International Journal on Advances in Security, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/security/

Developing Domain-Specific Threat Models for Greater Software Security

Aspen Olmsted
School of Computer Science and Data Science
Wentworth Institute of Technology
Boston, MA 02115
olmsteda@wit.edu

Abstract— Developing secure software applications in modern,
complex environments presents significant challenges, as
traditional threat modeling approaches often fall short in
addressing domain-specific vulnerabilities. This paper introduces
and discusses three novel, domain-specific threat models designed
to enhance secure software development: BIRFS, CRIRTA, and
PERTD. BIRFS (Bias, Input, Reasonable, Forensics, Sensitive) is
a specialized threat model tailored for software systems that
leverage Artificial Intelligence and Machine Learning algorithms,
focusing on unique risks arising from data inputs, model behavior,
and algorithmic biases. CRIRTA (Column, Row, Inference,
Relationship, Table, Availability) provides a comprehensive
framework for identifying and mitigating security threats in
database applications, moving beyond generic data flow analysis
to address specific database vulnerabilities. PERTD (Partition,
Execution, Requisite, Timing, Data) is designed for Cloud
Application Threat Modeling, emphasizing the distinct security
challenges inherent in cloud environments, including distributed
architecture, shared tenancy, and dynamic resource allocation.
Collectively, these models aim to enable proactive risk
identification during the design phase, enabling the
implementation of targeted mitigation strategies earlier in the
software development lifecycle. By moving beyond a sole focus on
malicious user threats, these models address a broader spectrum
of vulnerabilities stemming from poor design, misunderstood use
cases, and environmental changes, thereby contributing to more
robust and resilient software systems across diverse domains.

Keywords- cyber-security;
development lifecycle

software engineering; software

I INTRODUCTION

The landscape of software development has undergone a
profound transformation in recent decades, driven by the
proliferation of cloud computing, the pervasive integration of
Artificial Intelligence (AI) and Machine Learning (ML)
algorithms, and the ever-increasing reliance on complex
database systems. While these advancements have unlocked
unprecedented capabilities and efficiencies, they have
simultaneously introduced a new generation of security
challenges. Traditional approaches to secure software
development, often centered on identifying and mitigating
threats from malicious actors, are proving increasingly
inadequate. Many contemporary vulnerabilities stem not from
external attacks, but from inherent design flaws, a lack of
understanding of system use cases, and insufficient planning for
dynamic environmental changes.

In this context, the need for robust and adaptable threat
modeling has become paramount. Threat modeling is a proactive
security practice that enables developers and security
professionals to identify potential threats and vulnerabilities
early in the software development lifecycle, thereby allowing for
the implementation of effective mitigation strategies before code
is even written. However, the one-size-fits-all approach to threat

modeling often fails to capture the nuanced risks specific to
particular domains or technological paradigms. For instance, the
security considerations for a cloud-native application differ
significantly from those of an Al-driven system or a highly
sensitive database.

This paper addresses this critical gap by introducing and
discussing three novel, domain-specific threat models designed
to enhance the security posture of modern software applications.
We propose:

BIRFS (Bias, Input, Reasonable, Forensics, Sensitive): A
specialized threat model meticulously crafted for software
systems that integrate Artificial Intelligence and Machine
Learning algorithms. BIRFS extends traditional security
concerns to encompass unique risks such as data poisoning,
model manipulation, algorithmic bias, and fairness issues, which
generic threat models often overlook.

CRIRTA (Column, Row, Inference, Relationship, Table,
Availability): A comprehensive framework developed to
identify and mitigate security threats specifically within
database applications. CRIRTA moves beyond conventional
data flow analysis to address the unique vulnerabilities inherent
in data storage, retrieval, and management, ensuring robust data
protection and system resilience.

PERTD (Partition, Execution, Requisite, Timing, Data): A
dedicated threat model for Cloud Application Threat Modeling.
PERTD focuses on the distinct security challenges posed by
cloud environments, including shared tenancy, complex
distributed architectures, API security, and data privacy
concerns across multi-tenant infrastructures.

By adopting these domain-specific models, organizations
can achieve a more granular and practical approach to
identifying and mitigating risks, leading to the development of
inherently more secure, resilient, and trustworthy software
systems. The subsequent sections of this paper will delve into
the details of each of these models, outlining their principles,
methodologies, and practical applications, followed by a
discussion of their collective impact on the future of secure
software development. This work is an extension of a previous
published conference paper [1].

The organization of the paper is as follows. Section II
describes the related work and the limitations of current
methods. Section III describes workflow engines used in our
motivating example of a distributed cloud application. Section
IV discusses a current Threat Modeling technique called
STRIDE. Section V discusses an alternative Threat modeling
technique called DREAD. In Section VI, we give a motivating
example from our distributed system modeling. Section VII
describes our distributed modeling methodology. In Section
VIII, we provide a motivating example from our database
system modeling. Section IX describes our database modeling
methodology. In Section X, we give a motivating example for

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

160

our AI/ML system modeling. Section XI describes our AI/ML
modeling methodology. We conclude and discuss future work
in Section XII.

II. RELATED WORK

Functional requirements can be defined and represented in
various ways. While these requirements serve as the foundation
for software development, non-functional requirements (NFRs)
provide the essential guidelines for coding implementation.
Many authors have examined NFRs and the challenges of
incorporating them into the design process. Pavlovski and Zou
[1] NFRs are defined as specific behaviors and operational
constraints, including performance expectations and policy
limitations. Despite many discussions surrounding them, they
are often not given the attention they deserve.

Glinz [2] suggests categorizing functional and non-
functional requirements to ensure that they are inherently
considered during application development. Alexander [3]
points out that the language used to describe requirements is
essential, noting that words ending in “-ility,” such as reliability
and verifiability, often refer to NFRs. Much of this research
focuses on identifying NFRs. Our work builds on these
foundations by applying domain-specific models using our
proposed modeling technique.

Ranabahu and Sheth [4] explore four different modeling
semantics to represent cloud application requirements: data,
functional, non-functional, and system. Their work primarily
addresses functional and system requirements, with some
overlap in non-functional requirements from a system
perspective. They built upon research conducted by Stuart, who
defined semantic modeling languages for modeling cloud
computing requirements throughout the three phases of the
cloud application life cycle: development, deployment, and
management. Our work fills in the gap regarding the semantic
category of non-functional requirements.

Ranabahu and Sheth [4] use Unified Modeling Language
(UML) to model only functional requirements. UML [6] is a
standardized notation for representing software systems'
interactions, structures, and processes. It consists of various
diagram types, with individual diagrams linked to different
perspectives of the same part of a software system. We utilize
UML to express non-functional requirements as a secondary
step following the PERTD models.

Integrating UML Sequence, Activity, and Class diagrams
can enhance the semantics of our models. UML offers
extensibility mechanisms that allow designers to add new
semantics to a model. One such mechanism is a stereotype,
which helps extend the vocabulary of UML to represent new
model elements. Traditionally, software developers interpret
these semantics and manually translate them into program code
in a hard-coded manner. In our book [6], we marry the models
generated by each phase of the software development lifecycle
into with threat modeling and risk mitigation techniques.

The Object Constraint Language (OCL) [8] is part of the
official Object Management Group (OMG) standard for UML.
An OCL constraint specifies restrictions for the semantics of a
UML specification and is considered valid as long as the data is
consistent. Each OCL constraint is a declarative statement in
the design model that signifies correctness. The expression of
the constraint occurs at the class level, while enforcement

International Journal on Advances in Security, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/security/

happens at the object level. Although OCL has operations to
observe the system state, it does not include functions to modify
1it.

JSON [9] stands for "JavaScript Object Notation," a simple
data interchange format that began as a notation for the World
Wide Web. Since most web browsers support JavaScript, and
JSON is based on JavaScript, it is straightforward to support it
there, which stands for "JavaScript Object Notation," a simple
format used for data interchange that originated as a notation
for the World Wide Web. Since most web browsers support
JavaScript and JSON is based on JavaScript, it is easy to work
with in web environments. Many cloud-based web services now
exchange data in JSON format. JSON Schemas [10] define
correctness for data passed in JSON format. We utilize an
extended form of JSON schemas on the aggregated data from
several web services.

Our contribution to secure software development involves
new Threat Modeling techniques, coupled with modeling
standards, such as UML and OCL, utilizing their extensibility
mechanism of stereotypes to model non-functional
requirements effectively.

III. WORKFLOW ENGINES

Workflow engines like Zapier [11] and Power Automate
[12] are powerful automation tools that enable users to create
and manage workflows for integrating and automating tasks
across various applications and services, whether in the cloud
or on-premises.

Zapier is a popular cloud-based automation platform that
allows users to connect to different web applications and
automate their workflows. It operates on a simple "trigger-
action" model, where an event in one application triggers an
action in another. Users can create "Zaps" (automated
workflows) by selecting a trigger and defining the subsequent
actions. For example, when a new email arrives in Gmail
(trigger), the attachments can be automatically saved to Google
Drive (action).

Zapier supports numerous apps and services, including
well-known ones like Gmail, Slack, Salesforce, and Trello. It
features a user-friendly interface, pre-built Zap templates for
everyday use cases, and advanced options like filters, delays,
and data transformations. Additionally, Zapier allows for multi-
step Zaps, making it possible to create complex workflows with
multiple actions and conditions.

Power Automate is a cloud-based service from Microsoft
that allows users to automate workflows and integrate
applications and services within the Microsoft ecosystem and
beyond. It offers connectors for various applications, including
Microsoft 365 apps (such as Outlook and SharePoint),
Dynamics 365, Azure services, and third-party services like
Salesforce, Dropbox, and Twitter.

Power Automate features a visual design interface where
users can create workflows by combining triggers, actions, and
conditions. Available triggers include email arrivals, button
clicks, data changes, and scheduled events. Actions can involve
sending emails, creating tasks, updating records, etc. Power
Automate offers advanced capabilities like loops, parallel
branches, and approval processes.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

161

Both Zapier and Power Automate provide extensive
libraries of pre-built templates and connectors, making it easier
for users to begin automating tasks. They offer options to
monitor and manage workflows, handle errors, and track
activity logs. These platforms cater to users with varying
technical expertise, from business users to developers, and help
automate repetitive tasks, streamline processes, and enhance
productivity.

IV. STRIDE THREAT MODELING

STRIDE [12] is a threat modeling framework that offers a
structured approach for identifying and analyzing threats in
software systems. It helps security practitioners and developers
understand potential risks and implement appropriate security
controls. STRIDE is an acronym representing six categories of
threats:

1. Spoofing Identity: This category involves attackers
impersonating legitimate users or entities to gain unauthorized
access or deceive the system. For instance, attackers may spoof
a user's identity by stealing credentials or manipulating
authentication mechanisms.

2. Tampering with Data: Tampering threats involve the
unauthorized modification or alteration of data within the
system. Attackers may tamper with data in transit, modify
stored data, or manipulate system parameters to achieve desired
outcomes. For example, an attacker could alter the contents of
a database, inject malicious code into an application, or change
parameters to bypass security checks.

3. Repudiation: Repudiation threats allow users to deny
their involvement in specific transactions or activities, posing
challenges for auditing and accountability. For instance, an
attacker might modify logs or manipulate transaction records to
evade detection or deny their actions.

4. Information Disclosure: This category addresses threats
related to unauthorized exposure or disclosure of sensitive
information. Attackers may exploit vulnerabilities to access
confidential data, such as personal information, financial
records, or intellectual property. This can happen through
insecure data transmission, weak access controls, or
information leakage via error messages.

5. Denial of Service: Denial of Service (DoS) threats aim to
disrupt or degrade a system's availability or performance.
Attackers may overload resources, exhaust system capacity, or
exploit vulnerabilities to cause a service outage, rendering the
system unresponsive or unusable for legitimate users.

6. Elevation of Privilege: Elevation of Privilege threats
involve attackers gaining unauthorized access to higher
privileges or permissions than they should have. By exploiting
vulnerabilities or design flaws, attackers can bypass security
controls and gain elevated access rights, leading to
unauthorized data access, system compromise, or further
exploitation.

When applying the STRIDE framework, security
practitioners and developers analyze the software system from
the perspective of each threat category. They identify potential
vulnerabilities and develop corresponding mitigation strategies
to address the threats. This analysis facilitates informed

International Journal on Advances in Security, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/security/

decisions regarding security controls, system design
improvements, and the prioritization of security efforts.

V. DREAD THREAT MODELING

DREAD is a threat modeling framework designed to assess
and prioritize software vulnerabilities based on their potential
impact. The acronym DREAD stands for five key factors used
to evaluate threats:

1. Damage Potential: This factor refers to the extent of harm
that could be caused if a vulnerability is exploited. It evaluates
the impact, which can range from minor inconveniences to
severe consequences like data breaches, system compromises,
or financial losses.

2. Reproducibility: This measures how easily an attacker
can reproduce or exploit a vulnerability. Vulnerabilities that are
consistently easy to exploit are considered more dangerous than
those that require complex or unpredictable conditions for
exploitation.

3. Exploitability: This factor assesses the level of skill or
effort needed to exploit a vulnerability. Vulnerabilities easily
exploited with readily available tools or techniques pose a
higher risk. Conversely, vulnerabilities that are difficult to
exploit or require specialized knowledge are considered lower
risk.

4. Affected Users: This evaluates the number of users or
systems a vulnerability could impact. A vulnerability affecting
numerous users or critical systems is considered more
significant than one impacting only a limited subset of users.

5. Discoverability: This assesses how likely an attacker is to
find the vulnerability. Vulnerabilities that are easily
discoverable—through public disclosures, known attack
techniques, or automated scanning tools—are riskier than those
that are harder to find or require advanced reconnaissance.

Using the DREAD framework, each factor is scored on a
scale from 0 to 10, with 0 being the least concerning and ten
being the most critical. These scores help prioritize
vulnerabilities and allocate resources for mitigation efforts.
Higher scores indicate a higher priority for addressing the
identified vulnerabilities.

While DREAD is a valuable tool for assessing and
prioritizing vulnerabilities based on their potential impact, it
should be used alongside other threat modeling techniques and
considerations to ensure a comprehensive security analysis and
informed decision-making.

VI. DISTRIBUTED MODEL MOTIVATING EXAMPLE

The challenge with the STRIDE and DREAD threat models
is that they primarily focus on vulnerabilities associated with
malicious user activities. However, many risks arise from
architecture, the environment, or human error.

Consider a common architecture used by many businesses
today: data generated by an online transaction processing
(OLTP) system, either stored on-premises or logically on-
premises, is synchronized to a cloud system considered off-
premises and beyond the organization's control. This scenario
is not uncommon in today's business landscape.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

162

Consider a large performing arts venue employing a local
SQL Server-based system for ticketing and donation
transactions. Meanwhile, its marketing department uses a
cloud-based email and SMS marketing system. The OLTP data
must be extracted, translated, uploaded, and loaded regularly
for the marketing system to function correctly.

Various issues can arise when multiple processes and data
are transferred across networks that span domain boundaries. A
UML activity diagram illustrates the steps involved in moving
data from the on-premises OLTP system to the cloud-based
system used by the marketing team. This model shows that
activities occur in both environments. The challenge with the
STRIDE and DREAD threat models is that the vulnerabilities
modeled and the matching remediations target malicious user
activities. Many times, risks come from architecture,
environment, or human error.

A motiving example is an architecture that is used in many
businesses today where data that is generated in OLTP systems
that are either stored on-premises or logically on-premises is
synchronized to a cloud system that is considered off-premises
and outside the domain of control of the organization. To
understand this better, consider a large performing arts venue
that utilizes a local SQL Server-based system to process
ticketing and donation transactions. The marketing department
uses a cloud-based system for email and SMS marketing. The
OLTP data must be extracted, translated, uploaded, and loaded
regularly for the marketing system to be functional.

._ ={ PrepareDataForUpload
Timerfires > [SendData\]

Re(eiveDataVA |
[- -®

[“loadData 1 [BuildViews |

On Premises

Cloud

Figure 1 - Upload Activity

Understanding the data transfer process is crucial to prevent
potential risks. Figure 1 shows a UML activity diagram for
moving data from the on-premises OLTP system to the cloud-
based system used by the marketing folks. In the model, you
will see that activities happen in both partitions.

(et @

[ReceiveData }

On Premises

Cloud

q: Timerfires /‘ [;ulbah J
. [PrepareDataForDownload w

Figure 2 - Download Activity

International Journal on Advances in Security, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/security/

Table 1 - Upload Activity STRIDE Model

Action S|T|IR|I1|D|E

Timerfires

PrepareDataForUpload
SendData X| X X| X

ReceiveData
LoadData
BuildViews

Figure 2 presents a model outlining the execution path for
retrieving data from the cloud system. The data includes sending
activity for both emails and SMS text messages. This sending
activity can be substantial, encompassing tuples for sends,
opens, clicks, and bounces. Additionally, information regarding
communication preferences and unsubscribed data is retrieved.

The marketing department requires service availability and
data integrity for its business operations. For instance, NFRs
could specify that the system must be available 99.999% of the
time or that the data must be no more than 24 hours old.
Whenever a distributed system is proposed, a model should be
developed to represent these NFRs and the threats to the system's
ability to meet them.

Unfortunately, the focus of STRIDE and DREAD on
malicious users does not adequately address many of the risks in
our motivating example. Table 1 Illustrates a STRIDE model
corresponding to the update activity depicted in Figure 1, while
Table 2 shows the STRIDE model related to the download
activity from Figure 2. In the STRIDE model, actions are at risk
from malicious users; however, many steps are also vulnerable
to environmental issues that can impact the system's availability
and integrity. Examples of these issues include network and
system outages, concurrent computational usage on equipment,
and a lack of control over the quality of source data.

Table 2 - Download Activity STRIDE Model

Action SITIR|I|D|E

Timerfires

PrepareDataForDownload

SendData X| X X| X

ReceiveData

LoadData

VII. PERTD MODEL

We developed the PERTD Model to better assess the risks
associated with distributed applications [13]. This model
addresses four main environmental risk categories for
distributed systems:

1. PARTITION

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

163

Activities vulnerable to partition errors will fail if a network
is partitioned between on-premises devices and the cloud. Risk
reduction strategies include:

- Pausing the complete workflow and retrying
- Utilizing previous execution data

- Employing alternative data sources

2. EXECUTION

Activities that are susceptible to execution errors may fail
due to ambiguous code requirements, leading to runtime or
tooling errors. For example, queries that generate data might fail
with future datasets. Risk reduction measures include:

- Utilizing previous execution data (most systems create a
copy before execution)

- Using alternative data sources

3. REQUISITE

Table 3 - Upload Activity PERTD Model

Action P/ E|R|T|D
Timerfires X
PrepareDataForUpload X

SendData X| X| X| X
ReceiveData X| X| X| X
LoadData X| X| X| X
BuildViews X| X

Activities with requisite vulnerabilities depend on

prerequisite activities. If a prerequisite fails, the dependent
activity becomes stale. Risk reduction can involve:

- Utilizing previous execution data
- Employing alternative data sources
4. TIMING

Activities at risk due to timing need to finish within a
specific time window or under a threshold duration. Risk
reduction strategies include:

- Utilizing previous execution data (most systems create a
copy before execution)

- Using alternative data sources

5. DATA

Activities are at risk because data are often combined from
different sources. Unfortunately, schema correctness specifiers
only apply to one data source. Risk reduction strategies include:

- Additional workflow steps to verify correctness

In Tables 3 and 4, we apply our PERTD model to analyze
risks associated with uploading and downloading activities. The

International Journal on Advances in Security, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/security/

PERTD model captures significantly more risks than the
STRIDE model.

After identifying NFRs in the PERTD model, we develop
standard UML Class, Sequence, and Activity Diagrams. The
threats to the system are modeled using UML stereotypes. UML
stereotypes extend the standard UML language by introducing
custom or specialized elements, properties, and behaviors. They
allow adding domain-specific annotations, constraints, or
semantics to UML elements, enhancing expressiveness and
tailoring modeling to specific contexts. Stereotypes are
indicated by guillemets (<< >>) placed above the name of the
stereotyped element.

Stereotypes can be attached to classes, messages, attributes,
and activities. With the PERTD model, we incorporated the
four risk categories as stereotypes: <<PARTITION>>,
<<EXECUTION>>, <<REQUISITE>>, <<TIMING>> and
<<DATA>>. These stereotypes are then tagged to messages in
UML Sequence and Activity diagrams, while data classes and
individual attributes can also be tagged if they are susceptible
to these risks.

Table 4 - Download Activity PERTD Model

Action P/E|R|T|D
Timerfires X
PrepareDataForDownload X
SendData X X X| X
ReceiveData X| X[XX
LoadData X| X X

Additionally, OCL is included to specify invariants that can
define additional semantics related to the correctness of method
calls, classes, or attributes. For instance, if data in a particular
class must be no older than three days, this can be expressed
using the last_update attribute.

To verify data from when it is vulnerable, we utilize an
extended version of JSON Schemas [10]. Our extension allows
the Schema to reference different data sources. JSON schema
supports a CONTAINS operator to verify the existence of an
element in a collection. We added a CONTAINEDIN operator
to span across schemas represented by different data sources in
the distributed system. We also added a NOTCONTAINEDIN
to verify the absence of an element. Figure 3 shows two sample
schemas. The top schema is a simplified version of a patron,
the bottom schema is a simplified version of a ticket. They
share an email field which is designated in the tickets schema
to require the existence in the patron data.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

164

1 {

2 : "$id": “"https://aspenolmsted.com/patron.schema.json",
3 “"$schema™: "https://json-schema.org/draft/2020-12/schema”,
4 "type": "array",

5 "items™: {

6 "type": "object",

7 "properties":{

8 "name": {"type": "string" },

9 “"email": {"type": "string" }

10 }a

11 }

12}

13

14 {

15 i "$id": "https://aspenolmsted.com/tickets.schema.json",
16 "$schema”: "https://json-schema.org/draft/2020-12/schema”,
17 "type": "array",

18 "items": {

19 "type": "object",l

20 "properties": {

21 "event": {"type": “"string" },

o
22 "email": {"type": "string",

23 "containedin' : "https://aspenolmsted.com/patron.schema.json"},
24 "tickets": {"type": "integer"}

25 %

26 }

27}

Figure 3 - Sample Schema

To mitigate the risk of data integrity issues, we validate the
data against the specified schemas as part of the data
workflow.

VIII. DATABASE MODEL MOTIVATING EXAMPLE

The challenge with the STRIDE and DREAD threat
models for database application security is that the
vulnerabilities modeled and the matching remediations target
malicious user activities. Many times, risks come from
architecture, environment, or human error.

To explore a motivating example, consider an event
ticketing system used in a consortium of performing arts
centers, such as a symphony, opera, ballet, and Broadway
venue. A transaction processing (OLTP) system stores the data
generated from the patron transactions on-premises for ticket
purchases. Data needs to be logically partitioned so patrons are
shared, but only the transaction data appropriate to the
organization is visible on software screens and reports. Patrons
can go to individual constituent box offices to work with an
agent on transactions related to that constituent organization, or
they can use self-service on a web or mobile interface that
allows them to purchase tickets to any constituent organization
or see all their individual transaction histories.

To illustrate a weakness in the traditional threat models
when applied to database security, we picked out four use cases
from our motivating example:

e A constituent box office agent accessing a patron's
ticket history. In this case, the data rows must be
confidential, so only those related to the
constituent organization should be visible.

e A constituent box office agent selecting a patron's
general admission (GA) seats. In this use case, the

International Journal on Advances in Security, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/security/

agent should only have access to constituent
inventory and not exceed capacity.

e A patron accessing their ticket history through a
self-service web page. In this case, the data rows
must be confidential to just the patron's data and
not make other patrons' histories available.

e A patron selects general admission (GA) seats
through a self-service web page. In this use case,
the patron should not exceed the venue capacity.

Unfortunately, the focus of STRIDE and DREAD on the
malicious user does not account for many of the risks in our
motivating example. Table 5 shows a STRIDE model to match
the four use cases we are analyzing. Table 6 shows the
equivalent DREAD model. In both models, we can see a large
surface area of vulnerabilities to malicious user attacks. As
stated earlier, most security risks to database software and
software generally come from not understanding and enforcing
security requirements in the software engineering process. This
lack of enforcement leaves an application vulnerable to user
error and malicious attacks.

Table 5 - STRIDE Model for Database Software

Action S|{T|R|I |D|E
Agent View of Ticket History X X X| X
Agent Reserving GA Seat Selection X| X X| X
Self-Service View of Ticket History X X| X| X

X[X

Self-Service
Selection

Reserving GA Seat X| X

IX. CRIRTA MODEL

We developed the CRIRTA Model to better model the risks
associated with database applications. The model covers a
database system's seven main environmental risk categories.

A. Column Confidentiality

Activities vulnerable to exposing column confidentiality
have data with sensitive data, where some users should have
restricted read and write access. Other users will need access
to the column values. Risk reduction can include:

e Removing all access at the table level for users who
should not have access.

e Creating database views without the column values and
granting access to these user groups

B. Row Confidentiality

Activities vulnerable to row confidentiality have user
access that must be restricted to specific values for some user
groups. Examples include self-service apps where users can
only see their data, or departmental users can only see
department records. Risk reduction can consist of:

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

165

e Removing all access at the table level for users who
should not have access.

e Creating database views with where statements that
restrict the rows that are visible to these user groups

C. Column Inference

Activities vulnerable to column inference allow users to
infer other values based on values in these columns. Gender or
race are often examples of this when the greater data population
is relatively homogenous. Risk reduction can include:

e Limiting access to the column to essential users (see
column confidentiality reductions above)

D. Relationship Correctness

Activities vulnerable to relationship correctness issues
have correctness that spans a relationship between tables. An
example would be an order that needs a shipping address that
exists in a customer’s address. Risk reduction can include:

e Utilizing database foreign keys

e Utilizing database check constraints with queries that
check for the existence of rows or values in related tables.

e Utilizing database triggers

E. Table Correctness
Activities vulnerable to table correctness issues have
column values restricted based on other columns or sets of
column values. Risk reduction can include:
e Utilizing database check constraints with predicates that
check row values
e Utilizing database triggers

F. Availability

Activities vulnerable to availability issues often use locks
to access one process at a time. The exclusivity is done with
the database isolation level. Risk reduction can include:
e Minimize code with higher restriction levels
e Table design changes

TABLE 6 - DREAD Model for Database Software

Action D/ R|E|A|D
Agent View of Ticket History 213(7(1]|5
Agent Reserving GA Seat Selection |3 [3(9]9 |2
Self-Service View of Ticket History | 6 | 6 | 8 | 3| 5
Self-Service Reserving GA Seat [96| 9|9 |2
Selection

We model the risks to the motivating example system in
Table 7 - CRICRTA Model that utilizes our CRIRTA model. As
you can see, the CRIRTA model captures many more risks than
the STRIDE and DREAD models.

International Journal on Advances in Security, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/security/

Table 7 - CRICRTA Model

Action C|IR|IT|R|T|A
Agent View of Ticket History X X

Agent Reserving GA Seat X XX
Selection

Self-Service View of Ticket X XX
History

Self-Service Reserving GA X X | X
Seat Selection

After identifying NFRs in the CRIRTA model, standard
UML Class, Sequence, and Activity Diagrams are developed.
The threats to the system are modeled by utilizing UML
Stereotypes. UML (Unified Modeling Language) stereotypes
are a way to extend the standard UML language by introducing
custom or specialized elements, properties, and behaviors.
Stereotypes allow you to add domain-specific annotations,
constraints, or semantics to UML elements, making them more
expressive and tailored to specific modeling contexts.
Stereotypes are denoted by guillemets (<< >>) placed above the
name of the element being stereotyped.

Stereotypes can be attached to classes, messages, attributes,
and activities. With the CRIRTA model, we added the six
CRIRTA categories as stereotypes: << ColumnConfidentiality
>> <<RowConfidentiality >><< Column Inference >><<
RelationshipCorrectness>>,<<TableCorrectness>>,<<Availabil
ity>>. These stereotypes are then tagged to messages in UML
Sequence and Activity diagrams; data classes and individual
attributes can be tagged with the stereotype if the data in the class
or attribute is susceptible to the risk.

OCL is added to provide invariants that can specify
additional semantics related to the correctness of a method call,
class, or attribute. An example is if data in a particular table
must have a related table with a specific attribute range.

X. AI/ML MODEL MOTIVATING EXAMPLE

The challenge with the STRIDE and DREAD threat
models for applications that consume ML and Al algorithms is
that the vulnerabilities modeled and the matching remediations
are aimed at malicious user activities attacking a system. Many
times, risks come from architecture, environment, or human
error.

A motivating example is an architecture that is used in
many businesses today, where data that is generated in online
transaction processing (OLTP) systems that are either stored
on-premises or logically on-premises is synchronized to a cloud
system that is considered off-premises and outside the domain
of control of the organization. Once the data is in the cloud, it
is augmented utilizing Al or ML algorithms. To understand this
better, consider a large performing arts venue that operates a
local SQL Server-based system to process ticketing and

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

166

donation transactions. The marketing department uses a cloud-
based system for email and SMS marketing. The OLTP data
must be extracted, translated, uploaded, and loaded regularly
for the marketing system to be functional.

Once the data is in the cloud, the data is augmented for
several purposes, including segmentation, lookalike matching,
data flows, and personalized advertising. Segmentation
arranges potential customers into groups based on attributes and
activities in the input data. Lookalike matching is used to match
the attributes and activities of new customers to similar
customers who have been with the organization for a more
extended period. Input data is utilized to design interactions
with the new prospects to increase their engagement with the
organization. The input data from the attribute or activities is
also used to design personalized advertisements to motivate the
new prospect to engage in that next activity.

Unfortunately, the input data may have been entered
incorrectly in a self-service fashion, such as through a mobile
application, web page, or kiosk. A tired or poorly trained
customer service representative may have entered the data
incorrectly. A third option for poor input data is the data may
have come incorrectly from an external organization, such as a
biographical data service provider that may suggest updates to
addresses, phone numbers, or email addresses. A fourth option
could be a malicious user intentionally polluting the data in
revenge for some wrong they feel was done to them by the
organization.

The best case is that an improper email is sent or the
prospect displays and ignores an advertisement or offer. Worse
case, an organization's reputation is damaged, and sales and
relationships with customers are lost. It would be best to
discover the vulnerabilities early in the design process or
software development to minimize the risk.

Table 8 — A/ML Activity STRIDE Model

Action S| T|R|I|D|E
Segmentation

LookALike

Data Flow X

Personalized Advertisements

Table 8 shows the four activities that utilize Al or ML in
the cloud arranged in a STRIDE Model. We marked the
columns for spoofing with the data flow activity, as we can
envision a scenario when a user may want to qualify for a new
customer offer by creating a fake account. The rest of the model
is left blank as they are inappropriate threats to the activities.
The small number of threats in our model could lead a software
development team to believe the application is not at risk based
on the limited representation in the STRIDE model.

XI. BIRFS THREAT MODELING

To better model the risks associated with applications that
utilize Al or ML algorithms, we developed the BIRFS Model

International Journal on Advances in Security, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/security/

[14]. The BIRFS Model covers a process or system's five
leading risk categories that utilize Al or ML algorithms.

B-potential biases in output

The B in BIRFS comes from the risk of potential biases in the

AL or ML algorithm output. Al algorithms can exhibit biases in

their production due to various reasons. These biases can arise

from the data used to train the models, the design of the
algorithms, or both. Here are some familiar sources of biases in

Al algorithms:

— Biased Training Data: If the training data used to train the
Al'model is biased, the model will learn and perpetuate those
biases. For example, if historical data used for training
reflects societal biases, the model may replicate and amplify
those biases.

— Data Sampling Bias: If the training data does not represent
the entire population, the model may be biased toward the
overrepresented groups. The sampling bias can lead to
inaccurate predictions or decisions for underrepresented
groups.

— Labeling Bias: Biases in labeling training data can also
contribute to biased models. If the labels used for training
data are biased, the model may learn and propagate those
biases.

— Algorithmic Bias: The design and structure of the algorithm
itself can introduce bias. The bias may happen if the
algorithm uses feature proxies for sensitive attributes (e.g.,
using ZIP code as a proxy for race) or if the algorithm
inherently reflects certain societal biases.

— Implicit Bias in Training Examples: Biases in the
examples used to train the model can also contribute to
biased outputs. For instance, if a model is trained on text
from the internet, it may learn and reproduce the biases
present in that text.

— Lack of Diversity in Development Teams: The
composition of the teams developing Al models can also
influence biases. If development teams lack diversity, there
may be a lack of perspectives and awareness regarding
potential biases in the models.

— Feedback Loop Bias: Biases can be reinforced through
feedback loops. For example, biased predictions can lead to
biased outcomes, which are then used as input for future
predictions, creating a self-reinforcing cycle.

— Contextual Bias: The context in which the Al system is
deployed may introduce bias. For instance, a model trained
on data from a specific cultural or geographical context may
not generalize well to other contexts.

Addressing biases in Al algorithms is a complex and ongoing
challenge. It requires careful consideration at every stage of the
Al development process, including data collection, model
training, and deployment. Strategies such as diverse and
representative data collection, regular audits of model outputs,
and involving diverse teams in Al development can help
somewhat mitigate biases.

I - input is outside the domain of control.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

167

The I in BIRFS comes from the risk when the input data comes
from outside the organization's control. When it comes to Al
models, some factors and inputs are outside the direct control
of the developers or operators. These external influences can
affect the performance and behavior of Al models in various
ways. Here are some examples:

— External Data Changes: Al models are often trained on
historical data, and if the real-world data changes over time,
it can impact the model's performance. For example, sudden
shifts in user behavior, market dynamics, or other external
factors might lead to a mismatch between the training data
and the current environment.

— Changing User Expectations: User expectations and
preferences can evolve. Al models trained to meet specific
user needs may become less effective if user expectations
change, and these changes are beyond the direct control of
the AI developers.

— Regulatory Changes: Changes in regulations or legal
frameworks can significantly impact how Al models operate,
especially in highly regulated industries. Developers may
need to adapt models to comply with new laws or
regulations.

— External Security Threats: Al systems can be vulnerable
to external security threats. Malicious actors may attempt to
manipulate or compromise Al models, leading to undesirable
outcomes. These threats are often beyond the control of the
Al developers and require ongoing security measures.

— Environmental Factors: The performance of Al models
may be affected by environmental factors, such as changes
in weather, network conditions, or other external variables.
For example, a model designed for specific weather
conditions might perform differently in a completely
different climate.

— Integration with External Systems: Al models are often
integrated into larger systems and workflows. Changes or
issues in these external systems, which are not under the
direct control of Al developers, can impact the overall
performance of the Al model.

— Global Events and Catastrophes: Unforeseen global
events, such as natural disasters, economic crises, or
pandemics, can have widespread effects on various
industries. Al models operating in affected domains may
face challenges due to disruptions caused by such events.

— User Feedback and Interactions: User interactions and
feedback can influence the behavior of Al models. Users
providing biased or unrepresentative feedback may impact
the model's learning and performance. User behavior is often
outside the direct control of Al developers.

Addressing the challenges posed by external factors
requires robust system design, ongoing monitoring, and
adaptability. Developers should consider building models that
adapt to environmental changes and implement continuous
monitoring and update mechanisms.

R - output result does not deviate from a reasonable range
The R in BIRFS comes from the risk when the output is wrong
but in a reasonable range for the input data. Ensuring that the

International Journal on Advances in Security, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/security/

output results of Al algorithms fall within a reasonable and
expected range is crucial for the reliability and safety of Al
systems. Deviations outside a reasonable range can pose risks
and challenges. Here are some considerations related to the risk
of output results deviating from a reasonable range in Al
algorithms:

— Out-of-Distribution Data: If an Al model encounters data
significantly differently from what it was trained on (out-of-
distribution data), it may produce unpredictable and
unreliable results. The new data ranges can happen if the
model encounters scenarios or inputs not adequately
represented in the training data.

— Opverfitting: Overfitting occurs when a model learns the
training data too well but fails to generalize to new, unseen
data. In such cases, the model may perform well on the
training set but poorly on real-world data, leading to outputs
that deviate from a reasonable range.

— Data Quality Issues: Poor-quality or biased training data
can contribute to the model learning incorrect patterns or
making inaccurate assumptions. If the data used to train the
model is not representative or contains errors, the model's
outputs may deviate from what is considered reasonable.

— Lack of Explainability: If an Al model is too complex or
lacks interpretability, it may be challenging to understand
why it produces a particular output. This lack of transparency
can make identifying and addressing deviations from a
reasonable range challenging.

— Concept Drift: Over time, the underlying patterns in data
may change, a phenomenon known as concept drift. If an Al
model is not regularly updated to adapt to these changes, its
outputs may become less accurate and fall outside the
expected range.

— Adversarial Attacks: Adversarial attacks involve
intentionally manipulating input data to deceive an Al model
and produce incorrect outputs. If an Al system is vulnerable
to such attacks, the outputs may deviate from the reasonable
range, posing security and reliability risks.

— Uncertainty and Confidence Estimation: AI models
should ideally provide measures of uncertainty and
confidence in their predictions. If a model is overly confident
in its outputs, even in situations where it should be uncertain,
it may lead to outputs that deviate from a reasonable range.

— Monitoring and Validation: Monitoring and validating
model outputs against real-world data are essential. If the
model's performance degrades or deviates from expected
behavior, it should trigger alerts for further investigation and
potential retraining.

It's vital to employ good practices in data collection,
preprocessing, model training, and ongoing monitoring to
mitigate the risk of output results deviating from a reasonable
range. Additionally, incorporating human oversight and
feedback mechanisms can enhance the system's robustness and
help identify and correct possible deviations. Regular updates
and retraining of models based on new and relevant data are
also crucial for maintaining performance in dynamic
environments.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

168

F - forensics or logging to defend results

The F in BIRFS comes from the risk when the algorithm process

cannot be audited to discover why it produced a particular

output based on a set of input data. Forensics and logging play
crucial roles in defending the results generated by Al
algorithms. They provide a means to trace, understand, and
validate the processes and decisions made by Al models. Here
are critical aspects of forensics and logging in the context of Al:

— Data Logging: Record all relevant data in the AI model's
training and inference processes. The logging includes input
data, preprocessing steps, feature engineering, and any
transformations applied to the data. Having a detailed log
helps in understanding the context and ensuring
transparency.

— Model Configuration and Hyperparameters: Document
and log the configuration settings and hyperparameters used
during the training of Al models. This information is crucial
for reproducibility and understanding the model's setup.

— Model Training Logs: Record information about the
training process, such as training loss, accuracy metrics, and
other relevant statistics. The logs help track the model's
performance during training and identify potential issues.

— Algorithm Versions and Updates: Keep track of the
versions of algorithms and models used. When updates or
changes are made to the algorithm, logging ensures you can
trace which version was used for specific results.

— Timestamps and Versioning: Timestamps in logs can be
critical for establishing a chronological order of events.
Additionally, versioning of data, models, and algorithms
helps associate specific results with the corresponding
versions used.

— Explainability and Interpretability Logs: Record
explanations and interpretations provided by the Al model,
especially in cases where explainability is crucial. The logs
can include feature importance, attention weights, or any
other information that aids in understanding the model's
decisions.

— User Interactions and Feedback: If the Al system involves
user interactions, log relevant user inputs and system
responses. This information is valuable for analyzing user
experiences and addressing issues from the wuser's
perspective.

— Monitoring and Anomaly Detection Logs: Implement
monitoring logs to track the model's performance in real-
time. Logging anomalies or unexpected behavior helps
identify when the model's outputs deviate from expected

ranges.
— Security Logs: Incorporate security logs to capture
information about potential adversarial attacks or

unauthorized access. Security logs can help identify and
mitigate security risks.

— Compliance and Regulations: Ensure that logging
practices align with relevant compliance requirements and
regulations. Some industries and regions may have specific
guidelines regarding data handling and logging.

— Forensic Tools and Techniques: Develop or utilize forensic
tools and techniques to investigate issues or discrepancies in

International Journal on Advances in Security, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/security/

Al model results. These tools can help conduct detailed
analyses of model behavior and decision-making processes.
— Human-in-the-Loop Logging: If human reviewers are
involved in decision-making, log their interactions and
decisions. This information can be valuable for
understanding the role of human oversight in the system.

By incorporating comprehensive logging and forensic
practices, developers and operators of Al systems can enhance
transparency, accountability, and the ability to defend the
results produced by Al algorithms. These practices are critical
in applications where the stakes are high, such as healthcare,
finance, and critical infrastructure.

S - Sensitive or private data needs to be protected

The S in BIRFS comes from the risk associated with protecting

private or sensitive input data. Protecting sensitive or private

data is a critical aspect of using Al algorithms, and there are
several techniques and best practices to ensure data privacy and
security. Here are key considerations:

— Data Encryption: Implement encryption mechanisms to
protect data at rest and in transit. Encryption ensures the data
remains unreadable even if unauthorized access occurs
without the appropriate decryption keys.

— Secure Data Storage: You should store sensitive data in
secure, access-controlled environments. Utilize secure
databases and storage systems with proper access controls to
restrict unauthorized access to sensitive information.

— Data Masking and Anonymization: Before using data in
Al algorithms, consider techniques such as data masking and
anonymization to replace or generalize sensitive
information. Masking and anonymization reduce the risk of
exposing private details introduced during model training.

— Federated Learning: Consider federated learning when
data cannot be centralized. This approach allows models to
be trained across decentralized devices or servers without
exchanging raw data, preserving privacy.

— Differential Privacy: Implement differential privacy
techniques to add noise or randomness to data, making it
harder to link specific data points to individuals. Differential
privacy protects individual privacy while still allowing
meaningful analysis.

— Access Controls and Authorization: Implement strict
access controls and authorization mechanisms to ensure that
only authorized personnel can access sensitive data.
Regularly review and audit access permissions.

— Secure Model Deployment: When deploying Al models,
ensure the inference process is conducted securely. Limit
access to the model and its outputs to authorized users and
systems.

— Secure APIs: If Al models are accessed through APIs
(Application Programming Interfaces), secure the APIs by
implementing authentication and authorization mechanisms
and encrypting data transmitted between the client and the
APIL.

— Regular Security Audits: Conduct regular security audits to
identify vulnerabilities in the system. The regular security

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

169

audits include the AI models and the infrastructure
supporting them.

Compliance with Privacy Regulations: Ensure your Al
system complies with relevant privacy regulations such as
GDPR, HIPAA, or other industry-specific standards.
Understand the legal requirements for handling sensitive
data and incorporate necessary safeguards.

Data Lifecycle Management: Establish clear policies for

the entire data lifecycle, including collection, storage,
processing, and disposal. Regularly review and update these
policies to align with evolving privacy and security
standards.

— Educate and Train Personnel: Train personnel handling
sensitive data on privacy best practices and security
protocols. Human error is a common source of data breaches,
so awareness and education are crucial.

— Incident Response Plan: Develop a comprehensive incident
response plan to address potential data breaches. This plan
should outline the steps during a security incident, including
communication strategies and legal obligations.

— Transparent Communication: Communicate to users and
stakeholders how their data will be used, processed, and
protected. Transparent communication builds trust and helps
users understand the measures to safeguard their privacy.

By incorporating these measures, organizations can
significantly reduce the risks of handling sensitive or private
data in the context of Al algorithms. Data privacy should be a
fundamental consideration throughout the entire Al
development and deployment lifecycle. Table 9 displays the
same four AI/ML activities discussed earlier in the BIRFS
model. As you can see from the model, many more risks and
vulnerabilities are represented by the model than in the previous
STRIDE model. The mitigations discussed, along with the
BIRFS model elements can next be applied to reduce the risks.

Table 9 - AI/ML Activity BIRFS Model

Action B|{I|R|F|S
Segmentation X| X| X| X
LookALike X[X| X| X| X
Data Flow X X| X[X
Personalized Advertisements X X X

XII. CONCLUSIONS AND FUTURE WORKS

In this work, we provide three domain-specific modeling
methodologies to handle issues in cloud, database, and AI/ML
software related to NFRs in distributed systems. We present
modeling methodologies aimed at uncovering issues related to

International Journal on Advances in Security, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/security/

NFRs in the software development lifecycle. Our models enable
us to identify significantly more fine-grained risks associated
with the development of these systems than traditional threat
modeling techniques. Additionally, we have enhanced the
modeling of functional requirements by employing UML
stereotypes to represent the NFRs identified in the models.
Future work will incorporate code generation to mitigate the
risks identified and modeled throughout this process.

REFERENCES

[1]1 A. Olmsted, "PERTD - Cloud Application Threat Modeling," in
Proceedings of CLOUD COMPUTING 2025, The Sixteenth
International Conference on Cloud Computing, GRIDs, and
Virtualization, Valencia, Spain, 2025.

[2] C. J. Pavlovski and J. Zou, "Non-functional requirements in
business process modeling," Proceedings of the Fifth on Asia-
Pacific Conference on Conceptual Modelling, vol. 79, pp. 1-10,
2008.

[3] M. Glinz, "Rethinking the Notion of Non-Functional
Requirements," Third World Congress for Sofiware Quality,
Munich, Germany, pp. 1-10, 2005.

[4] Alexander, I, "Misuse Cases Help to Elicit Non-Functional
Requirements," Computing & Control Engineering Journal, 14,
40-45, pp. 1-10, 2003.

[5] R. Ajith and A. Sheth, "Semantic Modeling for Cloud
Computing, Part I," Computing, vol. May/June, pp. 81-83,2010.

[6] Object Management Group, "Unified Modeling Language:
Supersturcture,” 05 02 2007. [Online]. Available:
http://www.omg.org/spec/UML/2.1.1/. [Accessed 11 Nov
2025].

[7] A. Olmsted, Security-Driven Software Development: Learn to
analyze and mitigate risks in your software projects,
Birmingham, UK: Packt Publishing, 2024.

[8] Object Management Group, "OMG Formally Released Versions
of OCL," 02 2014. [Online]. Available:
http://www.omg.org/spec/OCL/. [Accessed 11 Nov 2025].

[9] JSON.org, "Introducing JSON," 2024. [Online]. Available:
https://www .json.org/json-en.html. [Accessed 11 Nov 2025].

[10] Open Collective, "JSON Schema," 2024. [Online]. Available:
https://json-schema.org/. [Accessed 11 Nov 2025].

[11] Zapier Inc., "Automate without limits," 2024. [Online].
Available: https://zapier.com/. [Accessed 11 Nov 2025].

[12] Microsoft, "Power Automate," 2024. [Online]. Available:
https://www.microsoft.com/en-us/power-
platform/products/power-automate. [Accessed 11 Nov 2025].

[13] R. Khan, D. Laverty, D. McLaughlin and S. Sezer, "STRIDE-
based threat modeling for cyber-physical systems,," in 2017
IEEE PES Innovative Smart Grid Technologies Conference
Europe (ISGT-Europe), Turin, Italy, 2017.

[14] A. Olmsted, "BIRFS is a Threat Model for Software Systems
That Utilize Artificial Intelligence or Machine Learning
Algorithms," International Conference on Artificial Intelligence
and its Application, pp. 23-37, 2024.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

170

