
160International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Developing Domain-Specific Threat Models for Greater Software Security  
Aspen Olmsted 

School of Computer Science and Data Science 
Wentworth Institute of Technology 

Boston, MA 02115 
olmsteda@wit.edu 

 
Abstract— Developing secure software applications in modern, 
complex environments presents significant challenges, as 
traditional threat modeling approaches often fall short in 
addressing domain-specific vulnerabilities. This paper introduces 
and discusses three novel, domain-specific threat models designed 
to enhance secure software development: BIRFS, CRIRTA, and 
PERTD. BIRFS (Bias, Input, Reasonable, Forensics, Sensitive) is 
a specialized threat model tailored for software systems that 
leverage Artificial Intelligence and Machine Learning algorithms, 
focusing on unique risks arising from data inputs, model behavior, 
and algorithmic biases. CRIRTA (Column, Row, Inference, 
Relationship, Table, Availability) provides a comprehensive 
framework for identifying and mitigating security threats in 
database applications, moving beyond generic data flow analysis 
to address specific database vulnerabilities. PERTD (Partition, 
Execution, Requisite, Timing, Data) is designed for Cloud 
Application Threat Modeling, emphasizing the distinct security 
challenges inherent in cloud environments, including distributed 
architecture, shared tenancy, and dynamic resource allocation. 
Collectively, these models aim to enable proactive risk 
identification during the design phase, enabling the 
implementation of targeted mitigation strategies earlier in the 
software development lifecycle. By moving beyond a sole focus on 
malicious user threats, these models address a broader spectrum 
of vulnerabilities stemming from poor design, misunderstood use 
cases, and environmental changes, thereby contributing to more 
robust and resilient software systems across diverse domains. 

Keywords- cyber-security; software engineering; software 
development lifecycle 

I.  INTRODUCTION 

The landscape of software development has undergone a 
profound transformation in recent decades, driven by the 
proliferation of cloud computing, the pervasive integration of 
Artificial Intelligence (AI) and Machine Learning (ML) 
algorithms, and the ever-increasing reliance on complex 
database systems. While these advancements have unlocked 
unprecedented capabilities and efficiencies, they have 
simultaneously introduced a new generation of security 
challenges. Traditional approaches to secure software 
development, often centered on identifying and mitigating 
threats from malicious actors, are proving increasingly 
inadequate. Many contemporary vulnerabilities stem not from 
external attacks, but from inherent design flaws, a lack of 
understanding of system use cases, and insufficient planning for 
dynamic environmental changes. 

In this context, the need for robust and adaptable threat 
modeling has become paramount. Threat modeling is a proactive 
security practice that enables developers and security 
professionals to identify potential threats and vulnerabilities 
early in the software development lifecycle, thereby allowing for 
the implementation of effective mitigation strategies before code 
is even written. However, the one-size-fits-all approach to threat 

modeling often fails to capture the nuanced risks specific to 
particular domains or technological paradigms. For instance, the 
security considerations for a cloud-native application differ 
significantly from those of an AI-driven system or a highly 
sensitive database. 

This paper addresses this critical gap by introducing and 
discussing three novel, domain-specific threat models designed 
to enhance the security posture of modern software applications. 
We propose: 

BIRFS (Bias, Input, Reasonable, Forensics, Sensitive): A 
specialized threat model meticulously crafted for software 
systems that integrate Artificial Intelligence and Machine 
Learning algorithms. BIRFS extends traditional security 
concerns to encompass unique risks such as data poisoning, 
model manipulation, algorithmic bias, and fairness issues, which 
generic threat models often overlook. 

CRIRTA (Column, Row, Inference, Relationship, Table, 
Availability): A comprehensive framework developed to 
identify and mitigate security threats specifically within 
database applications. CRIRTA moves beyond conventional 
data flow analysis to address the unique vulnerabilities inherent 
in data storage, retrieval, and management, ensuring robust data 
protection and system resilience. 

PERTD (Partition, Execution, Requisite, Timing, Data): A 
dedicated threat model for Cloud Application Threat Modeling. 
PERTD focuses on the distinct security challenges posed by 
cloud environments, including shared tenancy, complex 
distributed architectures, API security, and data privacy 
concerns across multi-tenant infrastructures. 

By adopting these domain-specific models, organizations 
can achieve a more granular and practical approach to 
identifying and mitigating risks, leading to the development of 
inherently more secure, resilient, and trustworthy software 
systems. The subsequent sections of this paper will delve into 
the details of each of these models, outlining their principles, 
methodologies, and practical applications, followed by a 
discussion of their collective impact on the future of secure 
software development.  This work is an extension of a previous 
published conference paper [1]. 

  The organization of the paper is as follows. Section II 
describes the related work and the limitations of current 
methods. Section III describes workflow engines used in our 
motivating example of a distributed cloud application. Section 
IV discusses a current Threat Modeling technique called 
STRIDE. Section V discusses an alternative Threat modeling 
technique called DREAD. In Section VI, we give a motivating 
example from our distributed system modeling. Section VII 
describes our distributed modeling methodology. In Section 
VIII, we provide a motivating example from our database 
system modeling. Section IX describes our database modeling 
methodology. In Section X, we give a motivating example for 



161International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

our AI/ML system modeling. Section XI describes our AI/ML 
modeling methodology. We conclude and discuss future work 
in Section XII. 

II. RELATED WORK 

Functional requirements can be defined and represented in 
various ways. While these requirements serve as the foundation 
for software development, non-functional requirements (NFRs) 
provide the essential guidelines for coding implementation. 
Many authors have examined NFRs and the challenges of 
incorporating them into the design process. Pavlovski and Zou 
[1] NFRs are defined as specific behaviors and operational 
constraints, including performance expectations and policy 
limitations. Despite many discussions surrounding them, they 
are often not given the attention they deserve. 

Glinz [2] suggests categorizing functional and non-
functional requirements to ensure that they are inherently 
considered during application development. Alexander [3] 
points out that the language used to describe requirements is 
essential, noting that words ending in “-ility,” such as reliability 
and verifiability, often refer to NFRs. Much of this research 
focuses on identifying NFRs. Our work builds on these 
foundations by applying domain-specific models using our 
proposed modeling technique. 

Ranabahu and Sheth [4] explore four different modeling 
semantics to represent cloud application requirements: data, 
functional, non-functional, and system. Their work primarily 
addresses functional and system requirements, with some 
overlap in non-functional requirements from a system 
perspective. They built upon research conducted by Stuart, who 
defined semantic modeling languages for modeling cloud 
computing requirements throughout the three phases of the 
cloud application life cycle: development, deployment, and 
management. Our work fills in the gap regarding the semantic 
category of non-functional requirements. 

Ranabahu and Sheth [4] use Unified Modeling Language 
(UML) to model only functional requirements. UML [6] is a 
standardized notation for representing software systems' 
interactions, structures, and processes. It consists of various 
diagram types, with individual diagrams linked to different 
perspectives of the same part of a software system. We utilize 
UML to express non-functional requirements as a secondary 
step following the PERTD models. 

Integrating UML Sequence, Activity, and Class diagrams 
can enhance the semantics of our models. UML offers 
extensibility mechanisms that allow designers to add new 
semantics to a model. One such mechanism is a stereotype, 
which helps extend the vocabulary of UML to represent new 
model elements. Traditionally, software developers interpret 
these semantics and manually translate them into program code 
in a hard-coded manner.  In our book [6], we marry the models 
generated by each phase of the software development lifecycle 
into with threat modeling and risk mitigation techniques. 

The Object Constraint Language (OCL) [8] is part of the 
official Object Management Group (OMG) standard for UML. 
An OCL constraint specifies restrictions for the semantics of a 
UML specification and is considered valid as long as the data is 
consistent. Each OCL constraint is a declarative statement in 
the design model that signifies correctness. The expression of 
the constraint occurs at the class level, while enforcement 

happens at the object level. Although OCL has operations to 
observe the system state, it does not include functions to modify 
it. 

JSON [9] stands for "JavaScript Object Notation," a simple 
data interchange format that began as a notation for the World 
Wide Web. Since most web browsers support JavaScript, and 
JSON is based on JavaScript, it is straightforward to support it 
there, which stands for "JavaScript Object Notation," a simple 
format used for data interchange that originated as a notation 
for the World Wide Web. Since most web browsers support 
JavaScript and JSON is based on JavaScript, it is easy to work 
with in web environments. Many cloud-based web services now 
exchange data in JSON format. JSON Schemas [10] define 
correctness for data passed in JSON format. We utilize an 
extended form of JSON schemas on the aggregated data from 
several web services. 

Our contribution to secure software development involves 
new Threat Modeling techniques, coupled with modeling 
standards, such as UML and OCL, utilizing their extensibility 
mechanism of stereotypes to model non-functional 
requirements effectively.   

III. WORKFLOW ENGINES 

Workflow engines like Zapier [11] and Power Automate 
[12] are powerful automation tools that enable users to create 
and manage workflows for integrating and automating tasks 
across various applications and services, whether in the cloud 
or on-premises. 

Zapier is a popular cloud-based automation platform that 
allows users to connect to different web applications and 
automate their workflows. It operates on a simple "trigger-
action" model, where an event in one application triggers an 
action in another. Users can create "Zaps" (automated 
workflows) by selecting a trigger and defining the subsequent 
actions. For example, when a new email arrives in Gmail 
(trigger), the attachments can be automatically saved to Google 
Drive (action). 

Zapier supports numerous apps and services, including 
well-known ones like Gmail, Slack, Salesforce, and Trello. It 
features a user-friendly interface, pre-built Zap templates for 
everyday use cases, and advanced options like filters, delays, 
and data transformations. Additionally, Zapier allows for multi-
step Zaps, making it possible to create complex workflows with 
multiple actions and conditions. 

Power Automate is a cloud-based service from Microsoft 
that allows users to automate workflows and integrate 
applications and services within the Microsoft ecosystem and 
beyond. It offers connectors for various applications, including 
Microsoft 365 apps (such as Outlook and SharePoint), 
Dynamics 365, Azure services, and third-party services like 
Salesforce, Dropbox, and Twitter. 

Power Automate features a visual design interface where 
users can create workflows by combining triggers, actions, and 
conditions. Available triggers include email arrivals, button 
clicks, data changes, and scheduled events. Actions can involve 
sending emails, creating tasks, updating records, etc. Power 
Automate offers advanced capabilities like loops, parallel 
branches, and approval processes. 



162International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Both Zapier and Power Automate provide extensive 
libraries of pre-built templates and connectors, making it easier 
for users to begin automating tasks. They offer options to 
monitor and manage workflows, handle errors, and track 
activity logs. These platforms cater to users with varying 
technical expertise, from business users to developers, and help 
automate repetitive tasks, streamline processes, and enhance 
productivity.  

IV. STRIDE THREAT MODELING  

STRIDE [12] is a threat modeling framework that offers a 
structured approach for identifying and analyzing threats in 
software systems. It helps security practitioners and developers 
understand potential risks and implement appropriate security 
controls. STRIDE is an acronym representing six categories of 
threats: 

1. Spoofing Identity: This category involves attackers 
impersonating legitimate users or entities to gain unauthorized 
access or deceive the system. For instance, attackers may spoof 
a user's identity by stealing credentials or manipulating 
authentication mechanisms. 

2. Tampering with Data: Tampering threats involve the 
unauthorized modification or alteration of data within the 
system. Attackers may tamper with data in transit, modify 
stored data, or manipulate system parameters to achieve desired 
outcomes. For example, an attacker could alter the contents of 
a database, inject malicious code into an application, or change 
parameters to bypass security checks. 

3. Repudiation: Repudiation threats allow users to deny 
their involvement in specific transactions or activities, posing 
challenges for auditing and accountability. For instance, an 
attacker might modify logs or manipulate transaction records to 
evade detection or deny their actions. 

4. Information Disclosure: This category addresses threats 
related to unauthorized exposure or disclosure of sensitive 
information. Attackers may exploit vulnerabilities to access 
confidential data, such as personal information, financial 
records, or intellectual property. This can happen through 
insecure data transmission, weak access controls, or 
information leakage via error messages. 

5. Denial of Service: Denial of Service (DoS) threats aim to 
disrupt or degrade a system's availability or performance. 
Attackers may overload resources, exhaust system capacity, or 
exploit vulnerabilities to cause a service outage, rendering the 
system unresponsive or unusable for legitimate users. 

6. Elevation of Privilege: Elevation of Privilege threats 
involve attackers gaining unauthorized access to higher 
privileges or permissions than they should have. By exploiting 
vulnerabilities or design flaws, attackers can bypass security 
controls and gain elevated access rights, leading to 
unauthorized data access, system compromise, or further 
exploitation. 

When applying the STRIDE framework, security 
practitioners and developers analyze the software system from 
the perspective of each threat category. They identify potential 
vulnerabilities and develop corresponding mitigation strategies 
to address the threats. This analysis facilitates informed 

decisions regarding security controls, system design 
improvements, and the prioritization of security efforts. 

V. DREAD THREAT MODELING 

DREAD is a threat modeling framework designed to assess 
and prioritize software vulnerabilities based on their potential 
impact. The acronym DREAD stands for five key factors used 
to evaluate threats: 

1. Damage Potential: This factor refers to the extent of harm 
that could be caused if a vulnerability is exploited. It evaluates 
the impact, which can range from minor inconveniences to 
severe consequences like data breaches, system compromises, 
or financial losses. 

2. Reproducibility: This measures how easily an attacker 
can reproduce or exploit a vulnerability. Vulnerabilities that are 
consistently easy to exploit are considered more dangerous than 
those that require complex or unpredictable conditions for 
exploitation. 

3. Exploitability: This factor assesses the level of skill or 
effort needed to exploit a vulnerability. Vulnerabilities easily 
exploited with readily available tools or techniques pose a 
higher risk. Conversely, vulnerabilities that are difficult to 
exploit or require specialized knowledge are considered lower 
risk. 

4. Affected Users: This evaluates the number of users or 
systems a vulnerability could impact. A vulnerability affecting 
numerous users or critical systems is considered more 
significant than one impacting only a limited subset of users. 

5. Discoverability: This assesses how likely an attacker is to 
find the vulnerability. Vulnerabilities that are easily 
discoverable—through public disclosures, known attack 
techniques, or automated scanning tools—are riskier than those 
that are harder to find or require advanced reconnaissance. 

Using the DREAD framework, each factor is scored on a 
scale from 0 to 10, with 0 being the least concerning and ten 
being the most critical. These scores help prioritize 
vulnerabilities and allocate resources for mitigation efforts. 
Higher scores indicate a higher priority for addressing the 
identified vulnerabilities. 

While DREAD is a valuable tool for assessing and 
prioritizing vulnerabilities based on their potential impact, it 
should be used alongside other threat modeling techniques and 
considerations to ensure a comprehensive security analysis and 
informed decision-making.  

VI. DISTRIBUTED MODEL MOTIVATING EXAMPLE 

The challenge with the STRIDE and DREAD threat models 
is that they primarily focus on vulnerabilities associated with 
malicious user activities. However, many risks arise from 
architecture, the environment, or human error. 

Consider a common architecture used by many businesses 
today: data generated by an online transaction processing 
(OLTP) system, either stored on-premises or logically on-
premises, is synchronized to a cloud system considered off-
premises and beyond the organization's control. This scenario 
is not uncommon in today's business landscape.  



163International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Consider a large performing arts venue employing a local 
SQL Server-based system for ticketing and donation 
transactions. Meanwhile, its marketing department uses a 
cloud-based email and SMS marketing system. The OLTP data 
must be extracted, translated, uploaded, and loaded regularly 
for the marketing system to function correctly. 

Various issues can arise when multiple processes and data 
are transferred across networks that span domain boundaries. A 
UML activity diagram illustrates the steps involved in moving 
data from the on-premises OLTP system to the cloud-based 
system used by the marketing team. This model shows that 
activities occur in both environments. The challenge with the 
STRIDE and DREAD threat models is that the vulnerabilities 
modeled and the matching remediations target malicious user 
activities. Many times, risks come from architecture, 
environment, or human error. 

A motiving example is an architecture that is used in many 
businesses today where data that is generated in OLTP systems 
that are either stored on-premises or logically on-premises is 
synchronized to a cloud system that is considered off-premises 
and outside the domain of control of the organization. To 
understand this better, consider a large performing arts venue 
that utilizes a local SQL Server-based system to process 
ticketing and donation transactions. The marketing department 
uses a cloud-based system for email and SMS marketing. The 
OLTP data must be extracted, translated, uploaded, and loaded 
regularly for the marketing system to be functional. 

Understanding the data transfer process is crucial to prevent 
potential risks. Figure 1 shows a UML activity diagram for 
moving data from the on-premises OLTP system to the cloud-
based system used by the marketing folks. In the model, you 
will see that activities happen in both partitions. 

 
 

Figure 2 presents a model outlining the execution path for 
retrieving data from the cloud system. The data includes sending 
activity for both emails and SMS text messages. This sending 
activity can be substantial, encompassing tuples for sends, 
opens, clicks, and bounces. Additionally, information regarding 
communication preferences and unsubscribed data is retrieved. 

The marketing department requires service availability and 
data integrity for its business operations. For instance, NFRs 
could specify that the system must be available 99.999% of the 
time or that the data must be no more than 24 hours old. 
Whenever a distributed system is proposed, a model should be 
developed to represent these NFRs and the threats to the system's 
ability to meet them. 

Unfortunately, the focus of STRIDE and DREAD on 
malicious users does not adequately address many of the risks in 
our motivating example. Table 1 Illustrates a STRIDE model 
corresponding to the update activity depicted in Figure 1, while 
Table 2 shows the STRIDE model related to the download 
activity from Figure 2. In the STRIDE model, actions are at risk 
from malicious users; however, many steps are also vulnerable 
to environmental issues that can impact the system's availability 
and integrity.  Examples of these issues include network and 
system outages, concurrent computational usage on equipment, 
and a lack of control over the quality of source data.  

VII. PERTD MODEL 

We developed the PERTD Model to better assess the risks 
associated with distributed applications [13]. This model 
addresses four main environmental risk categories for 
distributed systems: 

1. PARTITION  

Figure 2 - Download Activity 

Table 1 - Upload Activity STRIDE Model 

Action S T R I D E 

Timerfires       

PrepareDataForUpload       

SendData X X  X X  

ReceiveData       

LoadData       

BuildViews       

 

Table 2 - Download Activity STRIDE Model 

Action S T R I D E 

Timerfires       

PrepareDataForDownload       

SendData X X  X X  

ReceiveData       

LoadData       

 

Figure 1 - Upload Activity 



164International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Activities vulnerable to partition errors will fail if a network 
is partitioned between on-premises devices and the cloud. Risk 
reduction strategies include:   

- Pausing the complete workflow and retrying   

- Utilizing previous execution data   

- Employing alternative data sources   

2. EXECUTION  

Activities that are susceptible to execution errors may fail 
due to ambiguous code requirements, leading to runtime or 
tooling errors. For example, queries that generate data might fail 
with future datasets. Risk reduction measures include:   

- Utilizing previous execution data (most systems create a 
copy before execution)   

- Using alternative data sources   

3. REQUISITE  

Activities with requisite vulnerabilities depend on 
prerequisite activities. If a prerequisite fails, the dependent 
activity becomes stale. Risk reduction can involve:   

- Utilizing previous execution data   

- Employing alternative data sources   

4. TIMING  

Activities at risk due to timing need to finish within a 
specific time window or under a threshold duration. Risk 
reduction strategies include:   

- Utilizing previous execution data (most systems create a 
copy before execution)   

- Using alternative data sources   

5. DATA 

Activities are at risk because data are often combined from 
different sources. Unfortunately, schema correctness specifiers 
only apply to one data source.  Risk reduction strategies include:   

- Additional workflow steps to verify correctness   

 

In Tables 3 and 4, we apply our PERTD model to analyze 
risks associated with uploading and downloading activities. The 

PERTD model captures significantly more risks than the 
STRIDE model. 

After identifying NFRs in the PERTD model, we develop 
standard UML Class, Sequence, and Activity Diagrams. The 
threats to the system are modeled using UML stereotypes. UML  
stereotypes extend the standard UML language by introducing 
custom or specialized elements, properties, and behaviors. They 
allow adding domain-specific annotations, constraints, or 
semantics to UML elements, enhancing expressiveness and 
tailoring modeling to specific contexts. Stereotypes are 
indicated by guillemets (<< >>) placed above the name of the 
stereotyped element. 

Stereotypes can be attached to classes, messages, attributes, 
and activities. With the PERTD model, we incorporated the 
four risk categories as stereotypes: <<PARTITION>>, 
<<EXECUTION>>, <<REQUISITE>>, <<TIMING>> and 
<<DATA>>. These stereotypes are then tagged to messages in 
UML Sequence and Activity diagrams, while data classes and 
individual attributes can also be tagged if they are susceptible 
to these risks. 

Additionally, OCL is included to specify invariants that can 
define additional semantics related to the correctness of method 
calls, classes, or attributes. For instance, if data in a particular 
class must be no older than three days, this can be expressed 
using the last_update attribute. 

To verify data from when it is vulnerable, we utilize an 
extended version of JSON Schemas [10]. Our extension allows 
the Schema to reference different data sources.  JSON schema 
supports a CONTAINS operator to verify the existence of an 
element in a collection.  We added a CONTAINEDIN operator 
to span across schemas represented by different data sources in 
the distributed system. We also added a NOTCONTAINEDIN 
to verify the absence of an element. Figure 3 shows two sample 
schemas.  The top schema is a simplified version of a patron, 
the bottom schema is a simplified version of a ticket.  They 
share an email field which is designated in the tickets schema 
to require the existence in the patron data. 

Table 4 - Upload Activity PERTD Model 

Action P E R T D 

Timerfires  X    

PrepareDataForUpload  X    

SendData X X X X  

ReceiveData X X X X  

LoadData  X X X X 

BuildViews  X X   

Table 3 - Download Activity PERTD Model 

Action P E R T D 

Timerfires  X    

PrepareDataForDownload  X    

SendData X X X X  

ReceiveData X X X X  

LoadData  X X  X 

 

3 - 

4 - 



165International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

 

Figure 3 - Sample Schema 

To mitigate the risk of data integrity issues, we validate the 
data against the specified schemas as part of the data 
workflow. 
 

VIII. DATABASE MODEL MOTIVATING EXAMPLE 

The challenge with the STRIDE and DREAD threat 
models for database application security is that the 
vulnerabilities modeled and the matching remediations target 
malicious user activities. Many times, risks come from 
architecture, environment, or human error. 

To explore a motivating example, consider an event 
ticketing system used in a consortium of performing arts 
centers, such as a symphony, opera, ballet, and Broadway 
venue. A transaction processing (OLTP) system stores the data 
generated from the patron transactions on-premises for ticket 
purchases. Data needs to be logically partitioned so patrons are 
shared, but only the transaction data appropriate to the 
organization is visible on software screens and reports.  Patrons 
can go to individual constituent box offices to work with an 
agent on transactions related to that constituent organization, or 
they can use self-service on a web or mobile interface that 
allows them to purchase tickets to any constituent organization 
or see all their individual transaction histories. 

To illustrate a weakness in the traditional threat models 
when applied to database security, we picked out four use cases 
from our motivating example: 

 A constituent box office agent accessing a patron's 
ticket history. In this case, the data rows must be 
confidential, so only those related to the 
constituent organization should be visible. 

 A constituent box office agent selecting a patron's 
general admission (GA) seats.   In this use case, the 

agent should only have access to constituent 
inventory and not exceed capacity.  

 A patron accessing their ticket history through a 
self-service web page. In this case, the data rows 
must be confidential to just the patron's data and 
not make other patrons' histories available. 

 A patron selects general admission (GA) seats 
through a self-service web page.   In this use case, 
the patron should not exceed the venue capacity. 

 
Unfortunately, the focus of STRIDE and DREAD on the 

malicious user does not account for many of the risks in our 
motivating example. Table 5 shows a STRIDE model to match 
the four use cases we are analyzing. Table 6 shows the 
equivalent DREAD model.  In both models, we can see a large 
surface area of vulnerabilities to malicious user attacks.  As 
stated earlier, most security risks to database software and 
software generally come from not understanding and enforcing 
security requirements in the software engineering process.  This 
lack of enforcement leaves an application vulnerable to user 
error and malicious attacks. 

IX. CRIRTA MODEL 

We developed the CRIRTA Model to better model the risks 
associated with database applications. The model covers a 
database system's seven main environmental risk categories. 

A. Column Confidentiality  
Activities vulnerable to exposing column confidentiality 

have data with sensitive data, where some users should have 
restricted read and write access.  Other users will need access 
to the column values. Risk reduction can include:  
 Removing all access at the table level for users who 

should not have access. 
 Creating database views without the column values and 

granting access to these user groups 

B. Row Confidentiality  

Activities vulnerable to row confidentiality have user 
access that must be restricted to specific values for some user 
groups.  Examples include self-service apps where users can 
only see their data, or departmental users can only see 
department records. Risk reduction can consist of:  

Table 5 - STRIDE Model for Database Software 

Action S T R I D E 

Agent View of Ticket History X   X X X 

Agent Reserving GA Seat Selection  X X  X X 

Self-Service View of Ticket History X   X X X 

Self-Service Reserving GA Seat 
Selection 

 X X  X X 

 



166International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Removing all access at the table level for users who 
should not have access. 

 Creating database views with where statements that 
restrict the rows that are visible to these user groups 

C. Column Inference  
Activities vulnerable to column inference allow users to 

infer other values based on values in these columns.  Gender or 
race are often examples of this when the greater data population 
is relatively homogenous. Risk reduction can include:  
 Limiting access to the column to essential users (see 

column confidentiality reductions above) 
 

D. Relationship Correctness  
Activities vulnerable to relationship correctness issues 

have correctness that spans a relationship between tables. An 
example would be an order that needs a shipping address that 
exists in a customer’s address. Risk reduction can include:  
 Utilizing database foreign keys  
 Utilizing database check constraints with queries that 

check for the existence of rows or values in related tables. 
 Utilizing database triggers 

E. Table Correctness  
Activities vulnerable to table correctness issues have 

column values restricted based on other columns or sets of 
column values.  Risk reduction can include:  
 Utilizing database check constraints with predicates that 

check row values 
 Utilizing database triggers 

F. Availability  
Activities vulnerable to availability issues often use locks 

to access one process at a time.  The exclusivity is done with 
the database isolation level. Risk reduction can include:  
 Minimize code with higher restriction levels 
 Table design changes 

 

We model the risks to the motivating example system in 
Table 7 - CRICRTA Model that utilizes our CRIRTA model. As 
you can see, the CRIRTA model captures many more risks than 
the STRIDE and DREAD models. 

After identifying NFRs in the CRIRTA model, standard 
UML Class, Sequence, and Activity Diagrams are developed. 
The threats to the system are modeled by utilizing UML 
Stereotypes. UML (Unified Modeling Language) stereotypes 
are a way to extend the standard UML language by introducing 
custom or specialized elements, properties, and behaviors. 
Stereotypes allow you to add domain-specific annotations, 
constraints, or semantics to UML elements, making them more 
expressive and tailored to specific modeling contexts. 
Stereotypes are denoted by guillemets (<< >>) placed above the 
name of the element being stereotyped.  

Stereotypes can be attached to classes, messages, attributes, 
and activities. With the CRIRTA model, we added the six 
CRIRTA categories as stereotypes: << ColumnConfidentiality 
>>, <<RowConfidentiality >>,<< Column Inference >>,<< 
RelationshipCorrectness>>,<<TableCorrectness>>,<<Availabil
ity>>. These stereotypes are then tagged to messages in UML 
Sequence and Activity diagrams; data classes and individual 
attributes can be tagged with the stereotype if the data in the class 
or attribute is susceptible to the risk. 

OCL is added to provide invariants that can specify 
additional semantics related to the correctness of a method call, 
class, or attribute. An example is if data in a particular table 
must have a related table with a specific attribute range. 
 

X. AI/ML MODEL MOTIVATING EXAMPLE 

 
The challenge with the STRIDE and DREAD threat 

models for applications that consume ML and AI algorithms is 
that the vulnerabilities modeled and the matching remediations 
are aimed at malicious user activities attacking a system. Many 
times, risks come from architecture, environment, or human 
error. 

A motivating example is an architecture that is used in 
many businesses today, where data that is generated in online 
transaction processing (OLTP) systems that are either stored 
on-premises or logically on-premises is synchronized to a cloud 
system that is considered off-premises and outside the domain 
of control of the organization. Once the data is in the cloud, it 
is augmented utilizing AI or ML algorithms. To understand this 
better, consider a large performing arts venue that operates a 
local SQL Server-based system to process ticketing and 

TABLE 6 - DREAD Model for Database Software 

Action D R E A D 

Agent View of Ticket History 2 3 7 1 5 

Agent Reserving GA Seat Selection 3 3 9 9 2 

Self-Service View of Ticket History 6 6 8 3 5 

Self-Service Reserving GA Seat 
Selection 

9 6 9 9 2 

 

Table 7 - CRICRTA Model 

Action C R I R T A 

Agent View of Ticket History  X  X X  

Agent Reserving GA Seat 
Selection 

  X X X  

Self-Service View of Ticket 
History 

 X  X X  

Self-Service Reserving GA 
Seat Selection 

  X X X  

 



167International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

donation transactions. The marketing department uses a cloud-
based system for email and SMS marketing. The OLTP data 
must be extracted, translated, uploaded, and loaded regularly 
for the marketing system to be functional. 

Once the data is in the cloud, the data is augmented for 
several purposes, including segmentation, lookalike matching, 
data flows, and personalized advertising. Segmentation 
arranges potential customers into groups based on attributes and 
activities in the input data. Lookalike matching is used to match 
the attributes and activities of new customers to similar 
customers who have been with the organization for a more 
extended period. Input data is utilized to design interactions 
with the new prospects to increase their engagement with the 
organization. The input data from the attribute or activities is 
also used to design personalized advertisements to motivate the 
new prospect to engage in that next activity. 

Unfortunately, the input data may have been entered 
incorrectly in a self-service fashion, such as through a mobile 
application, web page, or kiosk. A tired or poorly trained 
customer service representative may have entered the data 
incorrectly. A third option for poor input data is the data may 
have come incorrectly from an external organization, such as a 
biographical data service provider that may suggest updates to 
addresses, phone numbers, or email addresses. A fourth option 
could be a malicious user intentionally polluting the data in 
revenge for some wrong they feel was done to them by the 
organization. 

The best case is that an improper email is sent or the 
prospect displays and ignores an advertisement or offer. Worse 
case, an organization's reputation is damaged, and sales and 
relationships with customers are lost. It would be best to 
discover the vulnerabilities early in the design process or 
software development to minimize the risk. 

Table 8 shows the four activities that utilize AI or ML in 
the cloud arranged in a STRIDE Model. We marked the 
columns for spoofing with the data flow activity, as we can 
envision a scenario when a user may want to qualify for a new 
customer offer by creating a fake account. The rest of the model 
is left blank as they are inappropriate threats to the activities. 
The small number of threats in our model could lead a software 
development team to believe the application is not at risk based 
on the limited representation in the STRIDE model. 

XI. BIRFS THREAT MODELING 

To better model the risks associated with applications that 
utilize AI or ML algorithms, we developed the BIRFS Model 

[14]. The BIRFS Model covers a process or system's five 
leading risk categories that utilize AI or ML algorithms. 
 
B-potential biases in output 
The B in BIRFS comes from the risk of potential biases in the 
AL or ML algorithm output. AI algorithms can exhibit biases in 
their production due to various reasons. These biases can arise 
from the data used to train the models, the design of the 
algorithms, or both. Here are some familiar sources of biases in 
AI algorithms: 
─ Biased Training Data: If the training data used to train the 

AI model is biased, the model will learn and perpetuate those 
biases. For example, if historical data used for training 
reflects societal biases, the model may replicate and amplify 
those biases. 

─ Data Sampling Bias: If the training data does not represent 
the entire population, the model may be biased toward the 
overrepresented groups. The sampling bias can lead to 
inaccurate predictions or decisions for underrepresented 
groups. 

─ Labeling Bias: Biases in labeling training data can also 
contribute to biased models. If the labels used for training 
data are biased, the model may learn and propagate those 
biases. 

─ Algorithmic Bias: The design and structure of the algorithm 
itself can introduce bias. The bias may happen if the 
algorithm uses feature proxies for sensitive attributes (e.g., 
using ZIP code as a proxy for race) or if the algorithm 
inherently reflects certain societal biases. 

─ Implicit Bias in Training Examples: Biases in the 
examples used to train the model can also contribute to 
biased outputs. For instance, if a model is trained on text 
from the internet, it may learn and reproduce the biases 
present in that text. 

─ Lack of Diversity in Development Teams: The 
composition of the teams developing AI models can also 
influence biases. If development teams lack diversity, there 
may be a lack of perspectives and awareness regarding 
potential biases in the models. 

─ Feedback Loop Bias: Biases can be reinforced through 
feedback loops. For example, biased predictions can lead to 
biased outcomes, which are then used as input for future 
predictions, creating a self-reinforcing cycle. 

─ Contextual Bias: The context in which the AI system is 
deployed may introduce bias. For instance, a model trained 
on data from a specific cultural or geographical context may 
not generalize well to other contexts. 

 
Addressing biases in AI algorithms is a complex and ongoing 
challenge. It requires careful consideration at every stage of the 
AI development process, including data collection, model 
training, and deployment. Strategies such as diverse and 
representative data collection, regular audits of model outputs, 
and involving diverse teams in AI development can help 
somewhat mitigate biases.  
I - input is outside the domain of control. 

Table 8 – AI/ML  Activity STRIDE Model 

Action S T R I D E 

Segmentation       

LookALike       

Data Flow X      

Personalized Advertisements       

 



168International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The I in BIRFS comes from the risk when the input data comes 
from outside the organization's control. When it comes to AI 
models, some factors and inputs are outside the direct control 
of the developers or operators. These external influences can 
affect the performance and behavior of AI models in various 
ways. Here are some examples: 
─ External Data Changes: AI models are often trained on 

historical data, and if the real-world data changes over time, 
it can impact the model's performance. For example, sudden 
shifts in user behavior, market dynamics, or other external 
factors might lead to a mismatch between the training data 
and the current environment. 

─ Changing User Expectations: User expectations and 
preferences can evolve. AI models trained to meet specific 
user needs may become less effective if user expectations 
change, and these changes are beyond the direct control of 
the AI developers. 

─ Regulatory Changes: Changes in regulations or legal 
frameworks can significantly impact how AI models operate, 
especially in highly regulated industries. Developers may 
need to adapt models to comply with new laws or 
regulations. 

─ External Security Threats: AI systems can be vulnerable 
to external security threats. Malicious actors may attempt to 
manipulate or compromise AI models, leading to undesirable 
outcomes. These threats are often beyond the control of the 
AI developers and require ongoing security measures. 

─ Environmental Factors: The performance of AI models 
may be affected by environmental factors, such as changes 
in weather, network conditions, or other external variables. 
For example, a model designed for specific weather 
conditions might perform differently in a completely 
different climate. 

─ Integration with External Systems: AI models are often 
integrated into larger systems and workflows. Changes or 
issues in these external systems, which are not under the 
direct control of AI developers, can impact the overall 
performance of the AI model. 

─ Global Events and Catastrophes: Unforeseen global 
events, such as natural disasters, economic crises, or 
pandemics, can have widespread effects on various 
industries. AI models operating in affected domains may 
face challenges due to disruptions caused by such events. 

─ User Feedback and Interactions: User interactions and 
feedback can influence the behavior of AI models. Users 
providing biased or unrepresentative feedback may impact 
the model's learning and performance. User behavior is often 
outside the direct control of AI developers. 

 
Addressing the challenges posed by external factors 

requires robust system design, ongoing monitoring, and 
adaptability. Developers should consider building models that 
adapt to environmental changes and implement continuous 
monitoring and update mechanisms.  
R - output result does not deviate from a reasonable range 
The R in BIRFS comes from the risk when the output is wrong 
but in a reasonable range for the input data. Ensuring that the 

output results of AI algorithms fall within a reasonable and 
expected range is crucial for the reliability and safety of AI 
systems. Deviations outside a reasonable range can pose risks 
and challenges. Here are some considerations related to the risk 
of output results deviating from a reasonable range in AI 
algorithms: 
─ Out-of-Distribution Data:  If an AI model encounters data 

significantly differently from what it was trained on (out-of-
distribution data), it may produce unpredictable and 
unreliable results. The new data ranges can happen if the 
model encounters scenarios or inputs not adequately 
represented in the training data. 

─ Overfitting: Overfitting occurs when a model learns the 
training data too well but fails to generalize to new, unseen 
data. In such cases, the model may perform well on the 
training set but poorly on real-world data, leading to outputs 
that deviate from a reasonable range. 

─ Data Quality Issues: Poor-quality or biased training data 
can contribute to the model learning incorrect patterns or 
making inaccurate assumptions. If the data used to train the 
model is not representative or contains errors, the model's 
outputs may deviate from what is considered reasonable. 

─ Lack of Explainability: If an AI model is too complex or 
lacks interpretability, it may be challenging to understand 
why it produces a particular output. This lack of transparency 
can make identifying and addressing deviations from a 
reasonable range challenging. 

─ Concept Drift: Over time, the underlying patterns in data 
may change, a phenomenon known as concept drift. If an AI 
model is not regularly updated to adapt to these changes, its 
outputs may become less accurate and fall outside the 
expected range. 

─ Adversarial Attacks: Adversarial attacks involve 
intentionally manipulating input data to deceive an AI model 
and produce incorrect outputs. If an AI system is vulnerable 
to such attacks, the outputs may deviate from the reasonable 
range, posing security and reliability risks. 

─ Uncertainty and Confidence Estimation: AI models 
should ideally provide measures of uncertainty and 
confidence in their predictions. If a model is overly confident 
in its outputs, even in situations where it should be uncertain, 
it may lead to outputs that deviate from a reasonable range. 

─ Monitoring and Validation: Monitoring and validating 
model outputs against real-world data are essential. If the 
model's performance degrades or deviates from expected 
behavior, it should trigger alerts for further investigation and 
potential retraining. 

 
It's vital to employ good practices in data collection, 

preprocessing, model training, and ongoing monitoring to 
mitigate the risk of output results deviating from a reasonable 
range. Additionally, incorporating human oversight and 
feedback mechanisms can enhance the system's robustness and 
help identify and correct possible deviations. Regular updates 
and retraining of models based on new and relevant data are 
also crucial for maintaining performance in dynamic 
environments. 



169International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

F - forensics or logging to defend results 
The F in BIRFS comes from the risk when the algorithm process 
cannot be audited to discover why it produced a particular 
output based on a set of input data. Forensics and logging play 
crucial roles in defending the results generated by AI 
algorithms. They provide a means to trace, understand, and 
validate the processes and decisions made by AI models. Here 
are critical aspects of forensics and logging in the context of AI: 
─ Data Logging: Record all relevant data in the AI model's 

training and inference processes. The logging includes input 
data, preprocessing steps, feature engineering, and any 
transformations applied to the data. Having a detailed log 
helps in understanding the context and ensuring 
transparency. 

─ Model Configuration and Hyperparameters: Document 
and log the configuration settings and hyperparameters used 
during the training of AI models. This information is crucial 
for reproducibility and understanding the model's setup. 

─ Model Training Logs: Record information about the 
training process, such as training loss, accuracy metrics, and 
other relevant statistics. The logs help track the model's 
performance during training and identify potential issues. 

─ Algorithm Versions and Updates: Keep track of the 
versions of algorithms and models used. When updates or 
changes are made to the algorithm, logging ensures you can 
trace which version was used for specific results. 

─ Timestamps and Versioning: Timestamps in logs can be 
critical for establishing a chronological order of events. 
Additionally, versioning of data, models, and algorithms 
helps associate specific results with the corresponding 
versions used. 

─ Explainability and Interpretability Logs: Record 
explanations and interpretations provided by the AI model, 
especially in cases where explainability is crucial. The logs 
can include feature importance, attention weights, or any 
other information that aids in understanding the model's 
decisions. 

─ User Interactions and Feedback: If the AI system involves 
user interactions, log relevant user inputs and system 
responses. This information is valuable for analyzing user 
experiences and addressing issues from the user's 
perspective. 

─ Monitoring and Anomaly Detection Logs: Implement 
monitoring logs to track the model's performance in real-
time. Logging anomalies or unexpected behavior helps 
identify when the model's outputs deviate from expected 
ranges. 

─ Security Logs: Incorporate security logs to capture 
information about potential adversarial attacks or 
unauthorized access. Security logs can help identify and 
mitigate security risks. 

─ Compliance and Regulations: Ensure that logging 
practices align with relevant compliance requirements and 
regulations. Some industries and regions may have specific 
guidelines regarding data handling and logging. 

─ Forensic Tools and Techniques: Develop or utilize forensic 
tools and techniques to investigate issues or discrepancies in 

AI model results. These tools can help conduct detailed 
analyses of model behavior and decision-making processes. 

─ Human-in-the-Loop Logging: If human reviewers are 
involved in decision-making, log their interactions and 
decisions. This information can be valuable for 
understanding the role of human oversight in the system. 

 
By incorporating comprehensive logging and forensic 

practices, developers and operators of AI systems can enhance 
transparency, accountability, and the ability to defend the 
results produced by AI algorithms. These practices are critical 
in applications where the stakes are high, such as healthcare, 
finance, and critical infrastructure. 
 
S - Sensitive or private data needs to be protected 
The S in BIRFS comes from the risk associated with protecting 
private or sensitive input data. Protecting sensitive or private 
data is a critical aspect of using AI algorithms, and there are 
several techniques and best practices to ensure data privacy and 
security. Here are key considerations: 
─ Data Encryption: Implement encryption mechanisms to 

protect data at rest and in transit. Encryption ensures the data 
remains unreadable even if unauthorized access occurs 
without the appropriate decryption keys. 

─ Secure Data Storage: You should store sensitive data in 
secure, access-controlled environments. Utilize secure 
databases and storage systems with proper access controls to 
restrict unauthorized access to sensitive information. 

─ Data Masking and Anonymization: Before using data in 
AI algorithms, consider techniques such as data masking and 
anonymization to replace or generalize sensitive 
information. Masking and anonymization reduce the risk of 
exposing private details introduced during model training. 

─ Federated Learning: Consider federated learning when 
data cannot be centralized. This approach allows models to 
be trained across decentralized devices or servers without 
exchanging raw data, preserving privacy. 

─ Differential Privacy: Implement differential privacy 
techniques to add noise or randomness to data, making it 
harder to link specific data points to individuals. Differential 
privacy protects individual privacy while still allowing 
meaningful analysis. 

─ Access Controls and Authorization: Implement strict 
access controls and authorization mechanisms to ensure that 
only authorized personnel can access sensitive data. 
Regularly review and audit access permissions. 

─ Secure Model Deployment: When deploying AI models, 
ensure the inference process is conducted securely. Limit 
access to the model and its outputs to authorized users and 
systems. 

─ Secure APIs: If AI models are accessed through APIs 
(Application Programming Interfaces), secure the APIs by 
implementing authentication and authorization mechanisms 
and encrypting data transmitted between the client and the 
API. 

─ Regular Security Audits: Conduct regular security audits to 
identify vulnerabilities in the system. The regular security 



170International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

audits include the AI models and the infrastructure 
supporting them. 

─ Compliance with Privacy Regulations: Ensure your AI 
system complies with relevant privacy regulations such as 
GDPR, HIPAA, or other industry-specific standards. 
Understand the legal requirements for handling sensitive 
data and incorporate necessary safeguards. 

─ Data Lifecycle Management: Establish clear policies for 
the entire data lifecycle, including collection, storage, 
processing, and disposal. Regularly review and update these 
policies to align with evolving privacy and security 
standards. 

─ Educate and Train Personnel: Train personnel handling 
sensitive data on privacy best practices and security 
protocols. Human error is a common source of data breaches, 
so awareness and education are crucial. 

─ Incident Response Plan: Develop a comprehensive incident 
response plan to address potential data breaches. This plan 
should outline the steps during a security incident, including 
communication strategies and legal obligations. 

─ Transparent Communication: Communicate to users and 
stakeholders how their data will be used, processed, and 
protected. Transparent communication builds trust and helps 
users understand the measures to safeguard their privacy. 

 
By incorporating these measures, organizations can 

significantly reduce the risks of handling sensitive or private 
data in the context of AI algorithms. Data privacy should be a 
fundamental consideration throughout the entire AI 
development and deployment lifecycle. Table 9 displays the 
same four AI/ML activities discussed earlier in the BIRFS 
model. As you can see from the model, many more risks and 
vulnerabilities are represented by the model than in the previous 
STRIDE model. The mitigations discussed, along with the 
BIRFS model elements can next be applied to reduce the risks. 
 

 
 
 

XII. CONCLUSIONS AND FUTURE WORKS 

In this work, we provide three domain-specific modeling 
methodologies to handle issues in cloud, database, and AI/ML 
software related to NFRs in distributed systems. We present 
modeling methodologies aimed at uncovering issues related to 

NFRs in the software development lifecycle. Our models enable 
us to identify significantly more fine-grained risks associated 
with the development of these systems than traditional threat 
modeling techniques. Additionally, we have enhanced the 
modeling of functional requirements by employing UML 
stereotypes to represent the NFRs identified in the models. 
Future work will incorporate code generation to mitigate the 
risks identified and modeled throughout this process.    
 

REFERENCES 

 
[1]  A. Olmsted, "PERTD - Cloud Application Threat Modeling," in 

Proceedings of CLOUD COMPUTING 2025, The Sixteenth 
International Conference on Cloud Computing, GRIDs, and 
Virtualization, Valencia, Spain, 2025.  

[2]  C. J. Pavlovski and J. Zou, "Non-functional requirements in 
business process modeling," Proceedings of the Fifth on Asia-
Pacific Conference on Conceptual Modelling, vol. 79, pp. 1-10, 
2008.  

[3]  M. Glinz, "Rethinking the Notion of Non-Functional 
Requirements," Third World Congress for Software Quality, 
Munich, Germany, pp. 1-10, 2005.  

[4]  Alexander, I, "Misuse Cases Help to Elicit Non-Functional 
Requirements," Computing & Control Engineering Journal, 14, 
40-45, pp. 1-10, 2003.  

[5]  R. Ajith and A. Sheth, "Semantic Modeling for Cloud 
Computing, Part I," Computing, vol. May/June, pp. 81-83, 2010. 

[6]  Object Management Group, "Unified Modeling Language: 
Supersturcture," 05 02 2007. [Online]. Available: 
http://www.omg.org/spec/UML/2.1.1/. [Accessed 11 Nov 
2025]. 

[7]  A. Olmsted, Security-Driven Software Development: Learn to 
analyze and mitigate risks in your software projects, 
Birmingham, UK: Packt Publishing, 2024.  

[8]  Object Management Group, "OMG Formally Released Versions 
of OCL," 02 2014. [Online]. Available: 
http://www.omg.org/spec/OCL/. [Accessed 11 Nov 2025]. 

[9]  JSON.org, "Introducing JSON," 2024. [Online]. Available: 
https://www.json.org/json-en.html. [Accessed 11 Nov 2025]. 

[10] Open Collective, "JSON Schema," 2024. [Online]. Available: 
https://json-schema.org/. [Accessed 11 Nov 2025]. 

[11] Zapier Inc., "Automate without limits," 2024. [Online]. 
Available: https://zapier.com/. [Accessed 11 Nov 2025]. 

[12] Microsoft, "Power Automate," 2024. [Online]. Available: 
https://www.microsoft.com/en-us/power-
platform/products/power-automate. [Accessed 11 Nov 2025]. 

[13] R. Khan, D. Laverty, D. McLaughlin and S. Sezer, "STRIDE-
based threat modeling for cyber-physical systems,," in 2017 
IEEE PES Innovative Smart Grid Technologies Conference 
Europe (ISGT-Europe), Turin, Italy, 2017.  

[14] A. Olmsted, "BIRFS is a Threat Model for Software Systems 
That Utilize Artificial Intelligence or Machine Learning 
Algorithms," International Conference on Artificial Intelligence 
and its Application, pp. 23-37, 2024.  

 
 
 

Table 9 - AI/ML  Activity BIRFS  Model 

Action B I R F S 

Segmentation X X X X  

LookALike X X X X X 

Data Flow X  X X X 

Personalized Advertisements X  X X  

 


