International Journal on Advances in Security, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/security/

Extending SDN-ACL Automation with User Groups, Authentication Events,
and Intrusion Detection System Integration

Florian GrieBer*®, Hirokazu Hasegawa'®, Hajime Shimada®
*School of Computation, Information and Technology, Technical University Munich,
Chair of Security in Information Technology, Germany
YCenter for Strategic Cyber Resilience R&D, National Institute of Informatics, Japan
§Information Technology Center, Nagoya University, Japan
florian.griesser @tum.de, hasegawa@nii.ac.jp, shimada@itc.nagoya-u.ac.jp

Abstract—As cyberattacks become more common and ad-
vanced, traditional networks fall behind because they depend
on static settings and manual adjustments. Software-Defined
Networking (SDN) provides more flexibility and can be used
to solve these problems. In this work, we present a system that
automatically creates Access Control Lists (ACLs) in SDN envi-
ronments. The system links access control to the User Database
and generates rules automatically, which reduces the effort for
administrators. With Port Access Control, only authenticated
devices are allowed to use network resources. In addition, the
system integrates an Intrusion Detection System (IDS): suspicious
clients are first monitored through mirrored traffic, and if
violations go beyond a threshold, their traffic is redirected
for inline inspection. We tested the system in three use cases:
connecting new clients, adapting dynamically to authentication
events, and redirecting malicious hosts through the IDS. The
results show that our approach not only reduces manual work
but also enforces role-based security and prevents IDS overload
by escalating only persistent or severe attacks.

Keywords-Software-Defined Networking; Authentication; Access
Control Lists; Intrusion Detection Systems

I. INTRODUCTION

This article is an extended version of our previous work
presented at the International Conference on Networks (ICN)
[1], where we introduced a system for automatically gener-
ating Access Control Lists (ACLs) within Software-Defined
Networking (SDN) environments. While the conference paper
focused on the system architecture and initial evaluation, this
extended version expands the analysis in several directions.
In particular, we introduce a more comprehensive Formal
Security Model and Threat Analysis (Section V) and extend
the system with an Intrusion Detection System (IDS) for dy-
namic policy adaptation. We further examine how identity and
authentication events can drive the automated creation of fine-
grained access control rules in SDN environments and how
such mechanisms adapt to user behavior while maintaining
scalability, security, and low administrative overhead. The core
challenge we address is how to integrate authentication-driven,
identity-aware access control into SDN in a way that adapts
dynamically to user behavior while preserving scalability and
security. The primary aim of this work is to demonstrate the
feasibility and practical applicability of the proposed system in
realistic scenarios, with a focus on validating the architectural
concept and its security properties rather than conducting an
exhaustive performance study.

Digital transformation has exponentially increased the com-
plexity of network architectures, presenting significant chal-
lenges in maintaining robust security frameworks [2]. In this
ever-evolving digital landscape, cybersecurity threats have
become more sophisticated, leveraging the linkage of modern
infrastructures to exploit vulnerabilities at an alarming rate.
Traditional network security mechanisms, which mainly rely
on static configurations and manual oversight, are increas-
ingly proving inadequate against this backdrop of dynamic
and evolving threats [2]. The inherent limitations of these
conventional approaches, characterized by their inflexibility
and slow response times, underline the urgent need for more
adaptable, responsive security measures.

Software-Defined Networking (SDN) is a paradigm that
promises to redefine network management and security [3].
At its core, SDN separates the network’s control logic from
the underlying hardware, facilitating a centralized and pro-
grammable framework that transcends traditional hardware
limitations [4]. This separation enhances network flexibility
and management and introduces agility and adaptability that
were unachievable with conventional network architectures
until now. According to a report by Global Market Insights,
the SDN market, valued at USD 28.2 billion in 2023, is
expected to experience significant growth, with a projected
expansion rate exceeding 17% annually from 2024 to 2032
[5]. Through SDN’s capabilities, networks gain the flexibility
to adapt swiftly to evolving security demands. This flexibility
enables the immediate implementation of tailored security
measures and configurations to counter new threats effectively,
as illustrated in the study by Ali et al. [6].

Furthermore, our contribution is complemented by the work
of Yakasai et al. in FlowlIdentity, which advances virtualized
network access control within SDN through a role-based
firewall [7]. We also build on the architectural insights of
Casado et al. in Ethane, demonstrating the power of centralized
policy enforcement [8], and the approach of Mattos et al.
in AuthFlow, focusing on authentication and access control
mechanisms in SDN environments [9].

Additionally, this approach was refined by incorporating
a structured analysis of authentication logs, drawing upon
the work of Xing et al. in SnortFlow, which explores an
OpenFlow-based intrusion prevention system in cloud envi-
ronments [10], and the study by An Le et al. on a flexible

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

123

network-based intrusion detection and prevention system on
Software-Defined Networks [11].

The paper progresses from reviewing related SDN security
work in Section II to foundational concepts in Section III.
Section IV describes our system for automating ACLs, fol-
lowed by Section V, which presents the formal security model
and analyzes potential threats. Section VI details the imple-
mentation, Section VII evaluates the system’s performance
and demonstrates the benefits of the IDS integration, and
Section VIII encapsulates concluding thoughts and future
directions.

II. RELATED WORK

Network security and access control advancements are cru-
cial in the evolving landscape of SDN. The following studies
demonstrate that emerging technologies and frameworks are
pivotal in addressing these challenges.

A. Intrusion Detection with Authentication Events

In the study by Chu et al. [12], “ALERT-ID,” an intrusion
detection system for large-scale network infrastructures, is pre-
sented. The system distinguishes between normal operations
and potential security threats through real-time analysis of
authentication, authorization, and accounting (AAA) system
logs. It employs behavioral models built on historical access
patterns and user profiles, efficiently identifying potential
intrusions and misuse. Notably, ALERT-ID balances the need
for thorough security monitoring with a manageable false
alarm rate, demonstrating the importance of dynamic security
measures in complex network environments.

Building on this, Janabi et al. provide a comprehensive
survey of intrusion detection systems in Software-Defined
Networking [13]. Their work categorizes existing approaches
into anomaly-based, signature-based, and hybrid detection
mechanisms, and highlights key challenges such as scalability,
controller bottlenecks, and false alarm reduction. This survey
underscores the urgency of developing IDS solutions that are
tailored to the dynamic characteristics of SDN environments.

A more specialized perspective is given by Susilo et al.,
who present an SDN-based intrusion detection system that
leverages deep learning techniques [14]. By training models
on traffic data, they achieve high detection rates for a variety of
attack types, demonstrating the potential of machine learning
to significantly enhance IDS performance in SDN settings.

In a related direction, Wang et al. propose an Al-powered
network threat detection system [15]. Their approach inte-
grates artificial intelligence methods such as Random Forests
and neural networks into SDN Controllers to enable real-
time threat detection. The study highlights the effectiveness
of Al in reducing false positives and improving scalability,
though it also raises concerns regarding explainability and
computational overhead.

B. Dynamic Access Control in SDN

Transitioning to dynamic access control, the work by Nayak
et al. introduces “Resonance: Dynamic Access Control for

International Journal on Advances in Security, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/security/

Enterprise Networks” [16]. Resonance implements dynamic
security policies with a registration phase, complemented by
real-time monitoring and inference mechanisms specified by
administrator rules.

A more recent study by Shah and Yadav integrates
IEEE 802.1X authentication into SDN to control port-level
access [17]. Their approach provides admission control based
on authentication status, yet it does not support dynamic ACL
updates or identity-based rule generation. This gap is central
to our contribution, which leverages authentication events and
user group information to automatically derive and update fine-
grained, identity-aware ACLs.

Further extending the concept of network security, the study
by Martins et al. [18] introduces an access control architecture
for SDN leveraging the ITU X.812 standard. This framework
incorporates Role-Based Access Control (RBAC) with traffic
prioritization rules, advancing towards more granular access
control based on predefined role mappings. While powerful,
this approach depends on extensive manual configuration
efforts to establish complete rule sets, limiting its ability to
adapt dynamically to user behavior or evolving authentication
contexts.

C. Formal Security Models & Threat Modeling in SDN

Beyond practical implementations, several works emphasize
the necessity of formal reasoning in SDN security. Sharma and
Tyagi present a structured threat model for SDN environments,
covering controller protection, inter-controller communication,
and malicious switch scenarios [19]. Their taxonomy illus-
trates how different layers of the SDN stack are exposed to
unique attack vectors, motivating the need for systematic threat
analysis.

Pradeep et al. propose EnsureS, an SDN security model
that validates service paths based on efficient hashing and
tag verification mechanisms [20]. Their design provides both
efficiency and security guarantees, reducing the risk of path
manipulation and enhancing packet integrity.

Finally, Meng et al. introduce a policy model transformation
and verification framework [21]. By automatically converting
high-level security policies into flow-level configurations and
applying formal verification techniques, they ensure consis-
tency between intended policies and deployed rules. This
approach demonstrates the potential of combining formal
methods with SDN programmability to achieve provable se-
curity properties.

D. Policy Conflict Detection and Resolution in SDN

In parallel with dynamic access control, substantial work
has addressed the challenge of policy conflict detection and
resolution in SDN environments. Systems like FortNOX [22]
and FlowGuard [23] provide real-time enforcement mecha-
nisms that prevent new flow rules from violating established
security policies by checking for conflicts during rule insertion.
Verification tools such as VeriFlow [24] and NetPlumber [25]
take a verification-oriented approach, intercepting flow updates
to ensure they do not violate global invariants such as isolation

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

124

or reachability. More recent frameworks, including PGA [26]
and Brew [27], focus on composing and reconciling policies
from different modules or tenants, producing a consistent,
conflict-free rule set. These efforts highlight the importance of
handling interactions between dynamic ACLs, legacy firewall
configurations, and other network policies, which is particu-
larly relevant in hybrid and large-scale deployments.

These studies illustrate a significant progression in SDN
security research, ranging from intrusion detection systems to
dynamic access control and formal threat modeling. Building
on these developments, our work reduces administrative bur-
den while enabling adaptive, security-driven policy updates.

III. PRELIMINARY CONCEPTS

This section introduces foundational concepts relevant
to network management and security, including OpenFlow
switches in SDN, 802.1X Port-Based Network Access Control,
access management with Active Directory and LDAP-based
directory services, and the Extensible Authentication Protocol
over LAN (EAPOL).

A. The Role of OpenFlow Switches in SDN

Software-Defined Networking (SDN) represents a paradigm
shift in network management by decoupling the control plane
from the data plane. OpenFlow, one of the earliest and
most widely adopted SDN protocols, provides a standardized
interface for communication between the centralized controller
and the network devices. Within this architecture, OpenFlow
switches serve as the essential data plane components, respon-
sible for forwarding packets based on flow rules received from
the controller [28].

These programmable switches enable dynamic network con-
trol, granular traffic engineering, and the implementation of
advanced security policies. Because the control logic resides in
a centralized controller, network behavior can be reconfigured
on the fly without the need for manual reprogramming of
individual devices. This centralized programmability simplifies
policy enforcement and enables rapid adaptation to changing
security requirements.

While OpenFlow switches provide strong flexibility, they
also introduce security challenges. Because switches rely on
the controller for all flow decisions, a compromised controller
could install malicious rules or bypass policies. In addition,
limited flow-table capacity makes them vulnerable to exhaus-
tion attacks such as flow flooding [29].

The communication channel between switches and the con-
troller, typically protected by TLS, can also be a point of
failure if improperly configured [3]. Authentication, certificate
management, and key distribution therefore become crucial
aspects of securing the SDN infrastructure. Finally, the lack of
default policies or fallbacks in many OpenFlow implementa-
tions can result in a denial-of-service condition if the controller
becomes unreachable [29].

To address these issues, several countermeasures have been
proposed. These include distributed controller architectures
to eliminate a single point of failure, flow aggregation to

International Journal on Advances in Security, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/security/

reduce table pressure, and anomaly detection systems to iden-
tify malicious flow behaviors [3, 4]. Proper integration with
access control mechanisms, such as 802.1X and centralized
identity management, can further enhance the trustworthiness
of OpenFlow-based networks [30, 31, 32].

In summary, OpenFlow switches provide the flexibility
and programmability needed for next-generation networks but
must be deployed with careful attention to security design,
controller hardening, and flow policy management.

B. Port-Based Authentication with IEEE 802.1X

IEEE 802.1X Port-Based Network Access Control signifi-
cantly strengthens network security by implementing stringent
access control at the physical port level. As a foundational
component of network admission control, 802.1X ensures
that only authenticated devices and users gain access to the
network, thereby maintaining integrity and reducing the risk
of unauthorized intrusion [30].

The 802.1X framework operates with three core entities:
the supplicant (client device), the authenticator (typically a
switch or wireless access point), and the authentication server
(commonly a Remote Authentication Dial-In User Service
(RADIUS) server). When a device connects to a network
port, it is initially placed into an unauthorized state. The au-
thenticator acts as an intermediary, forwarding authentication
messages between the supplicant and the server using the
Extensible Authentication Protocol over LAN (EAPOL) [33].

The authentication sequence involves an initial access re-
quest, followed by a secure exchange of identity and creden-
tials, and concludes with the authentication server evaluating
the credentials and instructing the authenticator whether to
grant or deny access. This structured process prevents unau-
thorized devices from entering the network and defends against
threats such as MAC spoofing, rogue clients, and replay
attacks. Mutual authentication using Extensible Authentica-
tion Protocol — Transport Layer Security (EAP-TLS) further
enhances security by preventing credential interception and
significantly reducing the risk of man-in-the-middle attacks.

Advanced deployments of 802.1X often integrate dynamic
network configurations, such as VLAN assignment and ACL
enforcement, based on the identity of the authenticated entity.
This enables granular policy control and flexible segmenta-
tion of network resources. For example, guests, employees,
and devices can be placed in separate VLANs with tailored
permissions, immediately upon authentication.

While 802.1X offers robust security, its implementation
can be complex. Challenges include managing certificates
for mutual authentication, ensuring client compatibility, and
avoiding service disruptions due to misconfiguration [30, 33].
Nonetheless, when properly deployed and integrated with di-
rectory services like Active Directory, 802.1X forms a critical
layer of defense in modern enterprise networks.

In conclusion, IEEE 802.1X is an essential mechanism for
enforcing authenticated, role-based access at the network edge.
It combines strong identity verification with flexible policy

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

125

application, forming a resilient barrier against unauthorized
access and internal threats.

C. Centralized Access Management via Active Directory and
LDAP Authentication

Access control is a foundational building block of network
security, ensuring that only authorized users can access critical
systems and resources. Two widely used technologies for
implementing centralized access management are Microsoft’s
Active Directory (AD) [31] and the Lightweight Directory
Access Protocol (LDAP) [32]. Both systems facilitate authen-
tication, authorization, and user management across a range
of services and devices, albeit with different implementations
and scopes.

Active Directory (AD) is a directory service developed by
Microsoft for Windows domain networks. It acts as a central-
ized repository of user credentials, group memberships, and
security policies. AD enables administrators to enforce Role-
Based Access Control (RBAC) through Group Policy Objects
(GPOs), automate login scripts, and manage user rights at
scale. It also supports Kerberos-based authentication, which
enhances security through ticket-based access mechanisms.

LDAP, on the other hand, is an open and vendor-neutral
protocol used to access and manage distributed directory
information services. While AD itself supports LDAP as
one of its interfaces, LDAP can also be implemented in a
platform-agnostic manner using solutions such as OpenLDAP
or Apache Directory. LDAP directories typically organize
information in a hierarchical structure and are used for cen-
tralizing authentication across services such as email servers,
intranet portals, VPNs, and UNIX systems.

In enterprise environments, a centralized identity and access
management (IAM) system is often built around AD, which
integrates seamlessly with LDAP-aware services. This central-
ization facilitates consistent enforcement of security policies,
simplifies user onboarding and offboarding, and reduces the
administrative burden associated with managing multiple local
accounts. It also enables Single Sign-On (SSO), allowing users
to authenticate once and gain access to a variety of authorized
services without repeated logins.

Moreover, integration with federated identity systems and
multi-factor authentication (MFA) further strengthens the se-
curity posture. AD and LDAP are often combined with other
authentication frameworks, such as Security Assertion Markup
Language (SAML) and OAuth (Open Authorization), espe-
cially in hybrid environments that span both on-premises and
cloud infrastructures.

Overall, the use of Active Directory and LDAP for access
management supports scalability, interoperability, and a high
level of control, making them indispensable components of
modern enterprise security architectures.

IV. PROPOSED SYSTEM

This section presents a comprehensive overview of our
proposed system, designed to significantly enhance network
security and efficiency through advanced ACL management
and authentication mechanisms.

International Journal on Advances in Security, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/security/

A. Previous Works: Problem and Approach

Building on our established framework for automating ACL
generation through statistical analysis of communication pat-
terns, this work seeks to further leverage and enhance the
existing infrastructure. Our initial efforts in [34] laid the foun-
dational groundwork for this approach, which saw significant
development and refinement in subsequent studies, such as
[35]. A primary challenge identified in our exploration was
addressing the need for authentication proof for IP addresses.

We have refined our approach to take advantage of a typical
user database, like Active Directory [31], a standard part
of a company network. This centralized database offers a
significant advantage because user and group management and
their corresponding resource access permissions are already
handled there. We aim to leverage this existing infrastructure
to streamline the process and eliminate redundant tasks for
administrators.

B. Architecture of the Proposed System

In the proposed system, we enhance network security
through Port Access Control, which limits network port access
exclusively to authenticated users. This approach is grounded
in a security model where each port is individually secured
and requires authentication before granting access. As a result,
each user undergoes an authentication process, enhancing
the network’s overall security posture. The process for user
connection is designed with precision to ensure a secure and
efficient authentication mechanism and can be found in Figure
1.

Initially, the system is configured to allow only EAPOL
messages, which are then directed to an authenticator compo-
nent. This step ensures that there is no communication before
the client authenticates.

The SDN Controller checks its internal state for pre-
configured users based on MAC and IP addresses. This in-
formation is crucial for comparing against new data received
during authentication. Authentication messages for EAPOL
are forwarded to a RADIUS server, which validates the cre-
dentials against a common user database, typically an Active
Directory.

Upon successful authentication, the system assigns an IP
address to the specific MAC address by inserting a record
in a DHCP server. This procedure ensures that the assigned
IP address corresponds to a specific MAC address and is
associated with a specific port. The system then generates
User-Specific Access Control Lists tied to a particular port
by requesting user groups for the specific username from the
Active Directory via LDAP. The fundamental idea is that users
in the same group as a specific server should also have access
to that server. For instance, if the user Ben is a member of the
Mail group, to which our Mailserver also belongs, the system
creates ACLs permitting this specific traffic. Consequently, a
whitelist is established to allow this connection while blocking
all other traffic.

The system can identify users labeled as servers, which
differ from standard clients, through a unique identifier group

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

126

International Journal on Advances in Security, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/security/

Client PC OpenFlow Switch

SDN Controller

Radius Active Directory

Connect '
M Access Request NE
*——> >

User Authenticated?

Actor

Apply ACL

Forward Auth Result

:I Check Internal Status

Forward Access Request | LDAP Authentication

Result Authentication

Result Authentication

Assign IP
to MAC
User Groups

ACL Based on
User Groups
& State Network

Request User Groups

Figure 1. Dynamic ACL Adaptation based on Authentication Events

assigned explicitly to servers. The same concept could also
be implemented using specific roles depending on existing
usage in a company network, but in our case, we focused
on groups. Thus, any user belonging to this shared group
is able to establish a connection with the designated server.
A port scan is conducted for servers to identify open ports
and protocols. This information is linked to the user group of
the server. For clients, the system constructs ACLs based on
user groups and existing database information about servers,
ensuring only communication between the user’s MAC and IP
address and the server’s IP address and port. Since only the
port is required for enforcing ACLs, the mechanism naturally
extends to multiple SDN switches, as the ACL is bound to a
port on a switch rather than a specific device.

Administrators can create templates for specific scenarios,
such as restricting SSH access to administrators only. For
example, port 22 can be explicitly bound to the Administrator
group. These templates are scanned before actual ACL gen-
eration, with higher priority than user roles and dynamically
discovered ports. Templates are also essential for managing
Internet traffic, with administrators defining routing rules that
cannot be derived automatically from database information.

Since updates of active users and checks for new ports on
servers occur periodically (once a day by default, configurable
by administrators), the system maintains a minimal ACL set
and removes unused entries if a host is no longer connected,
thereby improving efficiency [36].

C. Dynamic Authentication Events and IDS Integration

In addition to static ACL generation, the system accounts
for dynamic authentication events. An LDAP proxy contin-
uously monitors authentication activities to detect suspicious
behavior, such as repeated failed login attempts for a particular
service. Inspired by ALERT-ID [12], our approach extends the
concept by directly adapting the network configuration when
malicious behavior is observed.

Suspicious traffic is identified based on configurable thresh-
olds. For example, an alarm is triggered when more than fifty
packets are sent to invalid IP addresses, when communication
attempts are made with five or more distinct blocked IPs (a
common indicator of scanning activity), or when repeated
connection attempts target sensitive ports such as SSH or non-
standard high ports. When such conditions are met, the SDN
Controller modifies OpenFlow rules to redirect all traffic from
the suspicious user through the integrated Intrusion Detection
System (IDS). This redirection applies to both internal and
external flows, enabling centralized inspection of potentially
malicious activity.

The IDS, implemented with Snort [37] in our prototype,
evaluates the forwarded traffic and raises alarms that are
logged in a structured JSON format. Depending on the severity
of the alarm, different mitigation strategies are applied. For
high- and medium-priority alarms, the system immediately
updates ACLs to block the offending traffic and sends an alert
to the administrator. For low-priority alarms, ACLs remain
unchanged, but the administrator is notified so that the event
can be investigated further.

This integration of threshold-based detection, real-time rule
updates, and IDS alarms provides a layered defense mecha-
nism. It ensures that suspicious activity is promptly identified
and that the system can react adaptively, either by isolating
malicious traffic or by escalating alerts to administrators.

D. Quantitative Analysis of Access Control Lists

We rely on a quantitative understanding of ACLs to evaluate
the system’s complexity. Using ACL counts as a metric is
consistent with prior SDN research, where the number of
ACL policies is directly linked to controller processing delay
and scalability [36]. The ACL count is determined based on
user, group, and port configurations, providing insights into
the scale and complexity of the access control mechanisms.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

127

o Number of ACLs per User (V,): This metric quantifies
the number of ACL entries associated with each user. It
is calculated by summing the ports across all groups a
user belongs to, given by

G;
g=1

where P, is the number of ports for group g for user ¢

and G; is the total number of groups for user .

« Global Number of ACLs (INg;opq1): The total number of
ACLs across the network reflects the overall complexity
of access control. It is computed as

U
Ngiobat = Y Nu,)
=1

where U represents the total number of users, and N,
is the number of ACLs for user 7.

o Number of ACLs per Switch (NVy): Understanding the
ACL count for each switch helps in optimizing access
control at the local level. This metric is determined by

N, =Y N, 3)
€S
where S is the set of users connected to the switch, and

N, represents the number of ACLs for user ¢ in the set
S.

These metrics not only provide a clear measure of system
complexity but also form the basis for comparing different
security configurations in the subsequent evaluation.

The subsequent section introduces the formal security model
and threat analysis, establishing the assumptions and adversary
capabilities before moving to implementation details.

V. FORMAL SECURITY MODEL AND THREAT ANALYSIS

This section formalizes the security objectives, assumptions,
and threats addressed by the proposed system. We begin by
outlining the intended security goals and the structural system
model from a security standpoint. This is followed by trust
assumptions, a detailed adversary model, and a threat analysis.
We then extend the analysis to account for Intrusion Detection
System (IDS) integration, before reflecting on limitations and
directions for future work.

A. Security Objectives

The proposed system aims to strengthen network security
through several concrete objectives. First, authenticated net-
work access ensures that only verified users and devices may
participate in network communication. Second, fine-grained
access control is enforced via dynamically generated Access
Control Lists (ACLs) based on user group membership, which
are centrally managed through Active Directory. The system
introduces accountability by logging authentication attempts
and access control decisions, enabling forensic analysis. A key

International Journal on Advances in Security, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/security/

focus lies in dynamic response to emerging threats: repeated
authentication failures trigger ACL updates, while only client
traffic that violates an ACL is redirected to the IDS. Adhering
to the principle of least privilege, clients are granted access
only to services required by their role. Finally, the system
ensures that security measures balance confidentiality and
integrity with availability, so that malicious clients can be
isolated without impairing legitimate traffic.

B. System Model

From a security perspective, the system model comprises
multiple entities and communication interfaces. Clients rep-
resent end-user devices that must authenticate before being
granted access to the network. Servers provide services such
as mail or GitLab and are associated with defined user groups.
The authenticator component is realized through an OpenFlow
switch that enforces port-based access control using IEEE
802.1X. The authentication backend consists of a RADIUS
server and an Active Directory instance that validates creden-
tials and provides group membership information. A logically
centralized SDN Controller orchestrates ACL generation and
enforcement, while an LDAP proxy monitors authentication
behavior. Suspicious traffic can be mirrored to a monitoring
application or redirected through an IDS for deeper inspection.

All communication between components is assumed to be
secured using encrypted and authenticated channels. EAPOL
messages are transmitted between clients and the authenticator,
TLS is used between the SDN Controller and the OpenFlow
switch, and LDAP traffic is protected when transiting to the
directory server. This design confines the trust boundary to a
minimal set of components.

An architectural overview of these entities and their inter-
actions is shown in Figure 2. While this section describes
the model from a security standpoint, the detailed technical
implementation is presented in Section VI.

C. Trust Assumptions

Several trust assumptions underpin the security guarantees
of the system. The SDN Controller is assumed to be secure
and uncompromised, as it orchestrates all access policies.
The authentication server is assumed to correctly validate
credentials and return accurate group memberships. The un-
derlying user database, such as Active Directory, is assumed to
provide accurate and up-to-date user and group information.
Communication channels are presumed to be encrypted and
authenticated to prevent interception or tampering. Switch
firmware and enforcement logic are assumed to function cor-
rectly and reliably execute ACL rules. IDS components such as
Snort are assumed to operate as specified, correctly classifying
traffic according to known signatures. Finally, administrator-
defined templates are considered trustworthy and free from
malicious intent.

D. Threat Model

The system accounts for both external and internal adver-
saries. External adversaries may attempt to gain unauthorized

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

128

International Journal on Advances in Security, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/security/

TABLE I. Threats, Vulnerabilities, and Mitigations

Threat Vulnerability Impact Mitigation

Unauthorized access by unauthenticated de- | Absence of port-level control High Port-based authentication with IEEE 802.1X

vice

Brute-force or credential stuffing attacks No rate limiting on login attempts Medium | LDAP proxy monitors failures; ACLs up-
dated dynamically

Privilege escalation by authenticated users No role-based access control High ACLs based on user groups and administrator
templates

MAC/IP spoofing Identities not bound to MAC/IP High IP bound to authenticated MAC and port

Controller compromise Centralized SDN control Critical Controller hardening, TLS restriction, redun-
dancy

ACL evasion or bypass Misconfigured or permissive rules Medium | Automatically generated fine-grained ACLs

IDS overload Indiscriminate traffic mirroring Medium | Two-stage detection: monitoring threshold
before IDS redirection

access without valid credentials or employ brute-force meth-
ods to compromise legitimate accounts. Internal adversaries
include compromised users seeking to escalate privileges or
move across the network.

Attackers are assumed capable of passively observing or
actively injecting traffic. They may attempt to impersonate
other users via spoofed MAC or IP addresses, perform cre-
dential stuffing, or exploit misconfigurations. Their primary
goals include bypassing authentication, accessing restricted
services, evading detection, and maintaining persistence. In
addition, adversaries may deliberately generate high volumes
of suspicious traffic to overwhelm the IDS or exploit delays
between detection and mitigation.

E. Threat Analysis and Mitigation

Table I summarizes key threats addressed by the system.
The classification follows established SDN threat taxonomies
that group attacks into spoofing, unauthorized access, con-
troller compromise, and policy manipulation, as discussed for
example by Sharma and Tyagi [19] and Farooq et al. [29]. Each
entry outlines the exploited vulnerability, its impact, and the
mitigation strategy implemented. The system integrates mul-
tiple layers of defense, ranging from preventive mechanisms
such as 802.1X-based port authentication to reactive measures
like dynamic ACL updates and IDS redirection. Together,
these mechanisms minimize attack surfaces, detect anomalous
behavior, and respond swiftly to emerging threats.

FE. Unauthorized Network Access

Multiple attack scenarios fall under unauthorized access.
Privilege escalation occurs when users attempt to access ser-
vices beyond their roles, such as SSH to administrative servers.
ACL templates restrict such access to authorized groups.
Brute-force or credential stuffing attacks target services like
GitLab, attempting logins with common credentials. These
are detected by counting failed authentication events via the
LDAP Proxy and mitigated by blocking the offending client
or redirecting its traffic through the IDS. Spoofing is thwarted
by binding IP addresses to authenticated MAC addresses and
ports, preventing impersonation.

An additional concern is compromise of the authentication
backend, such as the LDAP server. While part of the trusted
computing base, a compromise could undermine group-based

ACL generation. Evasion attempts, such as behaving benignly
during authentication but launching attacks later, are addressed
by behavior-based detection. In such cases, traffic can be mir-
rored or redirected to the IDS for deeper inspection, ensuring
continuous protection.

G. Security Limitations

While the proposed system improves security and reduces
administrative overhead, certain limitations remain. First, the
architecture relies on a trusted and centralized controller,
which represents a single point of failure. The trust assump-
tions are static and do not verify runtime integrity, leaving
the system exposed if a core component is compromised.
Second, ACLs are restricted to header-based inspection. This
minimizes performance overhead but prevents detection of
application-layer threats. The IDS redirection strategy also
operates in a reactive, threshold-based manner, which may
delay detection of more adaptive attacks. A further limitation
concerns reliance on IEEE 802.1X. Many legacy or IoT de-
vices do not support this protocol and must be handled through
weaker fallback mechanisms such as VLAN isolation or MAC-
based controls, reducing the uniformity of the security model.
Moreover, the system inherently depends on the correctness
of the central user database. Incorrect group assignments or
outdated entries immediately affect ACL generation, as no
secondary validation layer is present. The current evaluation
also remains qualitative. Metrics such as detection latency,
mitigation time, or ACL update overhead have not been
quantified and should be explored in future work.

Finally, while the IDS integration demonstrates feasibility,
the accuracy of detection has not been evaluated. False pos-
itives or false negatives were not measured, and the overall
impact of IDS misclassification on network behavior remains
unexamined.

In summary, the formal model and threat analysis establish
the security guarantees and limitations of the proposed system.
Having defined these foundations, we now turn to the imple-
mentation, where the architecture is realized and integrated
into a working prototype.

VI. IMPLEMENTATION

Following the conceptual framework outlined in Section IV,
the practical implementation of the Port Access Control system

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

129

integrated various components. The goal was to create a work-
ing prototype that demonstrates the feasibility of fine-grained
access control and prepares the ground for the evaluation. The
design in Figure 2 presents how different parts work together.

Client(s)

Server
=

Active Directory

”

I
! \ |

LDAP
Proxy

User Dashboard

Faucet

l T IDS
802.1X daemon —>» ACL IDS Forwarder —*}@

|

DHCP Server

L—>

Server

DPORT | [Sean
ANALYSE

Group to Rule
Converter

o

SDN Controller

Figure 2. Architecture of the SDN Controller

We chose the Faucet SDN Controller [38] for our prototype,
which uses Ryu [39] in the backend and Gauge to view events
on the switch. It has the considerable advantage that the rules
are defined in YAML (YAML Ain’t Markup Language). One
significant advantage of this architecture is that these files
are human-readable and easy to understand. The initial setup
of the OpenFlow switch contains only port information and
requires authentication before connecting to the network. Fur-
thermore, specific default rules, such as special treatment for
the SDN Controller and the Active Directory, were specified
beforehand, as these settings are essential when configuring
a new network. We used the 802.1X daemon Chewie [38]
as a starting point, and then it was heavily adapted to obtain
user groups via a simple LDAP proxy. A second service called
Group to Rule applies the ACLs as discussed in Section IV. An
example rule can be found in Figure 3. It shows the resulting
rule with a defined protocol, port, source MAC and IP address,
and destination IP address. Since this is directly applied to the
port, no other traffic can pass the OpenFlow switch port.

A Python script that searches for UDP and TCP ports on the
server provides the open ports needed to craft the ACLs. It then
saves this information into a database with the corresponding
MAC address and IP address. One problem is that the server
does not directly have an IP address when we try to scan
it. We must wait until the IP address is handed over via the
DHCP server to start scanning. Therefore, for a server, the
ACLs can only be applied later on and not directly, which is

International Journal on Advances in Security, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/security/

acls:
mac_whitelist_user_ben:
- rule:
dl_type: 0x800 # ipvé
nw_proto: 6 # tcp
tcp_dst: 80 # port
eth_src: 32:90:43:57:£2:01
ipv4_src: 192.168.0.1
ipv4_dst: 192.168.0.9
actions:
allow: True
- rule:
actions:
allow: False

mirror: 3

Figure 3. FAUCET ACL Configuration

not a problem since the default rules still block all access
to the network and only DHCP is then allowed to obtain
an IP address. A simple folder structure was defined for
the templates where an administrator can place templates for
groups and specific ports as well as initial network operations
such as DHCP and DNS.

The dynamic adaptation of ACLs depending on authentica-
tion data is realized via the LDAP Proxy. All servers in the
network attempt to authenticate their users via LDAP bind
requests to the proxy, which then forwards them to the Active
Directory. This setup allows us to track whether authentication
was successful. We implemented a counter for each user
with a configurable threshold (six failed attempts by default),
which resets after a timeout period, similar to the mechanism
described in ALERT-ID [12]. A lightweight monitoring script
parses the authentication logs and forwards suspicious events
to the SDN Controller.

For demonstration purposes, any traffic that would nor-
mally be blocked is mirrored to a dedicated port where a
simple Python counter application is connected. This service
maintains per-host violation counts (based on MAC and IP
addresses) and alerts the SDN Controller once a threshold is
exceeded. When thresholds are crossed, such as repeated at-
tempts to access non-standard ports, scanning activities against
multiple blocked IPs, or persistent connections to invalid des-
tinations, the controller updates the OpenFlow configuration
and enforces stricter handling of the suspicious host.

At this point, the IDS integration becomes active. In our
prototype we used Snort [37], which inspects all traffic from
hosts that exceeded the violation threshold. Critical alarms,
such as confirmed scanning or exploitation attempts, immedi-
ately trigger ACL updates that block the corresponding host
and alert the administrator. Medium-severity alarms also result
in blocking, but the administrator receives a detailed event
log for further analysis. Low-severity alarms are logged and
reported without enforcing automatic blocking, leaving the
final decision to the administrator.

This two-stage design ensures that the IDS is not overloaded
by benign or low-level violations. Faucet’s mirroring capability

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

130

International Journal on Advances in Security, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/security/

TABLE II. ACL CONFIGURATION FOR FIVE CONNECTED CLIENTS

OpenFlow Port | Source MAC Source IP Group | Destination IP | Destination Port | Description
3 1C:69:7A:6D:C6:27 192.168.11.11 | mail 192.168.11.101 | 25, 993, 995 Mailserver
3 1C:69:7A:6D:C6:27 192.168.11.11 | gitlab 192.168.11.102 | 22, 80, 443 GitLab

4 1C:69:7A:43:7C:12 192.168.11.12 | mail 192.168.11.101 | 25, 993, 995 Mailserver
5 1C:69:7A:6D:C8:B0O | 192.168.11.13 | mail 192.168.11.101 | 25, 993, 995 Mailserver
5 1C:69:7A:6D:C8:B0O | 192.168.11.13 | gitlab 192.168.11.102 | 22, 80, 443 GitLab

6 1C:69:7A:6D:C7:EE 192.168.11.14 | mail 192.168.11.101 25, 993, 995 Mailserver
7 1C:69:7A:6D:C8:16 192.168.11.15 | mail 192.168.11.101 25, 993, 995 Mailserver

enables efficient pre-filtering via the counter application, and
only persistent or severe violations cause full redirection
through the IDS. As a result, IDS integration is not a stand-
alone add-on but an embedded part of the access control
pipeline managed by the SDN Controller.

The implementation phase reaffirmed the proposed system’s
potential to enhance network security through fine-grained
access controls and adaptive IDS support. At the same time,
it highlighted the complexities of managing an extensive
rule set, especially in larger networks where automated rule
aggregation and optimization become critical.

VII. EVALUATION

In this evaluation chapter, we begin with a detailed exam-
ination of the technical aspects of our experimental setup,
laying the groundwork for a thorough assessment. We then
delve into the feasibility of the proposed system, followed by
a comparative analysis of its efficiency and complexity against
existing systems. This analysis sets the stage for a nuanced
discussion synthesizing our findings and their implications.

A. Experimental Conditions

Our experimental setup was designed to mirror a realistic
environment consisting of multiple physical PCs and servers
to simulate a conventional corporate network infrastructure.
The network configuration included five Windows clients. We
assigned the clients to different user groups in the Active
Directory. The configuration of each client and its connected
port can be found in Table III. In setting up our experiment,
we went with a mix that one would typically find in an office:
a mail server for emails and a GitLab instance for the devs
to collaborate on code. This way, we could see how different
roles, like developers needing GitLab and managers relying
on emails, would interact with the system. It is a practical
approach that helps us understand how our setup performs in
a real-world scenario.

TABLE III. CLIENTS IN THE NETWORK

Client Name | Port Source MAC Groups
Clientl 3 1C:69:7A:6D:C6:27 mail, gitlab
Client2 4 1C:69:7A:43:7C:12 mail
Client3 5 1C:69:7A:6D:C8:B0 | mail, gitlab
Client4 6 1C:69:7A:6D:C7:EE mail
Client5 7 1C:69:7A:6D:C8:16 mail

At the core of our network was an Active Directory on
a Windows Server 2019, connected to a dedicated port at
the OpenFlow switch. This switch was a Linux PC running

Ubuntu 22.10, with an Intel(R) Core(TM) i7-8700 CPU sup-
porting OpenFlow protocol version 1.3.

This detailed setup provides a solid foundation for evaluat-
ing the system’s feasibility, performance, and complexity.

B. Feasibility

The project aimed to demonstrate the feasibility of such a
system and highlight its advantages. Therefore, we conducted
multiple experiments to verify the system’s operability to
achieve this. In our earlier conference paper [1], we presented
two experiments demonstrating feasibility: initial connection
and ACL enforcement, and failed login handling. In this
extended version, we add a third experiment that evaluates
the integration of an IDS for redirecting suspicious traffic.
Together, these three experiments provide a comprehensive
assessment of the system.

1) Experiment 1: Connection to the network: In our ini-
tial experiment, we aimed to verify the functionality of the
system’s initial configuration and the practical application of
Access Control Lists. We began by attempting to connect
a server to the network. Initially, all packets except EAP
packets were blocked, preventing any network connection
without proper authentication. To facilitate authentication, we
configured the server’s wpa_supplicant with EAP after setting
up a dedicated user account in the Active Directory for the
server, marked by the “’server” group identifier, to distinguish
it as such. Additionally, the server was assigned to the “mail”
group to define its access rights. The authentication process
utilized standard Username and Password credentials defined
within the Active Directory.

Upon initiating these configurations, we observed successful
authentication, followed by the server obtaining an IP address
via DHCP. The IP address assignment was managed by
the SDN Controller, ensuring the server’s connectivity post-
authentication. We then proceeded with a port scan, which
was feasible only after the OpenFlow switch recognized the
server’s IP, confirming that the server was operational. The
procedure was repeated for the second GitLab server.

Subsequently, we connected a client machine to the net-
work. Like the server setup, this client was denied network
access until authentication credentials were provided. After
authentication, the SDN Controller dynamically generated
ACLs based on the client’s group memberships.

For example, the first client, identified as a developer, was
granted access to both the mail server and GitLab, as reflected
in the applied ACLs (refer to Table II, lines 1 and 2). This

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

131

access control was strictly enforced, with all unauthorized traf-
fic being blocked at the port level based on the authenticated
source MAC address and specified port. In contrast, a client
identified as a manager, and thus only requiring access to the
mail server, demonstrated restricted network access in line
with their role (refer to Table II, line 3). Attempts to access
GitLab by this client were blocked, illustrating the ACLs’ role-
based access control. After connecting all clients, each client
and port results can be found in Table II.

Upon issuing a logoff command to the RADIUS server,
all associated ACLs were cleared, reverting the system to
its default state of blocking all traffic from the disconnected
client. Logging in with a different username on the same PC
triggered a reallocation of ACLs, aligning with the new user’s
access rights. This experiment demonstrated the feasibility of
initially creating and effectively applying ACLs within our
network environment.

2) Experiment 2: Failed Logins: In the second experiment,
we tested failed login attempts to evaluate the system’s re-
sponse mechanisms. This test simulated incorrect authentica-
tion attempts on the GitLab server to observe the system’s
reaction.

The experiment began with a series of failed login attempts,
with each unsuccessful attempt logged by the SDN Controller.
After the sixth failed attempt, the SDN Controller adjusted the
ACLs, cutting off the client’s access to the server and other
network components. An alert was automatically sent to the
network administrator, who could either restore the client’s
access after a successful re-authentication or suspend the client
for further investigation.

Additionally, we tested the network’s traffic mirroring
feature. In this part of the experiment, despite multiple
failed login attempts, the client was not disconnected from
the network. Instead, the client’s traffic was mirrored to a
specific port on an OpenFlow switch. This procedure was
verified using tcpdump to confirm that the traffic mirroring
was functioning as intended, without the integration of an
IDS, since this was not in the scope of the experiment.

3) Experiment 3: Redirecting Suspicious Traffic to IDS:
The third experiment evaluated the system’s ability to identify
suspicious clients and to enforce dynamic redirection through
the IDS. The scenario consisted of the following key steps:

1) Introduce a malicious host that violated predefined poli-
cies.

2) Detect repeated violations until defined thresholds are
exceeded.

3) Redirect all traffic from the host through the IDS.

4) Generate malicious traffic samples to trigger Snort rules.

5) Apply mitigation actions depending on alert severity.

To simulate malicious activity in detail, we introduced a host
that attempted to connect to non-standard ports, repeatedly ac-
cessed invalid IP addresses, and performed network scanning
across multiple targets. Each of these actions incremented the

International Journal on Advances in Security, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/security/

violation counter maintained by the monitoring application,
which received mirrored traffic from the OpenFlow switch.

Once the violation thresholds were exceeded, the SDN Con-
troller updated the Faucet rules for the offending host. Instead
of simply dropping further packets, the rules were rewritten so
that all subsequent traffic from the host was forwarded through
the IDS. In our prototype, this redirection was achieved by
replacing the mirror action with an output action that
directed the traffic to the IDS ingress port.

To further assess the system’s responsiveness, we generated
malicious traffic using publicly available attack samples and
network scanning tools in order to trigger common Snort rules.
Snort [37], deployed as the IDS in our setup, successfully
identified the injected traffic and produced alarms. Depending
on the severity of the alert:

o Critical alerts caused the controller to immediately block
the host and notify the administrator.
e Medium alerts also resulted in blocking but generated
detailed logs for review.
o Low alerts were logged and reported without automatic
blocking.
Figure 4 shows the CPU usage of the Snort instance during
a 600-second evaluation run. The annotated timeline of events
is as follows:

o 0s: Start of experiment, baseline traffic only.

o 152s: First client exceeded thresholds and was redirected
to IDS.

e 307s: A second malicious client was added, increasing
IDS load.

e 531s: Snort raised a critical alert for the first client; the
SDN Controller blocked it, reducing IDS load.

This progression highlights how each additional client mea-
surably increased CPU usage on the IDS, while removing a
client reduced load again. CPU utilization is strongly corre-
lated with traffic volume, consistent with prior measurements
by Lukaseder et al. [40]. Although our test traffic was de-
liberately crafted to repeatedly trigger Snort rules (leading to
a higher per-client load than in production), the experiment
demonstrates that selective redirection scales with the number
of suspicious hosts while preventing the IDS from being
overwhelmed with benign traffic.

C. Complexity and Efficiency

To evaluate our system’s complexity and OpenFlow rule
management capability, we compared it against other SDN
security methods by examining the number of OpenFlow
rules in different scenarios. Our analysis included a baseline
scenario without ACLs, a basic ACL setup, and scenarios
involving VLANSs. The scenario with Basic ACLs has only
rules for direct IP access. That means we only specify that
user X can access server Y without further defining which
ports or protocols. The VLAN example does not have any
specific ACLs. It splits the users into two groups, usually some
kind of department in a corporate network. This option has the
disadvantage of allowing clients from the same department to

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

132

First client added to IDS

Second client added to IDS

International Journal on Advances in Security, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/security/

Alert triggered
First client blocked
T

10 T T T T T I T T T T ‘
—— CPU usage | | i
8- 1 1 1 s
g | 1 |
o 6| | | i
4 | ‘
) ! ‘
> 4] ; : i
[a W | I !
U | | |
2 3 3 3
0 I I I I I L I I I I L
0 50 100 150 200 250 300 350 400 450 500 550 600
Time (s)

Figure 4. CPU usage over time with key IDS events highlighted.

communicate, which does not prevent malware from spread-
ing.

Table IV summarizes the OpenFlow rule count for each
scenario. As observed, the number of OpenFlow rules di-
rectly reflects the count of Faucet ACLs. As discussed in
Equation (2), the number of ACLs will increase linearly
with the number of users. The dynamic ACL configuration,
while more complex, demonstrates the system’s flexibility
and responsiveness to network changes without significantly
impacting performance.

TABLE IV. RULE COUNT COMPARISON

Scenario Faucet ACLs | OpenFlow Rules
No ACLs 0 27
Basic ACLs 8 67
VLANSs N/A 67
Dynamic ACLs 32 91

D. Discussion

In discussing the outcomes and implications of our ex-
periments, it is essential to consider both the implemented
system’s strengths and potential challenges. To offer a com-
prehensive understanding of our system’s enhanced perfor-
mance and its innovative approach to network security and
management, we performed an extensive comparison across
several key metrics, including security level, scalability, and
manageability. This comparison, detailed in Table V, is based
on empirical data from ACL number analytics, a comparative
analysis of system architectures, and their maintenance needs,
highlighting our proposed system’s superiority in terms of
security, scalability, and ease of management.

The introduction of automated, fine-grained whitelist ACLs
represents a significant step forward in network security man-
agement. The configuration process substantially decreases
administrative overhead and mitigates the risk of human er-
ror, which is prevalent in manual configurations. A crucial

advantage of this approach is the centralization of security de-
cisions, such as access rights, in a singular user database. This
consolidation ensures that modifications to access rights are
uniformly applied across the network and all services utilizing
this common user database, thereby enhancing consistency and
security within the system. As demonstrated in Experiment 1,
the automation of ACL configuration significantly reduced ad-
ministrative overhead since all needed restrictions are applied
individually for each client without the need for additional
adaptation by the administrator. In contrast, this centralized,
automated approach ensures that only authenticated users and
their associated MAC addresses are actively maintained in the
system, limiting access to authorized entities and inherently
reducing the risk of unauthorized access. Another significant
benefit of our approach is its scalability and ease of integration
across multiple switches without additional overhead. Since
ACLs and clients are bound to specific ports and not to
the physical switches themselves, our system can seamlessly
scale to accommodate an extensive network infrastructure with
multiple SDN switches. ACLs are applied uniquely to each
switch, as delineated in Equation (3), ensuring efficient and
tailored security measures are in place, irrespective of the size
or complexity of the network.

However, this automation and simplification come at the
cost of increased complexity due to the more significant
number of ACLs required to maintain fine-grained control
over network access. The number of ACLs does not directly
impact the system’s performance since it only inspects the
TCP header to minimize performance impact, compared to,
for example, complex rules that inspect the TCP payload.
According to Cabrera et al. [41], the time required to check
the payload is, on average, 4.5 times longer than that required
for header checks. Therefore, even with many ACL rules,
the focus on header information ensures minimal impact on
network throughput, as even a single ACL with a TCP header
rule necessitates the inspection of every packet. One drawback
is that we need to prepare the clients and the server to perform

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/security/

TABLE V. COMPARISON OF NETWORK SECURITY AND MANAGEMENT APPROACHES

134

Metric No ACLs | Basic ACLs VLANs Resonance[16] ACL Based on X812[18] | Proposed System
Security Level Low Medium Medium High Very High Very High
Port Security None None None None Full Full
Performance Impact Low Medium Medium Moderate Moderate Moderate
Scalability High Moderate Good Moderate Moderate Excellent
Manageability Easy Moderate Moderate Moderate Moderate Easy
Centralization None Low Low Medium Medium High
Flexibility Low Moderate Low Very High Very High High

Cost Efficiency High Moderate Moderate Low Moderate High
Integration Capability Seamless Moderate Challenging High High Low
Resilience Low Medium Medium High High High
Automation & Dynamic Response None None None Semi-Automated Semi-Automated Fully Automated
ACLs based on Authentication None None None None None Supported

an 802.1X authentication.

The experiments involving IDS redirection further con-
firmed the system’s scalability and efficiency. As shown in
Figure 4, the CPU usage of Snort increased proportionally
with the number of malicious clients redirected, but decreased
again once clients were blocked by the SDN Controller.
This demonstrates that the selective forwarding mechanism
ensures the IDS is only engaged for traffic that truly warrants
inspection, preventing overload and allowing for efficient
use of IDS resources. Such integration provides a stronger
security posture without sacrificing performance for benign
traffic, which continues to be handled exclusively by the ACL
framework.

One of the more critical considerations is the system’s
approach to handling failed login attempts, as demonstrated
in Experiment 2. Completely blocking access after a series of
incorrect credentials can safeguard against brute-force attacks
but also pose a risk to business continuity. For instance,
automated tools using outdated credentials could inadvertently
trigger these security measures, leading to unnecessary dis-
ruptions. This aspect of the system necessitates a careful
balance between maintaining robust security and ensuring
uninterrupted business operations.

Integrating traffic mirroring for suspicious hosts presents a
nuanced approach to enhancing security monitoring without
overloading the network or the IDS. By selectively mirroring
traffic from potentially compromised hosts, the system can
focus on analyzing and responding to genuine threats, improv-
ing overall security efficiency. This concept aligns with the
approach discussed in [42], which proposes a clustering-based
flow grouping scheme that assigns network flows to various
IDSs based on routing information and flow data rates, aiming
to optimize the load distribution among IDSs and enhance
attack detection capabilities.

VIII. CONCLUSION AND FUTURE WORK

In conclusion, the proposed system presents a straight-
forward yet powerful framework that significantly enhances
network security by enforcing fine-grained access control
rules. By leveraging a common user database, such as Active
Directory, and binding access controls to specific MAC ad-
dresses, the system ensures that only authenticated users can

access network ports, thereby establishing a robust security
posture.

A key contribution of this work is the integration of an
Intrusion Detection System into the access control framework.
Rather than deploying the IDS inline for all traffic, our
approach mirrors suspicious flows to a monitoring applica-
tion and selectively redirects offending hosts once violation
thresholds are reached. This two-stage mechanism ensures that
benign traffic is not subjected to costly IDS inspection, while
malicious clients are efficiently isolated and analyzed. As
demonstrated in our evaluation, this selective redirection pre-
vents IDS overload, allows scalable operation, and improves
the responsiveness of the SDN Controller to detected threats.

Although the results demonstrate the feasibility of the pro-
posed architecture, several limitations remain. The evaluation
was conducted in a controlled laboratory environment, which
restricts the generality of the findings. The approach relies
on a trusted and centralized SDN Controller as well as correct
group assignments in the user database, and these assumptions
may not hold in all deployments. IDS behavior was not
evaluated with respect to false positives or false negatives, and
performance under larger or more dynamic network conditions
remains open for further study.

Future work should extend the evaluation and broaden the
applicability of the system. A first step is a more detailed
performance study, including metrics such as ACL update
latency, controller processing times, IDS alert latency, and the
behavior of the system under higher client loads. The IDS in-
tegration should also be assessed in a more systematic way, for
example by measuring false-positive and false-negative rates
and by comparing different inspection strategies. Additional
experiments with larger deployments would help validate scal-
ability, while integration with advanced monitoring systems
such as Zeek [43] could widen the visibility of network flows
and enable deeper analyses. Another line of research concerns
the interaction between dynamically generated ACLs, existing
firewall rules, and higher-level network policies. Incorporating
policy conflict detection and resolution mechanisms from
related SDN research could further strengthen robustness
in hybrid environments. Finally, evaluating unknown attack
classes is orthogonal to the access-control-focused design of
this system but may complement future studies that investigate
more general SDN-based threat detection frameworks.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/security/

ACKNOWLEDGMENT

The authors would like to thank Prof. Hiroki Takakura for
useful advice. This work was partially supported by JSPS
KAKENHI Grant Number JP23K28086 and JP24K14959.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

REFERENCES

F. Griefler, A. Shinoda, H. Hasegawa, and H. Shimada,
“Automating SDN-ACLs with user groups and authenti-
cation events,” in Proceedings of the Thirteenth Interna-
tional Conference on Networks (ICN 2024). Barcelona,
Spain: IARIA, May 2024, pp. 5-12.

H. Zhou, C. Wu, M. Jiang, B. Zhou, W. Gao, T. Pan,
and M. Huang, “Evolving defense mechanism for fu-
ture network security,” IEEE Communications Magazine,
vol. 53, no. 4, pp. 45-51, 2015.

S. T. Ali, V. Sivaraman, A. Radford, and S. Jha, “A
survey of securing networks using software defined net-
working,” IEEE Transactions on Reliability, vol. 64,
no. 3, pp. 1086-1097, 2015.

F. Bannour, S. Souihi, and A. Mellouk, “Distributed
SDN control: Survey, taxonomy, and challenges,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 1, pp.
333-354, 2017.

P. Wadhwani, “Software defined networking (sdn)
market report, 2024-2032)” Market Research
Report, Global Market Insights Inc., Report ID:

GMI2395, 2024, accessed: 2025-12-09. [Online]. Avail-
able: https://www.gminsights.com/industry-analysis/
software-defined-networking-sdn-market

E. S. Ali, R. Amin, M. Majeed, and M. M. Igbal, “Dy-
namic ACL Policy Implementation in Software Defined
Networks,” in 2022 International Conference on IT and
Industrial Technologies (ICIT), Oct 2022, pp. 01-07.

S. T. Yakasai and C. G. Guy, “Flowldentity: Software-
defined network access control,” in 2015 IEEE Confer-
ence on Network Function Virtualization and Software
Defined Network (NFV-SDN). 1EEE, 2015, pp. 115-
120.

M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McK-
eown, and S. Shenker, “Ethane: taking control of the
enterprise,” in Proceedings of the 2007 Conference on
Applications, Technologies, Architectures, and Protocols
for Computer Communications, ser. SIGCOMM ’07.
New York, NY, USA: Association for Computing Ma-
chinery, 2007, p. 1-12.

D. M. Ferrazani Mattos and O. C. M. B. Duarte, “Auth-
Flow: authentication and access control mechanism for
software defined networking,” Annals of Telecommunica-
tions, vol. 71, pp. 607-615, 2016.

T. Xing, D. Huang, L. Xu, C.-J. Chung, and P. Khatkar,
“SnortFlow: A OpenFlow-Based Intrusion Prevention
System in Cloud Environment,” in 2013 Second GENI
Research and Educational Experiment Workshop, March
2013, pp. 89-92.

A. Le, P. Dinh, H. Le, and N. C. Tran, “Flexible
Network-Based Intrusion Detection and Prevention Sys-

[18]

[23]

tem on Software-Defined Networks,” in 2015 Interna-
tional Conference on Advanced Computing and Applica-
tions (ACOMP), Nov 2015, pp. 106-111.

J. Chu, Z. Ge, R. Huber, P. Ji, J. Yates, and Y.-C. Yu,
“ALERT-ID: analyze logs of the network element in real
time for intrusion detection,” in Research in Attacks,
Intrusions, and Defenses: 15th International Symposium,
RAID 2012, Amsterdam, The Netherlands, September 12-
14, 2012. Proceedings 15. Springer, 2012, pp. 294-313.
A. H. Janabi, T. Kanakis, and M. Johnson, “Survey: In-
trusion detection system in software-defined networking,”
IEEE Access, vol. 12, pp. 164 097-164 120, 2024.

B. Susilo and R. F. Sari, “Intrusion detection in soft-
ware defined network using deep learning approach,” in
2021 IEEE 11th Annual Computing and Communication
Workshop and Conference (CCWC). IEEE, 2021, pp.
0807-0812.

B.-X. Wang, J.-L. Chen, and C.-L. Yu, “An ai-powered
network threat detection system,” IEEE Access, vol. 10,
pp- 54 029-54 037, 2022.

A. K. Nayak, A. Reimers, N. Feamster, and R. Clark,
“Resonance: dynamic access control for enterprise net-
works,” in Proceedings of the 1st ACM Workshop on Re-
search on Enterprise Networking, ser. WREN °09. New
York, NY, USA: Association for Computing Machinery,
2009, p. 11-18.

V. Shah and P. Yadav, “An implementation of dot 1x for
secure network access in sdn,” in 2025 6th International
Conference on Intelligent Communication Technologies
and Virtual Mobile Networks (ICICV). IEEE, 2025, pp.
1264-1269.

B. J. C. de A. Martins, D. M. Mattos, N. C. Fernandes,
D. Muchaluat-Saade, A. B. Vieira, and E. F. Silva,
“An Extensible Access Control Architecture for Software
Defined Networks based on X.812,” in 2019 IEEE Latin-
American Conference on Communications (LATINCOM),
2019, pp. 1-6.

P. K. Sharma and S. Tyagi, “Security enhancement in
software defined networking (sdn): A threat model,”
International Journal of Advanced Computer Science and
Applications, vol. 12, no. 9, 2021.

S. Pradeep, Y. K. Sharma, U. K. Lilhore, S. Simaiya,
A. Kumar, S. Ahuja, M. Margala, P. Chakrabarti, and
T. Chakrabarti, “Developing an sdn security model (en-
sures) based on lightweight service path validation with
batch hashing and tag verification,” Scientific Reports,
vol. 13, no. 1, p. 17381, 2023.

Y. Meng, Z. Huang, G. Shen, and C. Ke, “A security
policy model transformation and verification approach
for software defined networking,” Computers & Security,
vol. 100, p. 102089, 2021.

P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson,
and G. Gu, “A security enforcement kernel for openflow
networks,” in Proceedings of the First Workshop on Hot
Topics in Software Defined Networks, 2012, pp. 121-126.
H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “Flowguard:

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

135

International Journal on Advances in Security, vol 18 no 3&4, year 2025, http.//www.iariajournals.org/security/

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

Building robust firewalls for software-defined networks,”
in Proceedings of the First Workshop on Hot Topics in
Software Defined Networks, 2014, pp. 97-102.

A. Khurshid, W. Zhou, M. Caesar, and P. B. God-
frey, “Veriflow: Verifying network-wide invariants in real
time,” in Proceedings of the First Workshop on Hot
Topics in Software Defined Networks, 2012, pp. 49-54.
P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKe-
own, and S. Whyte, “Real time network policy checking
using header space analysis,” in /0th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 13), 2013, pp. 99-111.

C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella,
S. Banerjee, C. Clark, Y. Ma, P. Sharma, and Y. Zhang,
“Pga: Using graphs to express and automatically rec-
oncile network policies,” ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4, pp. 29-42, 2015.
S. Pisharody, J. Natarajan, A. Chowdhary, A. Alsha-
lan, and D. Huang, “Brew: A security policy analy-
sis framework for distributed sdn-based cloud environ-
ments,” IEEE Transactions on Dependable and Secure
Computing, vol. 16, no. 6, pp. 1011-1025, 2017.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “Open-
Flow: enabling innovation in campus networks,” ACM
SIGCOMM Computer Communication Review, vol. 38,
no. 2, pp. 69-74, 2008.

M. S. Farooq, S. Riaz, and A. Alvi, “Security and
Privacy Issues in Software-Defined Networking (SDN):
A Systematic Literature Review,” Electronics, vol. 12,
no. 14, 2023.

“IEEE Standard for Local and Metropolitan Area
Networks—Port-Based Network Access Control,” [EEE
Std 802.1X-2020 (Revision of IEEE Std 802.1X-2010
Incorporating IEEE Std 802.1Xbx-2014 and IEEE Std
802.1Xck-2018), pp. 1-289, 2020.

B. Desmond, J. Richards, R. Allen, and A. G. Lowe-
Norris, Active Directory: Designing, Deploying, and
Running Active Directory. ” O’Reilly Media, Inc.”,
2008.

J. Sermersheim, “Lightweight Directory Access Protocol
(LDAP): The Protocol,” RFC 4511, Jun. 2006.

J. Vollbrecht, J. D. Carlson, L. Blunk, D. B. D. Aboba,
and H. Levkowetz, “Extensible Authentication Protocol
(EAP),” RFC 3748, Jun. 2004.

H. Hasegawa, Y. Sato, and H. Takakura, “Construction
of Secure Internal Network with Communication Clas-
sifying System Using Multiple Judgment Methods,” In-
ternational Journal on Advances in Telecommunications,
vol. 13, no. 3 & 4, 2020.

Y. Sato, H. Hasegawa, and H. Takakura, “Construction
of Secure Internal Networks with Communication Clas-
sifying System,” in ICISSP, 2019, pp. 552-557.

M. Ali, N. Shah, and M. A. Khan Khattak, “DAI: Dy-
namic ACL Policy Implementation for Software-Defined
Networking,” in 2020 IEEE 17th International Confer-

[42]

[43]

ence on Smart Communities: Improving Quality of Life
Using ICT, IoT and Al (HONET), Dec 2020, pp. 138—
142.

M. Roesch, “Snort: Lightweight intrusion detection for
networks,” in Proceedings of the 13th USENIX Confer-
ence on System Administration (LISA '99). USENIX
Association, 1999, pp. 229-238.

FaucetSDN, “Faucet,” 2024, accessed: 2025-11-20.
[Online]. Available: https://github.com/faucetsdn/faucet

Ryu SDN Framework Community, “Ryu sdn frame-
work,” https://ryu-sdn.org/, 2024, accessed: 2025-11-20.
T. Lukaseder, J. Fiedler, and F. Kargl, “Performance
evaluation in high-speed networks by the example of
intrusion detection,” arXiv preprint arXiv:1805.11407,
2018.

J. B. Cabrera, J. Gosar, W. Lee, and R. K. Mehra,
“On the statistical distribution of processing times in
network intrusion detection,” in 2004 43rd IEEE Con-
ference on Decision and Control (CDC)(IEEE Cat. No.
04CH37601), vol. 1. IEEE, 2004, pp. 75-80.

T. Ha, S. Yoon, A. C. Risdianto, J. Kim, and H. Lim,
“Suspicious flow forwarding for multiple intrusion de-
tection systems on software-defined networks,” IEEE
Network, vol. 30, no. 6, pp. 22-27, 2016.

T. Z. Project, “Zeek: Network security monitor,” https:
//github.com/zeek/zeek, 2024, accessed: 2025-11-27.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

136

