association (https://www.trustworthy-ai-association.eu/) is
built on an open-source, community-driven approach, serving
as a key enabler, giving stakeholders access to a dynamic
ecosystem where they can learn from peers and co-develop
tools. These tools are designed to ensure the adoption of
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Figure 5. ML algorithm engineering pipeline [24]

scalable, secure and trustworthy AI based on this end-to-end
methodology, which supports the engineering of trustworthy
AI-based systems. The proposed methodology addresses fol-
lowing issues [29]:

• How can AI/ML models be designed to satisfy trustwor-
thy attributes (explainability, robustness, accuracy, etc.)?

• How can these models allow a clear understanding of
their behavior in the operational domain?

• How can AI/ML models be implemented and embedded
on hardware, by making them fit to the target without
discarding their trustworthy properties?

• Which data engineering methods should be applied to
manage large volumes of data and account for the evolv-
ing operational domain?

• What kinds of verification, validation, and certifica-
tion processes should be considered when dealing with
AI/ML-based systems?

By addressing these challenges, the end-to-end methodol-
ogy aims to answer the research question: How to ensure
the reliability and trustworthiness of AI-based safety-critical
systems? It is based on the premise that the development
of ML-based critical systems should be structured with a
trustworthiness imperative from the design phase, thus pro-
viding precise requirements for integration, verification, and
validation, as well as for proper deployment and maintenance
[30] [31]. It is a multi-domain collaboration that leverages
concepts and procedures coming from different fields into
the agnostic proposal of engineering trustworthy AI/ML-based
critical systems. The result is the formalization, through a
common language, of the structure and workflow for all actors
involved in the process of designing trustworthy AI-based
critical systems, i.e., data engineers, systems engineers, safety

engineers, software engineers, among many others.

A. ML Algorithm Engineering

The engineering ML-based systems is often portrayed as
involving the creation of an ML model and its deployment. But
in practice, the ML model is only a small part of the whole
system. Much more is needed to ensure that an ML model
is trustworthy and its behavior is predictable. This includes
things like designing data pipelines, monitoring and logging,
and so on. We defined the ML algorithm engineering pipeline
to capture these aspects of AI engineering (see Figure 5). This
pipeline differentiates between three types of development:
requirements-driven, outcome-driven and AI-driven [32]. The
starting point is that data must be available for training. Data
engineering provides the foundation for various data collection
and qualification methods, which can then be divided into
training, testing, and cross-validation sets.

The following steps are encapsulated as sub-tasks within the
pipeline:

1) Problem specification: Inclusion of the operational
design domain (ODD), which is the description of the
specific operating condition(s) in which a safety-critical
function or system is designed to operate properly,
including but not limited to environmental conditions
and other domain constraints [33]. These requirements
and architecture are the result of subsystem design
activities and are part of specification activities. These
requirements describe the specific function that the ML
items should implement. They also describe the safety,
performance and other requirements that the machine
learning items should achieve.
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Figure 6. ML algorithm engineering process

2) Data engineering: Large amounts of data are needed
to train a machine learning model so that it can learn
to carry out its function. Before it can be used, data
needs to be collected. It also needs to be prepared. The
process of collecting data from a number of sources is
known as data aggregation. The collected data needs
to be substantial, accessible, comprehensible, reliable
and usable. The process of transforming raw data into
usable information is known as data preparation, or data
preprocessing.

3) ML Algorithm Design: The ML algorithm can be
trained using a feeding set, allowing it to learn ap-
propriate parameters and features. The model will be
refined once the training is complete, using the vali-
dation dataset. This process may involve modifying or
discarding variables, as well as tweaking model-specific
settings (hyperparameters) until an acceptable level of
accuracy is achieved.

4) Implementation: For an ML component to be devel-
oped, the targeted hardware platform, the IDE (Inte-
grated Development Environment) and the language for
development must be decided on. There are a number
of options to choose from. The majority of these would
undoubtedly satisfy our requirements, as all of them pro-
vide the implementation of AI algorithms that have been
discussed to date. However, it is sometimes necessary to
take into account embedded constraints.

5) Evaluation and verification: Once we have found an
acceptable set of hyperparameters and optimized the
model’s accuracy, we can test it. The testing process

employs our test dataset and is intended to verify that our
models are utilizing accurate features. We may decide to
retrain the model based on the feedback we receive. This
could lead to improvements in accuracy, adjustments
to output settings, or the deployment of the model as
required.

6) Model Deployment
The next step is to design or select an AI algorithm from

an existing library (e.g., Scikit Learn [34]) to create a model.
The model is then trained iteratively so that the result closely
aligns with the “correct answers” from the ground truth. The
model is then ready to be deployed, like any other component,
once validation has been successfully completed, provided that
the specified criteria have been met.

As algorithm engineering workflow, ML pipelines consist of
several steps to train a model (see Figure 6). Such pipelines
are iterative as every step is repeated to continuously improve
the accuracy of the model and achieve a successful algorithm.
Pipelines are not one-way flows. They are cyclic in nature and
enables iteration to improve the scores of the machine learning
algorithms and make the model scalable.

The method addresses as a whole both the system engineer-
ing layer and the ML algorithm engineering layer. The system
layer accounts for all underlying phases that should design
and specify to further along verify and validate the overall
system’s objective and performance as carried out in classic
systems engineering. The ML layer then covers all phases
related to the ML component that inherit system requirements
to then refined requirements specific to the ML-components to
be developed. This process aims to ensure the compliance of
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the AI/ML components with the overall system requirements
and intended purpose.

B. Data Engineering

The quality of the data-set depends on the processes and
technologies that ensure data values are consistent with the
ODD. These values are then assessed for quality using various
methods and key performance indicators (KPI) [35]. In certain
instances, when a natural language processing application
contains spelling errors, it is possible to ascertain the caliber
and dimensions, such as accuracy [36]. However, it is more
difficult to detect admissible but incorrect values. As discussed
in [37], most ML research focuses on improving model perfor-
mance rather than datasets. Typically, classical ML practices
involve using existing datasets and enhancing the complexity
of techniques to address performance challenges. Conversely,
data-driven AI adopts a more comprehensive strategy, placing
significant emphasis on the data itself [38] [39]. Instead of
just looking for patterns and relationships in the features that
are given, data-driven AI involves collecting, processing and
analyzing lots of data to create models that are more accurate
and robust. Furthermore, it is a real challenge in the present
day to link datasets together. These should be linked to the
ODD. This should be done at the operational level of the
system definition.

As highlighted in [40], dataset quality may have a bigger
impact on performance than model design. Poor data quality
is a major risk in data-driven AI, as it can cause issues at
every data engineering step, like collection, annotation and
feature engineering, and can lead to problems being missed.
To overcome these challenges, the Confiance.ai research pro-
gram proposes a methodological process for assessing data
trustworthiness.

Data trustworthiness evaluation indicates the degree to
which data and data items satisfy expectations. An overview
of the main metrics used for the data quality assessment
is summarized in Figure 7. This evaluation can be carried
out at various stages of the process, typically during data
development (e.g., raw data or dataset preparation), but also
during IVVQ and deployment (e.g., to detect data drift).

C. ML Algorithm Design

In this phase, a modeling technique is chosen and applied,
and its parameters are set, then an ensemble model is de-
veloped and tested. The variant and structure type are both
determined here, as is the algorithm. This process is referred
to as "training", wherein data and outcomes are employed
to optimize the configuration of the model. This process
constitutes the "learning" aspect of ML.

Various ML techniques are available. These include multiple
types of classification models. These models identify the
category that the input belongs to. There are also regression
models. These predict a continuous-valued attribute for super-
vised tasks. Then there are clustering models. These group
similar items into sets for unsupervised tasks. Finally, there

are reinforcement learning models. These provide an optimal
set of actions.

A common question is "Which ML architecture should I
use?". The following table [41] is provided by the DEEL
project (https://www.irt-saintexupery.com/deel/), which sum-
marizes the most common ML techniques and their main
applications. Each ML technique relies on one or more hypoth-
esis function spaces and one or more exploration algorithms
(not listed in this document) to minimize a loss function on
the training dataset.

Techniques Applications
Linear models: Linear and logistic
regressions, SVM

Classification, Regression

Neighborhood models: KNN, K-
means, Kernel density

Classification, Regression,
Clustering, Density estima-
tion

Trees: decision trees, regression
trees

Classification, Regression

Graphical models: Bayesian net-
work, Conditional Random Fields

Classification, Density esti-
mation

Combination of models: Random
Forest, Adaboost, XGboost

Classification, Regression,
Clustering, Density estima-
tion

Connexionist and statistical mod-
els: Neural networks, Deep learn-
ing...

Classification, Regression

After choosing the model, among the various algorithms
present, one needs to tune the hyper parameters of each model
to achieve the desired performance.

• Select the right algorithm based on the learning objective
and data requirements.

• ConFigure and tune hyperparameters for optimal perfor-
mance and determine a method of iteration to attain the
best hyperparameters.

• Identify the features that provide the best results.
• Determine whether model explainability or interpretabil-

ity is required.
• Develop ensemble models for improved performance.
• Test different model versions for performance.
• Identify requirements for the overall lifecycle.
The resulting model can then be evaluated to determine

whether it meets the business and operational requirements.

D. The ML-based system lifecycle

Developing ML-based systems can be visualized as a "W-
shaped" life-cycle (see Figure 4). This W-shape can be split
into two parts. For AI systems, "intended goal"/"intended
purpose" and "intended domain of use" are very high-level
requirements that have to be translated into "engineering
terms". The engineered "intended domain of use" is called
Operational Design Domain (ODD). The ODD is the opera-
tional conditions for which an AI system is specified, designed,
verified, assessed, operated, and disposed. ML engineering
life-cycle begins with defining AI/ML algorithm requirements
refined from system specification. This ML specification step
includes the characterization of the ODD.
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Approach / method Machine Learning use Data

Diversity DPP [42] Training and test sets Image (object localization) & text (doc-
ument summarization)

R-DPP [43] proposition of new metric No data implemented
D-MCL [44] Training & test sets Image (classification)
PDS [45] Training & test sets Image (MNIST [46]), audio & 2-D

synthetic data

Completeness MADI [47] [48] Not used for ML Numerical & categorical data (from
hospital for [48])

POVM [49] Test set (evaluation by using deep
learning approaches (ICCnet & Fid-
Net))

Tomography images

MCAR, MAR, NMAR
[50]

Training & test sets Numerical data (diabetic data)

Representativeness R-indicator [51] [52] Not used for ML Internet Data sources for [52]
CI [53] Test set Tabular data
Log Disparity [54] Sampling, training and test sets Clinical trials (classification)

Coverage SelectiveNet [55] [56] Training and test sets Image (MNIST, Cifar [57] & Ima-
geNet)

Neuron Coverage [58] Test set Image (MNIST, ImageNet, Driving
datasets) & numerical/categorical
(Contagio, VirusTotal & Drebin
datasets)

DeepTest based on neuron
coverage [59]

Test set Image (real driving camera & syn-
thetic)

TensorFuzz [60] Test set Image (MNIST)
TDA-AI2 [61] Test set (applied on DRL) 3-D cloud data

Corner cases [62], [63],
[64],[65],[66],[67]

Anomaly detection Images or videos

[68] Anomaly detection Images (optical, radar & lidar)
[69] Anomaly detection Numerical data (trajectories)
[70],[59] model evaluation Images
[58] model evaluation Images, PDFs, Android apps

Figure 7. A brief overview of the approaches and metrics used for data quality evaluation

This engineering activity is a critical step that changes the
way AI researchers and engineers work. It involves a detailed
description of all possible operating conditions, called the
operating environment of the system, to enable data collection
and knowledge representation. The reliability of the AI-based
system depends on the correctness and completeness of this
description, particularly for rare events or combinations of
conditions that could be unsafe. The validity of a system is
established by its intended use [71]. The ODD description is
developed using a combination of top-down and bottom-up
approaches. ODD aligns data and functional intent, i.e., the
data used for training and the resulting ML model(s) with
their intended use, covering a wide range of conditions.

Data engineering is key. It involves the identification,
collection, preprocessing and extraction of features from
large datasets. These datasets are essential for designing and
verifying ML models. This phase often involves advanced
techniques. These techniques improve the representativeness,
completeness, and relevance of the dataset (minimizing the
simulation-to-reality gap). Rigorous quality controls, guided
by Data Quality Requirements (DQRs), ensure data inputs are
accurate and consistent. During model design, engineers select
appropriate learning algorithms and improve model architec-
tures through training and evaluation cycles. Optimization
strategies balance computational efficiency and performance.

The second "V" of the "W-shaped" life-cycle includes the
implementation engineering processes performed on the target
platform (e.g., specific hardware embedded in a ground or
aerial vehicle). Validation and verification activities are driven
by key trustworthiness properties, specified in low-level ML
requirements. Validation activities ensure the correctness and
completeness of ML requirements by verifying, analyzing, and
tracing them back to higher-level requirements. Verification
activities include extensively simulating, testing edge/corner
robustness, scenario-based testing, analyzing the ML model
explainability, and ODD coverage analysis [72]. The first level
of verification ends with a selected AI model, which meets all
its requirements in the development (learning) environment
and serves as a design specification, ready for implementation
into software and/or complex electronic hardware elements in
the second level of verification. Figure 8 shows a high-level
view of the verification phase of an automated feature based
on ML and the interaction with the specification and validation
phases.

MLOps, or Machine Learning Operations, and AI Engineer-
ing, while closely related, serve distinct roles within the ML
lifecycle. MLOps focuses on the operationalization of machine
learning models, ensuring that they are deployed efficiently
and maintained effectively in production environments. In
contrast, ML Engineering is primarily concerned with the
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development and maintenance of an ML-based system. Thus
MLOps emphasizes the operational aspects of machine learn-
ing, while AI Engineering is centered on the overall lifecy-
cle of the system covering all system engineering concerns
(from specification to maintenance) which includes MLOps
for ML-based systems. MLOps involves collaboration between
data scientists, ML engineers, and IT operations teams when
AI Engineering involves system ad software engineers, data
scientists, safety and cyber-security engineers. The end-to-
end methodology (see Figure 4) supports all AI engineering
activities where MLOps covers ML algorithm engineering and
data engineering.

E. Deployment of a ML-component in the system

Deploying an ML component involves integrating it into
an existing system, validating it and making it accessible for
real-time or batch processing. The challenge for AI/ML-based
systems lies in integrating, deploying and scaling a solution.
The end-to-end methodology validates the quality of the data
and knowledge, the process, and the added value delivered
by AI/ML components, at a lower cost than the classical
software/system engineering effort involved in automating and
integrating a non-validated application with in-house and third-
party systems. Combining the different engineering steps can
require significant development effort, creating cost barriers
when testing and validating ideas and prototypes that depend
on integration with the rest of the system. Validating ML-
based systems is more complex than manually coded systems.
This is due to the behavior of ML-based systems, which
depends heavily on data and knowledge, and for which models
cannot be strongly specified a priori. Therefore, training data
or knowledge-based models require qualification, similar to
code [73].

Thus, verification testing of the ML-based system must
also rely on the integration tests already performed at the
"Integration of ML Component in System" step. They are
usually run in a simulated environment (i.e., with test benches
or synthetic input data, or pre-recorded operational data).
Consequently, testing the ML-based system consists again
at least in regression testing (i.e., test of no functional or
non-functional regression), enabling to verify that the ML
component features previously tested, integrated in the final
ML-based system, still operate in conformance with their
requirements based for example on

• Test by sampling and perturbation (empirical testing),
• Testing by formal verification of robustness (formal test-

ing)...
However, it is also necessary to develop and run new verifica-
tion tests, with potentially new tools and new test datasets, in
order to ensure a complete requirements test coverage, prior
to delivery to the Validation level.

F. Validation and Verification

Once the ML-based System has been successfully verified, it
can be provided to the next engineering phase: the validation of

the ML-based System. The difference between “verification”
and “validation” is the following:

• Verification: evaluation against the system requirements
that were written in order to design the ML-based System.
Have we built the system right (as per design intent)?

• Validation: evaluation against the high-level needs iden-
tified during operational analysis. Have we built the right
system (as per initial need)?

Then the "Validation, Qualification of ML-based System"
engineering activity has to be performed:

• each time the “Operational Analysis” activity releases a
new version of the operational/stakeholder needs (espe-
cially Intended Purpose Summary) against which the ML-
based System shall be validated;

• and each time the “System Verification” activity releases
a new version of verified ML-based System that is ready
for validation.

Particular attention should be paid to stakeholders/operational
requirements relating to the automation objectives that the
system’s feature implemented by ML is intended to satisfy.
Furthermore, ML-based system tests must be run in the target
operational environment. It is no longer possible to simulate
the environment using a test bench, synthetic input data or
pre-recorded operational data.

The performance of a safety-critical system in its intended
operational environment is a mandatory part of overall sys-
tem validation. The process of traditional software validation
involves establishing a chain of evidence that connects re-
quirements to system-level tests. However, the use of machine
learning techniques frustrates this approach due to the use
of training data rather than a traditional design process. It is
essential that software validation is based on tests that demon-
strate a performance level commensurate with the criticality
of the risks. These tests should be performed on a dataset
that is fully representative of the factors that influence the
model. The way in which the model’s functional characteris-
tics and operational environment are specified may result in
numerous factors influencing performance. To demonstrate the
model’s effectiveness would require extensive testing datasets,
potentially numbering in the millions of samples. Achieving
this goal is an interesting prospect, but it is still at an
early stage of research. Formal verification and simulation are
interesting tracks to pursue. Therefore, verification requires
ensuring that training and testing data cover all relevant
operational conditions. In practice, this problem is generally
made tractable by constraining the operational environment
to a subset of all possible situations that could be dealt with
by a human operator. The adoption of an ODD is the term
given to that approach to limiting the operational needs of the
system. Testing an ML component aims to detect discrepancies
between the actual and intended behaviors of ML models.
The term "ML testing" is used to describe any activity that
is designed to reveal any bugs in ML items. "ML bugs" refer
to any imperfection in an ML item that causes a discrepancy
between the output.
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Figure 8. Verification Phase: verification of the ML-based feature of the system.

Testing an ML component aims to detect discrepancies
between the actual and intended behaviors of ML models.
Formal ML testing refers to any activity designed to reveal ML
bugs, where an ML bug is defined as any imperfection in an
ML item that causes a discrepancy between the model’s output
and the reference output. Examples of discrepancies could be
due to a shift in the distribution of training and testing data,
or an incorrect assessment of the suitability of the data for the
task at hand; therefore, data is usually the cause of incorrect
or unexpected errors.

This definition highlights three challenges to overcome.
First, ML systems may have different types of "required
conditions", i.e., properties to verify. We can classify these
as basic functional requirements (e.g., correctness and model
relevance) and non-functional requirements (e.g., efficiency,
robustness, fairness, interpretability). Different methods and
metrics are required to verify such properties, so the selection
of the best tools for verifying the component must be preceded
by a definition of the required conditions: "What do we want
to prove through testing?". Second, an ML bug may exist in
the data, the learning program, or the framework. The testing
strategy should address either the component itself or another
"sub-component". This may make the testing more complex,
since establishing a causal link between the bug and its source
may be difficult, and defining a testing protocol allowing
the distinction of independent and dependent variables is not
trivial in an ML pipeline. Finally, testing activity may include
several radically different approaches. These may include
test input generation, test oracle identification, test adequacy
evaluation, and bug triage. The selection of the approach must
be based on a trade-off between the technical feasibility of

performing such a test on the ML component and the required
conditions initially formalized.

Quality control is an essential part of verifying and validat-
ing the ML component, and this can be achieved by estimating
the success of the task solved by the component. Traditional
metrics for regression problems include mean squared error
(MSE) or mean absolute error (MAE), while classification
problems can be evaluated using precision, accuracy, and re-
call. For classification problems, a confusion matrix depicting
the distribution of true/false negatives/positives for each class
is a practical tool for visualizing errors and allows most
metrics to be computed (e.g., precision, recall, sensitivity,
specificity, F1 score, and ROC curve).

The most common evaluation protocol involves maintaining
a hold-out validation set. This involves setting aside some of
the data as the test set. The process involves training the model
with the remaining data and tuning its parameters with the
validation set, before finally evaluating its performance on the
test set. The reason for splitting the data into three parts is to
avoid information leaks. The main disadvantage of this method
is that if a small amount of data is available, the validation and
test sets will contain so few samples that tuning and evaluating
the model will be ineffective. An alternative is k-fold cross-
validation, which involves splitting the data into k partitions
of equal size.

Another interesting approach is: Iterated k-fold validation
with shuffling. This technique is useful when there are few data
available and it is necessary to evaluate models as precisely as
possible. Functional performance evaluation presents its own
challenges. Selecting the most appropriate metrics to reflect the
desired level of performance and choosing a suitable testing
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protocol require careful consideration. However, the notion
of quality control (QC) should go beyond simply estimating
functional performance.

First, we note that the validation set is part of the ML algo-
rithm design. The focus here is on the technical validity of the
algorithm design, with few links to the operational constraints
established in the specification phase. The influence of the
training data is ignored at this stage, as traditional protocols
do not necessarily take into account the informational value
of the data points in each set. QC should encompass more
than a simple evaluation of the ML algorithm. QC procedures
should be formalized and deployed at each stage of the ML
pipeline, with different objectives and verification strategies,
but with one overarching objective: to ensure the quality of
all processes involved in developing the ML component.

Although each domain has its own traditional ways of
performing qualification (for example, data qualification has
its own procedures), the link with the particularities and
constraints of ML components is not always well established.
Additionally, some aspects of verification and validation strate-
gies are underestimated or not routinely considered in ML
engineering. For example, data engineering information about
the limits and constraints of the data should be reflected in the
overall model evaluation strategy. The system in which the ML
component is intended to operate must also provide its own
set of constraints against which the component’s compliance
can be checked. This means that all parts of the ML pipeline
should include specific QC procedures, and this information
should be communicated to the relevant parts of the pipeline
to inform the overall evaluation of the component’s quality.

G. Maintenance and In-Service Support

Once the AI-based System has been validated and qualified,
it can be deployed and declared in-service. Maintaining AI
systems is a complex and evolving challenge. In many ways,
this mirrors the rigorous and continuous effort. At its core, AI
maintenance is not just about ensuring a model functions as
intended at deployment; it is also about safeguarding its per-
formance, reliability, and trustworthiness throughout its entire
lifecycle. This is particularly important because AI systems
are increasingly being integrated into high-stakes areas where
failures can have severe or even catastrophic consequences.
Maintaining AI systems is a complex and evolving challenge.
In many ways, this mirrors the rigorous and continuous effort.
At its core, AI maintenance is not just about ensuring a
model functions as intended at deployment; it is also about
safeguarding its performance, reliability, and trustworthiness
throughout its entire lifecycle. This is particularly important
because AI systems are increasingly being integrated into
high-stakes areas where failures can have severe or even
catastrophic consequences.

Robustness is a core concept in AI maintenance, referring
to an AI system’s ability to perform reliably in unexpected
or adversarial conditions. Robustness is threatened by various
factors during development and deployment. In development,
the integrity of training data is crucial. Data can be com-

promised by noise from errors in data collection, annotation,
or processing, or by data poisoning, where incorrect data is
injected to degrade performance. This can lead to a model that
performs well in testing but fails in real-world applications.
Another threat is the backdoor attack, where an attacker
embeds a hidden trigger in the model. When activated, the
model’s behavior can be manipulated without detection. These
vulnerabilities are concerning in distributed learning envi-
ronments, such as federated learning, where multiple parties
contribute to the training process without full data visibility.

Once deployed, an AI model faces new challenges that can
undermine its robustness. Adversarial examples, crafted inputs
designed to deceive the model, exploit its sensitivity to small,
often imperceptible, perturbations in the input data. An image
recognition system might be misclassified due to a few pixels
being altered in an image. Such vulnerabilities are dangerous
in safety-critical applications like avionics, where a single
misclassification can have life-or-death consequences. Another
challenge in deployment is out-of-distribution generalization,
the model’s ability to handle inputs that differ from the data it
was trained on. Real-world environments are dynamic, and
data distributions can shift over time due to factors such
as changing user behavior, sensor degradation, or evolving
contextual factors. A model that performs well on its training
data may struggle when faced with these shifts, leading to
degraded performance or unexpected failures.

To address these challenges, AI maintenance has been
proposed. It is a process akin to the maintenance of complex
systems. An AI system requires regular monitoring and testing
to remain reliable and maintain robustness. Inspection and
diagnosis involve probing the model to identify vulnerabil-
ities, anomalies, or degradation. Testing the model against
adversarial examples is an example of monitoring for data
drift. Soliciting feedback from users helps to understand the
model’s real-world behavior. Fixing and updating are next.
This can be recalibrations or interventions like hardening the
model against specific threats. Modules can be replaced if they
are flawed. The cost and complexity of these activities depend
on the identified issues and the requirements of the application.

An AI model inspector is a proactive framework that
goes beyond the passive documentation provided by tools
like model cards or data-sheets. Detect potential risks, such
as back-doors, adversarial vulnerabilities, or data drift, and
then take corrective actions to mitigate these risks. This
could involve retraining the model on updated data, applying
patches to address specific vulnerabilities, or even triggering
a complete overhaul if the model’s performance has degraded.
The inspector framework represents a shift from reactive to
proactive maintenance, where potential issues are identified
and addressed before they lead to failures.

IV. TRUSTWORTHINESS ATTRIBUTES AND ASSESSMENT

Trustworthiness is fundamental for the successful devel-
opment and adoption of AI-based critical systems. Thus,
trustworthiness assessment [76] can be defined as the process
of evaluating and determining the level of trustworthiness of
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Figure 9. STPA method overview [74] [75]

a given characteristic, such as robustness [77] [78], accuracy,
reliability [26], or effectiveness, in the context of AI systems
engineering.

Nevertheless, it is very misleading to only judge how good
an AI system is based on how accurate it is. It is also difficult
to test and check the quality of software in the traditional
way, and it is even difficult to measure test coverage at
all. Trust and trustworthiness are complex, and so one of
the main issues we face is to establish objective attributes
such as accountability, accuracy, controllability, correctness,
data quality, reliability, resilience, robustness, safety, security,
transparency, explainability, fairness, privacy, and compliance
with regulatory actors. We need to map these attributes onto
the AI processes and its lifecycle and provide methods and
tools to assess them. This highlights the importance of quality
requirements, which are non-functional requirements and are
particularly challenging in AI systems, although many of
them can be considered in any critical system. Furthermore,
this can also include risk and process considerations. The
attributes and values for these requirements depend on things
like how important the application is, what the AI system is
used for, how it will be used, and the people involved. So,
in some situations, some attributes may be more important
than others, and new attributes may be added to the list [79].
Clear specifications of the non-functional requirements will
help clarify these conflicts and can also encourage innovation
that solves some of these conflicts, allowing us to fulfill more
of them at the same time.

A. Risk analysis related to trustworthiness relationships be-
tween stakeholders

All interactions between the stakeholders (e.g., engineers,
operators, end-users, certification authorities, insurance com-
panies, etc.) and the system are addressed by the trustworthi-
ness relationships dimension.

Trustworthiness relationships must be established at each
phase of the System lifecycle. They must also be maintained
at each phase. This applies from engineering and design,
until operation in a target environment. Indeed, during the

engineering and design phases, engineers must be able to build
trust on the system they will deliver to operators, which is an
essential step in the process. Ultimately, operators must have
confidence in the system features they will use.

The way in which trustworthiness relationships are estab-
lished is dependent on the automation objectives that need
to be achieved, as well as the environmental and human
conditions that must be taken into account when operating in a
trustworthy manner. As a result, trustworthiness relationships
need to be analyzed from the viewpoint of each stakeholder
involved in the automation Objectives, and defined and refined
so that they can be supported by the system.

The dimension of trustworthiness relationships requires the
application of an AI-specific risk analysis (see Figure 11). In-
deed, due to the high level of uncertainty and unpredictability
of the AI-based Automated Features outputs and behaviors,
a new risk analysis approach related to the dimension of
trustworthiness relationships is needed. Various techniques for
hazard analysis such as Failure Modes and Effects Analysis
(FMEA), Fault Tree Analysis (FTA), Hazard and Operability
Analysis (HAZOP), System Theoretic Accident model and
Processes (STAMP) and System Theoretic Process Analysis
(STPA) are common. The STAMP framework is an accident
causality model that provides a new paradigm for STPA.based
system safety engineering.

In our conte)xt, the Confiance.ai research program has
proposed a methodological process. The process relies on both
the unified approach for trustworthiness assessment defined in
our previous work [29] and the STPA method (see Figure 9),
which is identified as relevant for analysis purposes.

STPA [75] is a system approach that considers potential dys-
functional system’s characteristics and behaviors as a system
control problem and not only as a problem of component fail-
ure. It does not replace traditional failure analysis approaches
but complements them. In Confiance.ai, STPA is extended
beyond its traditional safety analysis domain to trustworthi-
ness characteristics/properties risks analysis and control, to be
applied for each autonomy objective and feature defined in the
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Concept name Definition
Misuse [ISO 21448: 2021] usage of the system by a human in a way not intended by the

manufacturer or the service provider
Error [ARP 4754 A] A mistake made by a crew member or maintenance person, or a mistake

in the requirements, design or implementation (derived from AMC 25.1309).
[ISO 26262: 2011] A discrepancy is when a value or condition is not the same as the
true value. It could be a computed value. Or an observed value. Or a measured value. Or
a theoretically correct value.
Note 1: An error can arise as a result of unforeseen operating conditions or due to a fault
within the system, subsystem or component being considered.
Note 2: A fault can manifest itself as an error within the considered element and the error
can ultimately cause a failure.

Failure An occurrence, which affects the operation of a component, part or element such that it
can no longer function as intended, (this includes both loss of function and malfunction).
Note: errors may cause Failures, but are not considered Failures. (AMC 25.1309)

Hazard Definition from STPA: A system state or set of conditions that, together with a particular
set of worst-case environmental conditions, will lead to an accident (loss).
[ARP 4754 A] Extended for trustworthiness: A condition resulting from failures, external
events, errors or a combination of these factors affecting trustworthiness.

Worst-case environmental con-
dition

Environmental, non-controllable context

Risk [ARP 4754 A] The level of severity of an occurrence is dependent on its frequency
(probability).

Accident-Loss Definition from STPA, extended for trustworthiness: An undesired or unplanned event
that results in a loss, including loss of human life or human injury, property damage,
environmental pollution, mission loss, trustworthiness loss etc.
Definition from STAMP: An undesired or unplanned event that causes loss, damage, or
injury [80].

Mitigation Any means enabling risk reduction (occurrence likelihood and/or impact with barriers) at
any step of the System of interest lifecycle (e.g., specification, design, training...).

Loss/Damage [STPA Handbook] extended for trustworthiness: A loss involves the loss of something of
value to stakeholders. They may consider this to include anything from loss of human life
or injury to property damage, environmental pollution, loss of mission, loss of reputation,
loss or leak of sensitive information or loss of trustworthiness.

Figure 10. Safety Analysis concept definition [29]

ODD. Therefore, STPA can be applied to analyze and mitigate
risk of trustworthiness loss.

Remind that STPA is a system-theoretic safety analysis
method designed to identify and mitigate risks in complex sys-
tems by focusing on control structures and unsafe interactions
rather than just component failures. It is particularly useful
for autonomous, cyber-physical, or human-machine systems
where traditional hazard analysis may fall short. The process is
structured into four key steps (see Figure 9), each building on
the previous one to ensure traceability from high-level losses
to specific scenarios:

1) Identify accidents and hazards list, and associated unac-
ceptable losses related to the System of Interest (either
material losses or immaterial losses, e.g., mission, trust-
worthiness loss. Identify also the boundary of the anal-
ysis and defines those losses and hazards that must be
prevented as well as high-level operational and system
constraints/requirements needed to prevent them.

2) Identify and model the control structures, starting from
the operational environment, and refining through the
abstraction layers of the system analysis (i.e, System
level, Architectural level, AI Component level)

3) Identify Unsafe Control Actions (UCAs) leading to haz-
ards and losses, and specify requirements and constraints

to prevent them.
4) Identify scenarios leading to UCAs or hazards, and

specify requirements to mitigate the risks.”

To define the process of trustworthiness risk analysis, tra-
ditional Safety Analysis concepts of the aeronautical business
domain have been considered (e.g., failure). Other business
domains (e.g., railway, automotive. . . ) could introduce their
dedicated concepts (see Figure 10). The resulting process is
described in Figure 11, as a pattern that needs to be iteratively
applied at several steps of the end-to-end method.

The principle is that a specific Trustworthiness Engineering
team, once it has analyzed the trustworthiness properties, has
also to analyze the trustworthiness loss risks, according to
the approach AI specific risk analysis approach. It has also
to perform potential traditional risks analysis (e.g., Safety
failure modes analysis approaches). In addition to the system
specification including Operational Design Domain (ODD)
analysis, and trustworthiness assessment processes, a risk
analysis process is essential to address and mitigate the risks
related to AI technologies, based on add-hoc control-structures
specifications.
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Figure 11. Trustworthiness Risk Analysis - Generic process

B. Local trustworthiness assessment

Thus, by leveraging system engineering best-practices, ML
development workflows, and testing procedures, the end-to-
end methodology ensures that trustworthiness attributes are
embedded in every stage of the AI system life-cycle, from
conception to maintenance. The Confiance.ai framework fo-
cuses on the following attributes:

• Robustness covering Safety and Security: High-risk
systems must be as resilient as possible against errors,
faults or inconsistencies that may occur within the system
or the environment in which it operates, and also against
attempts by unauthorized third parties to alter its use, out-
puts or performance by exploiting system vulnerabilities;
furthermore, the technical solutions aiming to ensure the
cybersecurity of high-risk AI systems must be appropriate

to the risks and circumstances. Various perturbations (i.e.,
variations in input data and operating conditions) should
not be an issue for robust AI systems. Therefore, an
AI-based system must meet rigorous safety and security
requirements [81] (see Figure 12):

– Safety analysis and certification based on standards.
– Cybersecurity counter-measures, integrated on the AI

pipeline.

This requires :

– Adversarial robustness, ensuring the system is not
easily manipulable by adversarial attacks.

– OOD Robustness (Out-Of Distribution), the system
must generalize well across different environment
and be trained on diverse datasets.

– model monitoring, ensuring a continuous evaluation
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Figure 12. ML model robustness evaluation process considering two complementary strategies

of the AI models, to detect performance degradation.
To evaluate the robustness of ML model, the end-to-end
methodology proposes a strategy made of two successive
phases:

– Robustness test by sampling and perturbation (em-
pirical evaluation).

– Formal verification of robustness (formal evaluation);
The test-based phase consists in comparing, on one
hand, the behavior of the ML model fed with a
perturbed dataset, and on the other hand, its nominal
behavior.
The formal evaluation-based phase uses formal meth-
ods and tools to verify one or several mathematical
properties (here, related to robustness) of the ML
model. Ideally, such a property shall be formally
verified on the whole Model, whatever the input
data. However, practically, because of constraints on
the formal verification tools, the property is formally
verified only for given input data: it proves that the
ML model is locally robust, at given points of the
test dataset. Each phase implies a specific expression
of ML model robustness requirements.
The first phase is relatively inexpensive, compared to
the second one. By testing the model with different
inputs and perturbations, information is obtained

about the performance of the model in different
scenarios and its ability to generalize well despite
data perturbation. However, this type of evaluation
has limited confidence because it only tests a subset
of possible scenarios but it may not uncover all
potential issues or weaknesses.
On the other hand, the second phase involves rigor-
ous mathematical analysis of the model robustness:
it is more expensive and time-consuming compared
to the first phase. Formal verification provides a
higher level of confidence in the model’s perfor-
mance because it is based on sound proofs. However,
it is important to note that formal verification may
not be possible for certain types of models due to
their complexity or lack of formal specifications. In
this sense, the adoption of a formal verification to
evaluate the robustness of ML models depends on
certain constraints such as the acceptability of formal
proofs, the compatibility of the verification tools with
the ML model algorithm, and the dimension of the
data space.
The interest of starting with sampling and pertur-
bation test is to quickly identify any major issues
or weaknesses in the model. If the model performs
well in this step, it can then be subjected to formal
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verification to obtain a more expensive but also more
reliable result.
This combination of approaches allows for the most
comprehensive evaluation of the model robustness,
considering both cost-effectiveness and confidence.

• Transparency, Explainability, Interpretability and
Comprehensibility. The principle of "having a human
in the loop" is at the core of responsible and trustworthy
AI. Transparency is vital for effective human control
and oversight, including instructions for safe use and
information about the level of accuracy, robustness, and
cybersecurity of the critical AI system. This enables us
to: (i) Properly understand the relevant capacities and
limitations of the system and monitor its operations,
including in view of detecting and addressing anomalies,
dysfunctions and unexpected performance; (ii) Maintain
awareness of the potential tendency to automatically rely
or over-rely on the output produced by the system; (iii)
Accurately interpret the system’s output; and (iv) Decide
not to use the system or otherwise disregard, override
or reverse the system’s output. Moreover, trustworthy
AI should be transparent and its decisions should be
interpretable where

– Explainability deals with the capability to provide
the human with relevant information on how an AI
application is coming to its result.

– Interpretability relates to the capability of an element
representation (an object, a relation, a property...) to
be associated with the mental model of a human
being. It is a basic requirement for an explanation.

– Comprehensibility refers to the capability of an el-
ement representation (an object, a relation, a prop-
erty...) to be understood by a person according to its
level of expertise or background knowledge.

This requires:
– Post-hoc explainability tools, to provide insights into

model decisions.
– model simplification strategies to enhance inter-

pretability.
– Human-in-the-loop validation to ensure AI decisions

align with expert knowledge.
There is a profusion of methods, tools, and solutions
available, each with its own set of advantages, drawbacks,
and trade-offs [84]. The many different approaches show
how tricky it is to make sure that AI and machine learn-
ing models can explain their predictions and decisions.
Choosing the right way to make models explainable is
a technical and strategic decision. It depends on the
unique needs and limits of the people it will be used
by, the specific example it will be used for, and the
wider situation in which the AI system will be used.
What works for a medical diagnosis model may not
work for the aeronautic domain, and what regulators
expect can be very different from what end-users or
business stakeholders expect. The Confiance.ai program

provides a "Methodological Guideline for Explainability"
(https://catalog.Confiance.ai/) which is designed to be a
complete guide to help people use AI. It will explain why
explainability is important, highlight the many available
methods, and offer guidance on selecting the most suit-
able approach based on the specific situation.

• Fairness and Bias Mitigation. A key concern with data-
driven AI (such as ML) is the amplification of biases.
Therefore, we have first to take appropriate measures to
detect, prevent and mitigate possible biases and to use
high-quality datasets for training, validation, and testing,
as the output of the AI system depends largely on the
quality of the training data. The data must be relevant,
sufficiently representative and, to the best extent possible,
free of errors and complete. AI models should be free
from discriminatory biases. This involves:

– Bias detection and correction techniques, in the data
processing and model training phases.

– Regulatory alignment with fairness standards.
The end-to-end methodology integrates those attributes

throughout the AI system life-cycle, namely in:
• Operational Design Domain (ODD) definition: Critical

AI systems are subject to rigorous regulatory require-
ments, including conformity assessments and post-market
surveillance. The EU AI Act establishes a risk classi-
fication system for AI systems based on their intended
purpose. This means that the use for which an AI system
is intended by the provider, including the specific context
and conditions of use, determines its risk classification.
This ensures that regulatory scrutiny aligns with the
system’s anticipated function and impact.

– Define the operational boundaries where the AI
system is expected to function reliably.

– Establish clear environmental constraints for the AI-
system’s development.

The ODD is a description of measurable foreseeable
operating conditions within which a system/component
shall operate. A traceability property shall be assured
between the different levels of ODD (system, subsystem
or component).

• Systems Engineering
– Ensure AI system-level requirements are defined in

alignment with overall system objectives.
– Align AI-based system requirements with preexisting

system engineering standards and certification guide-
lines.

• Data Engineering and Data Quality Assessment
– Rely on a robust data pipeline to guarantee data

integrity, consistency, and traceability across the en-
gineering cycle.

– Implement bias mitigation strategies at the data col-
lection and processing stages.

– Use adaptive data augmentation strategies to improve
data diversity and model generalization to distribu-
tion shifts and operational scenarios.
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Figure 13. The unified approach based on MCDA [82] [83]

• ML Algorithm Engineering
– Use ML robustness techniques, designed to handle

perturbation and adversarial outputs.
– Incorporate explanability techniques to have under-

standable decisions.
– Apply Uncertainty quantification techniques to asses

the model’s confidence.
• Verification and Validation

– Perform extensive simulation-based testing to asses
performances under edge cases.

In addition, measuring how trustworthy AI systems are is
tricky. The ideas behind them are complicated, the characteris-
tics they produce are different, and you can’t always compare
them. The Confiance.ai program proposes an innovative way
to measure trustworthiness using (max,+) algebra [85] based
on a complete hierarchical model that brings together different
properties, such as how strong, effective, dependable, easy to
use and human agency, and human oversight) into a single
assessment method. This offers advantages over traditional
weighted averaging methods by better handling extreme values
and preserving sensitivity to critical indicators, while maintain-
ing sensitivity to critical indicators to provide detailed, under-
standable assessments of AI-based system trustworthiness.

C. Global Trustworthiness Assessment

As it is not straightforward to select the relevant attributes
for assessing AI trustworthiness, given that the choice depends
on the context of application. This context is modeled ac-
cording to a number of elements, including the Operational
Design Domain (ODD), the intended domain of use, the
nature and roles of the stakeholders, and so on. The attributes
may be quantitative, typically comprising numerical values
derived from measurements or providing a comprehensive
statistical overview of a phenomenon. Alternatively, they may
be qualitative, based on the detailed analysis and interpretation
of a limited number of samples. Then, the second activity
mentioned above on the characterization of the trustworthiness

evaluation is broken down into several activities, according to
the Multi-Criteria Decision Aiding (MCDA) method [82] [83].
Those are:

1) Define trustworthiness characteristics. All the character-
istics of the considered item are identified and described
(i.e., their name, properties).

2) Structure attributes in a semantic tree. Characteristics
(i.e., quality attributes) are organized in a tree, from the
most general down to the leaf characteristics.

3) Identify numerical evaluations. Each characteristic is
typed by a numerical value domain.

4) Adapt attribute for commensurability. Characteristics
can follow different forms of distribution with different
value domains. The purpose is to make them compatible
so that they can be compared and operated together.

5) Define the aggregation methodology. MCDA enables
one to explore several solutions, compare them, and to
keep the best one.

Once the list of relevant attributes has been defined, the
aggregation of several attributes remains complex due to issues
of commensurability. This is because the attributes in question
are not of the same unit; for example, combining "oranges
and apples" is not a meaningful exercise. Furthermore, it is
necessary to make compromises and arbitrate between the
attributes. This means that the value of each attribute must be
transformed into a scale that is consistent across all attributes
and reflects the preferences of a stakeholder. Furthermore, the
values assigned to the scales for the various criteria must
be aggregated. These elements represent the primary stages
of a problem-solving process that employs an Multi-Criteria
Decision Aiding (MCDA) approach [85].

MCDA is a generic term for a collection of systematic
approaches developed specifically to assist one or several
decision makers in assessing or comparing alternatives based
on multiple criteria [86]. The challenge lies in the fact that the
decision-making criteria are often numerous, interdependent,
and occasionally in conflict with each other. For instance, there
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may be a conflict between effectiveness and other criteria, such
as robustness, explainability, or affordability. The viewpoints
are quantified through the use of attributes. Aggregation func-
tions are frequently used to facilitate comparisons between
alternatives evaluated on the basis of multiple, potentially con-
flicting criteria. This is achieved by synthesizing their respec-
tive performances into overall utility values. These functions
must be sufficiently expressive to align with the preferences
of the stakeholders involved, enabling the identification of
the most preferred alternative or facilitating the negotiation of
compromises among the criteria. It is important to note that
improving one criterion may necessitate a trade-off in another.

V. CONCLUSION AND FUTURE WORKS

The Confiance.ai program has evolved since its kick-off in
2021, with a first year dedicated to covering the academic and
industrial state of the art related to ML-based system design.
Subsequent years (2022-2023) were dedicated to the accurate
characterization of industrial use cases, the development and
evaluation of technological components to address specific
aspects of reliability, and the construction of an end-to-end
method revisiting all stages of the engineering cycle for the
design, integration, and evaluation of ML components [9]. The
last year (2024) encompasses the evaluation of this end-to-end
method, the completion and dissemination of key results, and
the guarantee of their continuation and sustainability under the
aegis of a new research initiative currently under construction.
To facilitate the adoption of the tool-based methodology by
industry, several implementations of the 2023 version have
been carried out on use cases.

These experiments have demonstrated the importance of
integrating diverse tools and methods to address expectations
regarding trusted ownership, as illustrated by the following
two examples: In a use case involving autonomous driving,
the analysis of dataset diversity reveals a limited presence
of night-time images, prompting the generation of synthetic
night-time data. This data exhibits a "domain gap" and under-
goes "domain adaptation" prior to integration into the model
training data. These tools, instrumental in the construction
of datasets, will also be reused in the supervision stage of
the use case. In an aeronautical use case called LARD for
"Landing Approach Runway Detection" [87] and represented
Figure 14, a data quality supervision module is incorporated
to consolidate the confidence score of an ML model (see
Figure 14). In this example, local image quality estimators
(e.g., level of blur, brightness) are taken into account in the
detection zone of the landing strip that is being detected.
The combination of these indicators with the other indicators
intrinsic to the model facilitates the establishment of a level of
confidence for the system component. In addition to providing
a numerical value, this implementation serves as a tool to
facilitate the interpretation of model and data errors.

The Confiance.ai program is opening up two major out-
comes to the community as a "digital common good". First,
it provides a body of knowledge describing an end-to-end

method of AI engineering. This makes it possible to character-
ize and qualify the trustworthiness of a data-driven AI system
and integrate it into industrial products and services. Second,
this method is applicable to any sector of activity. A catalog of
developed and/or mature technological components to increase
the level of trust in AI integrated into critical systems.

The Body of Knowledge (BoK) is one of the main out-
comes because it provides access to a navigable version of
this end-to-end methodology that covers the activities struc-
turing the engineering cycle of a critical system based on
ML (https://bok.Confiance.ai/). This compendium of expertise
from multiple disciplines is a corpus that articulates the system
level with the model and data levels in the engineering process.
It is continuously updated and expanded and is expected to
continue beyond the program. The content provided in the
body of knowledge is structured with an end-to-end engineer-
ing method in mind and can be navigated through different
roles in this process, namely through the field of application of
different engineering profiles: These roles include, but are not
limited to, the following: machine learning algorithm engineer,
data engineer, embedded software engineer, IVVQ (Integra-
tion, Validation, Verification and Qualification) engineer or
system engineer.

The following simplified high-level view of the BoK is
presented as a gateway to the end-to-end method for engineer-
ing trustworthy ML-based systems.The body of knowledge
presents the stages of the methodology, from operational
analysis and specification of the function of the system that
one wishes to automate through the use of ML technology, to
verification/validation/qualification, including the development
and implementation of the ML model. The navigation through
each stage and according to each role facilitates the visualiza-
tion of the activities, sub-activities and workflow to be carried
out when developing a reliable ML-based system.This corpus
is thus a compendium of expertise from multiple disciplines
because it links the system level with the model and data
levels in the engineering process.It is continuously updated
and expanded, and this is planned beyond the program.

The catalog (https://catalog.Confiance.ai/) is a web applica-
tion that allows users to consult the results of the Confiance.ai
program. It employs filtering and search functions (sorting,
categories, etc.) to facilitate navigation through the various
results, which can be either documents or software. Results
categorized as "documentary" are exclusively of a literary
nature, including reports (studies or benchmarks), state of the
art, doctoral theses or good practice guides. "Software" results
are components intended to be run directly or through another
application, such as a web application, a library, a plugin or a
binary executable.
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Figure 14. Example of the implementation of a supervision tool on the LARD [87] use-case
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