
From Theory to Practice: Evaluating and Enhancing Kolmogorov-Arnold Networks
(KAN) Robustness Under Adversarial Conditions

Evgenii Ostanin
Toronto Metropolitan University

Toronto, Canada
eostanin@torontomu.ca

Nebojsa Djosic
Toronto Metropolitan University

Toronto, Canada
nebojsa.djosic@torontomu.ca

Fatima Hussain
Toronto Metropolitan University

Toronto, Canada
fatima.hussain@torontomu.ca

Salah Sharieh
Toronto Metropolitan University

Toronto, Canada
salah.sharieh@torontomu.ca

Alexander Ferworn
Toronto Metropolitan University

Toronto, Canada
aferworn@torontomu.ca

Abstract—Kolmogorov–Arnold Networks have emerged as
promising architectures thanks to their adaptive activation func-
tions and enhanced interpretability. However, their robustness
under adversarial conditions remains underexplored. In this
study, we evaluated four variants of Kolmogorov-Arnold Net-
works, Linear, Fourier, Jacobi, and Chebyshev against Gaussian
noise and two gradient-based attacks (the Fast Gradient Sign
Method and Projected Gradient Descent). Through detailed
comparative analyses and adversarial training experiments with
varying mixes of perturbed data, we reveal substantial differ-
ences in resilience across variants and relative to a multilayer
perceptron baseline. Our results show that targeted adversarial
training materially improves robustness under strong adversarial
attacks. In particular, including only 5% Fast Gradient Sign
Method examples and 5% Projected Gradient Descent examples
in the training set restores between 60 and 90 percentage points
of accuracy against these attacks. These findings clarify the
factors influencing Kolmogorov–Arnold Network robustness and
validate adversarial training as a practical hardening strategy
for deployment in adversarially challenging environments.

Keywords-Kolmogorov-Arnold Networks; KAN; MNIST; FGSM;
PGD; Classification; Adversarial Training.

I. INTRODUCTION

The rapid advancement of Machine Learning (ML) has led
to increasingly sophisticated models that perform well across
a variety of tasks. Among these developments, Kolmogorov-
Arnold Networks (KANs) represent a novel approach based
on the Kolmogorov-Arnold representation theorem. KANs
enhance interpretability and flexibility through learnable acti-
vation functions, dynamically adapting to data variations and
potentially improving model robustness and generalization.
Their robustness, however, especially under Adversarial At-
tacks (AA) and noisy data, remains an underexplored domain.

This paper extends our previous work [1], which analyzed
the robustness of KAN architectures under AA. In that study,
the focus was on evaluating the performance of different
KAN implementations against Gaussian noise, Fast Gradi-
ent Sign Method (FGSM), and Projected Gradient Descent
(PGD) attacks, comparing their vulnerabilities to a Multi-
Layer Perceptron (MLP) classifier. Our findings showed that
while KANs achieved higher accuracy than MLPs in clean

environments, they exhibited significant drops in accuracy
when subjected to adversarial perturbations, with PGD having
the most severe impact.

Traditional MLPs often struggle with capturing complex
nonlinear relationships due to their reliance on fixed activation
functions and linear weight matrices. This limitation can lead
to suboptimal generalization in adversarial settings or when
handling noisy data. To address these challenges, KANs in-
troduce learnable activation functions on edges, allowing them
to adapt dynamically to input variations, offering potential
advantages in robustness and interpretability over traditional
models [2].

The increasing sophistication of AA poses significant chal-
lenges for deep learning models, particularly in security-
critical applications such as autonomous systems and cyberse-
curity. Attacks like the FGSM and PGD exploit weaknesses in
models by introducing subtle alterations to input data. Addi-
tionally, the growing deployment of ML models in real-world
applications exposes them to environmental noise, which can
further degrade performance [3]–[5]. As a result, robustness
against both AA and noise is an important requirement for
deploying ML models in production and practical settings [6].

This extended paper expands our prior findings [1], [7]
by systematically evaluating adversarial training as a novel
approach to enhance the robustness of multiple KAN archi-
tectures. Specifically, we evaluate how different adversarial
training compositions impact KAN resilience to AA. Our
primary contributions include:

• A reassessment of the vulnerabilities of KAN architec-
tures under adversarial conditions.

• Analyzing the impact of adversarial training with varying
proportions of clean and adversarially perturbed samples.

• A comparative analysis of how different KAN models
respond to adversarial training, highlighting the strengths
and weaknesses of each approach.

• A discussion of the broader implications of KAN robust-
ness and future research directions.

Key Results: Unprotected KAN models can lose up to
88% accuracy under strong PGD attacks. Injecting just 5%
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adversarial samples per AA into the training set restores 60 to
90 percentage points of robustness against FGSM and PGD
across all KAN variants. However, the Fourier KAN remains
highly sensitive to Gaussian noise. Its noise accuracy stays
below 20% even after adversarial training. These findings
underscore the need for variant-specific hardening strategies.

Figure 1. Model Accuracy Degradation After Noise Attack.

Figure 2. Model Accuracy Comparison After FGSM Attack.

Figure 3. Model Accuracy Comparison After PGD Attack.

To support our initial findings, we include a series of
visualizations. Figure 1 illustrates the accuracy degradation
of MLPs and KANs under varying levels of Gaussian noise.
Figure 2 shows accuracy degradation under increasing FGSM
attack strength (eps.), highlighting KANs’ greater sensitivity
compared to MLPs. Finally, Figure 3 presents accuracy degra-
dation under PGD attacks, where KANs demonstrate the most
significant performance drop.

Paper Structure: The remainder of this paper is organized
as follows: Section II reviews related work, including research
on adversarial robustness and KAN applications. This section
provides an overview of prior studies on KANs and AAs,
positioning our work within the existing body of research. We
discuss advancements in adversarial training techniques and
their effectiveness in improving model resilience.

Section III details the methodology, including dataset prepa-
ration, attack methodologies, and adversarial training strate-
gies. We describe the experimental setup, including the ar-
chitecture of the tested KAN models, the parameters used
for adversarial training, and the generation of adversarial
examples using FGSM and PGD. This section also explains
how different compositions of training data impact model
robustness.

Section IV presents experimental results, evaluating the im-
pact of adversarial training on model robustness. We provide a
comparative analysis of the tested models under various adver-
sarial conditions, supported by visualizations and performance
metrics. This section highlights key trends observed across
different KAN architectures and discusses the significance of
adversarial training in mitigating accuracy degradation.

Sections V and VI conclude with a discussion of key find-
ings and future research directions. We summarize the major
contributions of this work, analyze the broader implications
for secure ML applications, and propose areas for future
exploration, including testing on more complex datasets and
refining adversarial training techniques for enhanced KAN
resilience.

II. RELATED WORK

The robustness of ML models under adversarial condi-
tions is critical for ensuring their reliability in real-world
deployments, particularly in safety-critical applications. While
traditional Neural Network (NN) architectures like MLPs have
been extensively studied for their vulnerability to adversarial
perturbations, KANs, with their unique architecture based on
learnable activation functions, presents new opportunities and
challenges in terms of robustness. This section provides an
overview of foundational concepts and prior research related to
KANs architectures, the underlying Kolmogorov-Arnold rep-
resentation theorem, AAs, and adversarial training strategies,
highlighting key insights and existing gaps in the literature.

A. Kolmogorov-Arnold Representation Theorem

KANs represent a novel NN architecture derived from
the Kolmogorov-Arnold representation theorem, providing a
compelling alternative to traditional MLPs. Figure 4 from
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[2] clearly illustrates the architectural differences between
traditional MLP and KAN models. This innovative architecture
fundamentally changes the traditional NN paradigm by in-
troducing learnable activation functions along network edges,
replacing the conventional fixed activation functions applied
at nodes. The learnability of these functions allows for greater
flexibility and interpretability, enabling the KAN models to
dynamically adapt their internal transformations during train-
ing, potentially resulting in improved model generalizations,
and adaptability to diverse and complex datasets.

The foundational basis of KAN architectures lies in the
Kolmogorov-Arnold Representation Theorem, first introduced
by Andrey Kolmogorov in 1957 and later refined by Vladimir
Arnold in 1963. Commonly referred to as the superposition
theorem, it mathematically states that any continuous mul-
tivariate function f(x1, . . . , xn) defined within a bounded
domain can be represented as a superposition of continuous
univariate functions. Formally, the theorem is expressed as
follows:

f(x) = f(x1, . . . , xn) =

2n+1∑
q=1

Φq

(
n∑

p=1

ϕq,p(xp)

)
(1)

In (1) ϕq,p : [0, 1] → R are continuous inner functions, and
Φq : R → R represent continuous outer functions.

KAN models leverage this theorem by explicitly learn-
ing these univariate functions, typically using spline-based
methods due to their computational efficiency, smoothness
properties, and interpretability.

However, alternative activation functions beyond splines
exist and may offer advantages depending on specific applica-
tions [8], [9]. Fourier-based activation functions, such as those
employed in Naı̈ve Fourier KAN [8], effectively handle peri-
odic data and signals due to their inherent periodic properties.
Polynomial-based activations, such as those used in Jacobi
KAN and Chebyshev KAN [9], can provide computational
simplicity while offering superior approximation capabilities
in scenarios requiring less flexibility or complexity. Chebyshev
polynomials, in particular, are notable for their numerical
stability and efficient approximation characteristics for certain
classes of functions [9].

Ultimately, identifying the optimal activation function in-
volves balancing computational efficiency, robustness to ad-
versarial perturbations, and task-specific performance require-
ments. This critical consideration, along with practical impli-
cations and empirical evaluations under adversarial scenarios,
is addressed thoroughly in the experiments and results pre-
sented in later sections of this paper.

B. Potentials and Limitations of KANs

KANs have been proposed as an innovative NN architec-
ture offering unique advantages in interpretability and com-
putational efficiency. Several studies have investigated their
performance across various tasks, especially in computer vi-
sion. For instance, [10] evaluated KANs against established

architectures such as MLP-Mixer, Convolutional Neural Net-
works (CNNs), and Vision Transformers (ViTs) on widely-
used benchmarks. The study highlighted that KAN models
notably outperformed MLP-Mixer on datasets like CIFAR-
10 and CIFAR-100, demonstrating the model’s potential for
achieving competitive accuracy. However, the same research
observed that KAN architectures fell short when compared
directly with deeper convolution-based models, specifically
ResNet-18. Still, the computational efficiency advantage was
evident, indicating that KANs could offer significant benefits
in scenarios where resource constraints and computational
efficiency are critical [11].

Further illustrating KANs’ potentials, [10] also showed that
KAN architectures achieve performance comparable to CNN
and traditional MLP architectures on simpler image datasets,
such as MNIST and CIFAR-10, with a considerably reduced
number of parameters and lower computational requirements.
This efficiency positions KANs as particularly suitable for
deployment in resource-constrained environments, such as
edge devices or embedded systems, where model size and
computational efficiency are critical constraints.

Nevertheless, several studies have also highlighted notable
limitations of KANs, particularly their sensitivity to noise.
Research presented in [3] and [4] emphasizes that KANs ex-
hibit significant performance degradation even when exposed
to relatively small noise perturbations. These studies revealed
that KANs can sometimes underperform compared to MLPs
when the input data contains noise or irregularities, suggesting
potential vulnerability in practical, real-world conditions. The
spline-based activation functions used within KANs, while
beneficial for smooth and continuous approximations, may
contribute to increased sensitivity when encountering noisy
inputs, as subtle perturbations can alter spline approximations
disproportionately.

Moreover, the computational demands associated with
spline optimization may exacerbate the sensitivity to noisy
inputs, as these functions inherently attempt to closely fit
the training data, increasing susceptibility to overfitting on
noisy samples. These observations are further supported in
[12], that highlight potential limitations of KANs in hardware
and computational settings, particularly when working with
complex datasets that demand higher computational resources.
Their findings indicate that the increased complexity of learn-
able spline functions might lead to diminishing returns, where
additional computational costs do not necessarily translate into
proportional performance gains.

Similarly, [11] concludes that the practical advantages of
KANs might not be evident for more challenging, complex
datasets such as CIFAR-10, where traditional NN architectures
like CNNs and ResNets typically dominate. They argue that
despite their theoretical appeal and potential interpretability
advantages, the practical benefits of employing KANs in more
challenging or high-dimensional scenarios remain uncertain
and require further validation.

Given these mixed findings, the robustness and practical
efficiency of KANs need careful evaluation across diverse

79International Journal on Advances in Security, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 4. KAN vs MLP architectures compared, source: [2].

scenarios, datasets, and types of perturbations. While KANs
clearly demonstrate potential for specific use-cases, particu-
larly those prioritizing interpretability and computational effi-
ciency, their sensitivity to adversarial and environmental noise
requires comprehensive assessment and mitigation strategies,
motivating further research into enhanced training techniques,
such as adversarial training, which will be explored in subse-
quent sections of this paper.

C. Adversarial Attacks

Recent advances in ML have sparked significant interest in
understanding and mitigating vulnerabilities inherent to deep
learning models. Central to this investigation are AAs, which
strategically exploit vulnerabilities in models by introducing
carefully crafted perturbations to the input data. The research
into AAs has been especially vigorous in the computer vision
domain, given the sensitivity of image-based models to subtle
input changes that can drastically alter outputs [6], [13]. This
has significant implications for applications relying heavily
on image recognition, such as autonomous vehicles, security
systems, and facial recognition technologies.

Among the numerous AA techniques developed, the FGSM
and PGD have emerged as prominent benchmarks. FGSM,
introduced by [14], crafts adversarial examples by leverag-
ing gradients to add minimal perturbations that mislead the
model’s predictions. Due to its computational simplicity and
effectiveness, FGSM remains widely used for initial robustness
assessments. Conversely, PGD, introduced by [15], applies
an iterative optimization-based procedure to find more potent
perturbations, typically resulting in stronger attacks that are
more challenging for models to withstand. Due to its iterative

nature, PGD has become the de facto standard for rigorous
robustness evaluations, especially in the context of image
classification tasks where even minor perturbations to input
data can lead to substantial accuracy degradation [16].

Several defenses against these attacks have been proposed,
ranging from detection and preprocessing approaches to robust
training methodologies. Techniques such as adversarial exam-
ple detection [17], diversity-enhancing strategies to mitigate
attacks [18], and methods leveraging momentum to optimize
the defense mechanism against PGD [19], have shown varying
degrees of effectiveness. Despite these advancements, FGSM
and PGD remain critically important for the systematic eval-
uation of model robustness due to their simplicity, efficiency,
and established status in literature.

Tools like the Adversarial Robustness Toolbox (ART) [20]
have been instrumental in facilitating systematic experimenta-
tion and reproducibility in adversarial research by providing
standardized methods for generating adversarial examples and
evaluating defenses. Likewise, benchmark datasets such as
MNIST [21] (Modified National Institute of Standards and
Technology handwritten-digit dataset) continue to serve as
fundamental resources for comparative analyses due to their
widespread acceptance, ease of use, and established bench-
marks across a variety of ML models.

While KANs have begun to attract attention for their
interpretability, adaptability, and computational advantages,
their resilience to AA attacks remains significantly under-
researched. Given the importance of robustness in safety-
critical applications, understanding how various KAN archi-
tectures perform against established adversarial techniques like
FGSM and PGD is crucial. In this extended study, we bridge
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this critical research gap by systematically evaluating and
comparing multiple KAN implementations under FGSM and
PGD AAs. By doing so, we aim to identify the strengths
and vulnerabilities inherent in these architectures, thereby
laying the foundation for future research into targeted defense
mechanisms specifically optimized for KAN-based models.

D. Adversarial Training in ML

Adversarial training has emerged as one of the most promi-
nent and effective strategies for improving the robustness of
ML models against AAs. Initially introduced by [14] as a
defense against the FGSM, adversarial training involves the
augmentation of training datasets with adversarially perturbed
samples. This augmentation forces the model to encounter
and learn from specifically crafted examples during training,
thereby facilitating the development of more robust decision
boundaries and improving model generalization to unseen
adversarial inputs.

Subsequently, [15] significantly enhanced adversarial train-
ing by employing PGD as the adversarial example generator.
PGD-based adversarial training iteratively applies small per-
turbations to input data, guiding the model toward learning
highly robust and generalizable features. Due to its iterative
nature, this method has been established as the state-of-the-art
approach for benchmarking robustness in deep learning mod-
els. Empirical results consistently confirm that PGD-trained
models exhibit significantly improved resilience compared to
models trained using traditional or non-adversarial methods.

Building on these seminal studies, [22] proposed the
TRADES method, introducing a theoretically-principled
framework that explicitly balances the trade-off between
adversarial robustness and natural accuracy. The TRADES
framework introduces a regularization term that penalizes
deviations from robust behavior while maintaining model
performance on clean data. This approach has demonstrated
notable improvements in robustness compared to standard ad-
versarial training techniques, especially in image classification
benchmarks.

Furthermore, [23] proposed integrating feature denoising
techniques within adversarial training frameworks, enhancing
the resilience of models against AAs by explicitly denoising
intermediate feature representations during training. By em-
bedding feature denoising mechanisms directly into adversarial
training procedures, their method not only mitigates adversar-
ial perturbations but also reduces the model’s vulnerability to
natural variations in data. These advancements underscore ad-
versarial training as a continually evolving field, with methods
becoming progressively sophisticated to counter increasingly
powerful AAs.

However, despite the proven efficacy of adversarial train-
ing in enhancing model robustness, it introduces significant
computational overhead and complexity [15]. Training models
using adversarial techniques typically require extended com-
putational resources and time due to the iterative generation
of adversarial examples. Moreover, selecting suitable param-
eters, such as perturbation magnitude, training composition,

and learning rates, becomes critical to achieving optimal
performance without compromising model accuracy on clean
data. Careful dataset preparation, hyperparameter tuning, and
rigorous empirical validation remain essential to leveraging the
full benefits of adversarial training methodologies. Addressing
these computational challenges and identifying efficient adver-
sarial training strategies tailored to specific NN architectures,
including KANs, remain vital areas for ongoing research and
development.

E. Adversarial Training Applied to KANs

At the time of the publication of our original paper, the
robustness of KAN architectures under adversarial conditions
had begun receiving increased attention. Recent studies have
expanded on the initial exploration of KAN vulnerabilities,
systematically evaluating their performance under various ad-
versarial perturbations and comparing them against traditional
NN architectures. For instance, [24] investigated the applica-
tion of KANs in Wi-Fi-based positioning systems, examining
their response to adversarial manipulations in wireless signal
inputs. Similarly, [25] assessed robustness aspects of KANs
across a range of image classification benchmarks, providing
valuable comparative analyses that underscore both strengths
and limitations of KAN models in adversarial conditions.
Another recent study by [26] evaluated the resilience of KAN
architectures to AAs within broader applied ML contexts,
highlighting the nuanced sensitivity of spline-based activation
functions used within KAN models.

Despite the increasing focus on evaluating KAN robustness,
the specific application of adversarial training methodologies
to KAN architectures remains notably underexplored. To date,
adversarial training has predominantly been applied to well-
established models such as CNNs and transformers, whereas
its impact on KAN models has yet to be rigorously inves-
tigated. Although the inherent flexibility and adaptivity of
KANs suggest that adversarial training could significantly en-
hance their robustness, systematic empirical studies in this area
are scarce. Consequently, many aspects remain unexplored,
including how different compositions and intensities of adver-
sarially perturbed data influence the training process, as well
as the specific interactions between spline-based activation
functions and adversarial samples.

Given this substantial gap, there is an important opportunity
for research that specifically investigates adversarial training
tailored to the unique properties of KAN architectures. De-
tailed analyses examining the relationship between adversarial
perturbation strategies (such as FGSM and PGD) and the
adaptability of KAN activation functions could provide es-
sential insights for designing more robust models. Addition-
ally, exploring computationally efficient adversarial training
methodologies suitable for the unique structural properties of
KANs could further unlock their potential for secure, real-
world deployment. Addressing these open questions will be
critical for future research, ultimately informing best practices
for integrating adversarial training strategies into the design
and deployment of KAN models.
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III. METHODOLOGY

The primary objective of our methodology is to assess how
different KAN architectures respond relative to each other
and the baseline MLP classifier under adversarial perturba-
tions, placing emphasis on comparative robustness rather than
absolute performance optimization. While we acknowledge
that each evaluated model could potentially benefit from
further tuning through parameter optimization, architectural
adjustments, or advanced regularization methods, we operate
under the assumption that the relative effects of AAs will
remain consistent regardless of these enhancements.

Figure 5. MLP Architecture, source: [7].

This assumption provides a clear foundation for comparing
the intrinsic robustness characteristics of various KANs im-
plementation. Nevertheless, future research should rigorously
investigate the validity and generalizability of this assumption
by exploring the impact of advanced training techniques on
robustness outcomes.

The general structure of the KAN networks architecture
used in our experiments is illustrated in Figures 5 and 6,
which highlight the key differences between traditional MLPs
and KAN models. All evaluated KAN models follow this
fundamental architectural concept, where traditional node-
based activation functions are replaced with edge-based learn-
able activation functions. The adversarial robustness of four
distinct KAN implementations is systematically examined:
Linear (Efficient) KAN [27], Naı̈ve Fourier KAN [28], Jacobi
KAN [29], and Chebyshev KAN [30].

Figure 6. KAN Architecture, source: [7].

The robustness of each model is evaluated under controlled
adversarial conditions, involving Gaussian noise as well as
two widely recognized AAs technique: the FGSM, and PGD.
These adversarial perturbations are generated and administered
using the ART [20]. Performance robustness metrics such as
accuracy, precision, recall, and F1-scores are utilized to pro-
vide a comprehensive understanding of model sensitivity to ad-
versarial perturbations. The well-known MNIST dataset [21],
consisting of 33,600 training samples and 8,400 test samples of
handwritten digits, provides a standard benchmark that ensures
consistency and comparability of results across models.

Furthermore, to extend our previous findings and explore
potential improvements in model robustness, we introduce
adversarial training by augmenting the original training dataset
with adversarially perturbed examples. Specifically, we con-
struct three training sets with varying proportions of clean
MNIST samples combined with adversarial samples generated
by FGSM, PGD, and Gaussian noise. The training dataset
compositions are (i) 85% clean data and 5% of each per-
turbation type, (ii) 70% clean data and 10% each of noise,
FGSM, and PGD, and (iii) 55% clean data and 15% each of
noise, FGSM, and PGD. Through this systematic approach,
we aim to evaluate how the inclusion of adversarial examples
during training influences the robustness and generalizability
of different KAN architectures.

In the subsequent sections, detailed results from these exper-
iments will be analyzed, highlighting insights into the relative
effectiveness of adversarial training strategies across diverse
KAN implementations. Metrics including accuracy, precision,
recall, and F1-scores provide a comprehensive understanding
of robustness gains and vulnerabilities under adversarial con-
ditions, guiding future research directions toward optimized
KAN training strategies.

A. Model Architectures

In this research, we evaluate the robustness of different
KANs architecture against AA and compare their performance
with a traditional MLP baseline. All architectures use the
MNIST dataset [21] and share common parameters for train-
ing, such as an AdamW optimizer with a learning rate of
0.001, weight decay for regularization, and an exponential
learning rate scheduler to adjust the learning rate dynamically
throughout training.

MLP Classifier is utilized as a baseline reference. The
model comprises five fully-connected layers, progressively
decreasing in size: 784 → 512 → 256 → 128 → 64 → 10.
ReLU activation and dropout layers with probability 0.2 are
employed after each layer, ensuring model regularization and
reduced overfitting. The final output layer utilizes a softmax
activation function, providing classification probabilities for
each of the ten MNIST digit classes.

The primary models under investigation are four distinct
implementations of KANs, each employing unique activation
functions along their edges. All KAN implementations share
a similar basic architecture, as depicted in Figure 6, but differ
substantially in their choice of edge-based activation functions.
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Linear KAN (Efficient KAN) [27] utilizes spline-based
activation functions parameterized by spline order and grid
size. Specifically, the implementation uses spline order 3
and grid size 5, corresponding to a computationally efficient
parameterization recommended by the authors. The archi-
tecture employs the standard configuration derived from the
Kolmogorov-Arnold theorem, where the input dimension of
784 (the MNIST image size of 28 × 28) is decomposed into
one-dimensional spline functions along the network edges.
This configuration results in (28× 28)× 2 + 1 = 1569 spline
parameters, providing the model with substantial flexibility for
capturing MNIST data patterns efficiently.

Naı̈ve Fourier KAN [28] modifies the standard spline-
based KAN by employing Fourier series coefficients to param-
eterize the learnable activation functions. Fourier-based acti-
vation functions provide smooth and periodic approximations,
which inherently bound the activation functions numerically
and avoid the common issues associated with spline parame-
terizations going out of grid bounds. Specifically, the Fourier
KAN configuration used in our experiments employs grid size
56, corresponding to twice the dimension of input features,
along with initialization parameters that ensure numerical
stability and smoothness of learned functions.

Chebyshev KAN (ChebyKAN) [30] substitutes spline
functions with Chebyshev polynomials. Chebyshev polynomi-
als, due to their orthogonality and numerical stability, provide
efficient approximations suitable for polynomial interpolations
over bounded intervals. In our experiments, we employed
Chebyshev polynomials of degree 7, aiming to balance approx-
imation accuracy and computational efficiency. ChebyKAN
requires fewer parameters to achieve comparable performance
relative to spline-based KANs, making it appealing for sce-
narios where computational resources are constrained.

Jacobi KAN (JacobiKAN) [29], derived from the
ChebyKAN framework, uses Jacobi polynomials, a broader
family of orthogonal polynomials parameterized by two addi-
tional parameters (a, b) controlling polynomial shape. In our
experiments, we selected a polynomial degree of 7 with default
parameters a = 0.0 and b = 0.0 - a special case of Jacobi,
the Legendre polynomials. This is typically used for MNIST
classifications. JacobiKAN provides an adaptive and flexible
framework capable of adjusting polynomial forms according
to task-specific data characteristics. However, this flexibility
introduces additional complexity, requiring careful parameter
tuning during training.

All four KAN implementations share a fundamental archi-
tectural structure illustrated in Figure 6, differing primarily in
the form of their learnable activation functions. By evaluating
these architectures systematically, our study seeks to quantify
and understand the impact of different parameterizations on
model robustness against adversarial perturbations and noise.

B. Attack Architecture

Noise Attack: We conducted Gaussian noise attacks at a
noise level of 100 to evaluate the robustness of the models

Figure 7. The Gaussian Noise Attack Example.

under extreme conditions. This high noise level was deliber-
ately selected to amplify performance degradation, facilitating
a clear comparison across the different KAN architectures and
the baseline MLP model. Our prior research [7] valuated the
noise sensitivity of a single KAN model by incrementally
increasing noise levels to determine its robustness relative
to the MLP. In the current study, we shift our focus to
systematically comparing multiple KAN variants, maintaining
the MLP as a consistent baseline for robustness benchmarking.
An MNIST digit example (digit ’1’) corrupted by Gaussian
noise at the level of 100 is shown in Figure 7, illustrating the
extreme noise conditions used in our robustness assessments.

FGSM Attack: The ART [20] was utilized to generate
adversarial examples and implement the FGSM attack across
all models. Perturbations were introduced into the MNIST
test dataset to create adversarial samples, with the epsilon
parameter typically ranging from 0.1 to 0.8. A higher epsilon
increases perturbation visibility in images. For this research,
an epsilon value of 0.5 was selected, sufficient to significantly
degrade model performance without introducing visually no-
ticeable distortions, thus preserving realism in the adversarial
scenario. An example of an MNIST digit (digit ’1’) subjected
to the FGSM attack is shown in Figure 8, highlighting how
subtle perturbations can drastically alter model predictions.

PGD Attack: We also employed ART [20] to facilitate
the PGD AAs. PGD iteratively generates small random per-
turbations to the input data, progressively maximizing the
loss function. Each iteration incrementally adjusts perturbation
magnitude, while carefully controlling the maximum perturba-
tion size to maintain imperceptibility to human observers. This
iterative approach positions PGD as one of the strongest first-
order AAs methods available, significantly more potent than
FGSM. Consistent with the FGSM setup, a perturbation level
of 0.5 was adopted to simulate realistic adversarial conditions.
Figure 9 presents an MNIST digit example (digit ’1’) after a
PGD attack, demonstrating the iterative nature of this strong
adversarial perturbation and its effect on model classification.

Tools and environment: All KAN implementations are
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Figure 8. The FGSM Attack Example.

Figure 9. PGD Attack Example.

obtained from publicly available GitHub repositories [28]–
[31], alongside ART [20]. The baseline MLP classifier was
implemented independently using PyTorch and Scikit-learn
Python libraries. The Google Colab cloud environment was
utilized to conduct all experiments, ensuring consistency in
hardware and software configurations. This standardized ex-
perimental environment is intended to facilitate reproducibility
and validation of our results.

C. Experiments

All models, including the four KAN architectures: Linear
(Efficient) KAN, Naı̈ve Fourier KAN, Jacobi KAN, Cheby-
shev KAN, and the MLP baseline, were initially trained
and evaluated in a controlled, non-adversarial setting using
the MNIST dataset [21]. Figure 10 illustrates example digits
from the MNIST dataset used in all experiments. Performance
metrics, including accuracy, precision, recall, and F1 scores,
were recorded for each architecture to establish a robust
baseline for subsequent adversarial analyses.

We then assessed each model’s robustness under adversar-
ial conditions by subjecting them individually to Gaussian

Figure 10. MNIST Dataset Example.

noise, FGSM, and PGD attacks. For each attack scenario,
we computed the relative change in performance metrics
compared to their baseline values. These results provided
insights into the vulnerabilities of each KAN variant relative
to the MLP classifier, allowing for a systematic analysis of
model-specific weaknesses and strengths under adversarially
perturbed conditions.

Expanding on this initial analysis, adversarial training ex-
periments were conducted to explore strategies for enhancing
model robustness. Specifically, models were retrained with
adversarially augmented datasets composed of varying pro-
portions of clean and perturbed data, as follows:

• 85% clean MNIST data combined with 5% each of
Gaussian noise, FGSM, and PGD perturbed samples.

• 70% clean MNIST data combined with 10% each of
Gaussian noise, FGSM, and PGD perturbed samples.

• 55% clean MNIST data combined with 15% each of
Gaussian noise, FGSM, and PGD perturbed samples.

This adversarial training strategy aimed to quantify how
incorporating a controlled proportion of adversarially gener-
ated data into the training set affects model performance and
robustness. Each model was retrained separately under these
three training set compositions, and performance metrics were
reevaluated on clean as well as adversarially perturbed test sets
(noise, FGSM, PGD). The goal was to identify optimal training
compositions capable of significantly enhancing robustness
without severely compromising accuracy on clean data.

To ensure consistency and reproducibility, all training
sessions employed identical hyperparameters, including the
AdamW optimizer with a learning rate of 0.001, weight decay
for regularization, and an exponential learning rate scheduler.
Each training scenario was repeated multiple times to ensure
the reliability of observed improvements in robustness metrics.

In the results section that follows, detailed analyses will
be presented, comparing performance outcomes from standard
training versus adversarial training across all tested models.
This comprehensive experimental approach provides critical
insights into the efficacy of adversarial training for improving
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KAN robustness, contributing valuable guidance for future
research into secure and robust NN architectures.

IV. RESULTS

This section presents a comprehensive analysis of our exper-
imental results, structured systematically into five subsections.
We begin by establishing baseline performance metrics for
all evaluated models in the absence of adversarial conditions.
Subsequent subsections report detailed findings on model ro-
bustness under Gaussian noise, FGSM, and PGD AAs. Finally,
we present a thorough evaluation of the impact of adversarial
training on model resilience, comparing performance across
varying proportions of adversarially perturbed training data.
The analyses provided herein offer valuable insights into the
relative strengths and vulnerabilities of different KAN archi-
tectures compared to the baseline MLP classifier, highlighting
critical considerations for enhancing model robustness.

A. Before Attacks

Initially, we evaluated all models under clean (non-
adversarial) conditions using the MNIST dataset, as detailed
in Table I. This baseline evaluation provides an essential refer-
ence point for assessing subsequent robustness to adversarial
perturbations.

TABLE I
ACCURACY BY MODEL. TRAIN SET: 100% MNIST.

Model Clean Noise100 FGSM 0.5 PGD 0.5

Classifier 0.98 0.94 0.79 0.66

KAN Linear 0.98 0.86 0.29 0.11

Naı̈ve Fourier 0.92 0.16 0.11 0.22

Jacobi 0.93 0.51 0.08 0.05

Cheby 0.92 0.39 0.05 0.04

Accuracy results before AAs are visualized in Figure 11,
clearly indicating that the MLP Classifier and the Linear
KAN both achieve nearly identical accuracy (98%), estab-
lishing a strong performance baseline. Conversely, the other
three KAN variants: Naı̈ve Fourier, Jacobi, and Chebyshev
exhibit somewhat lower accuracy scores (92-93%). Although
the primary objective of this study focuses on evaluating
relative robustness under adversarial conditions rather than
absolute accuracy, these performance discrepancies warrant
further exploration. Future research may investigate whether
model-specific architectural differences, parameter settings, or
alternative optimization strategies might account for these per-
formance gaps and potentially improve the absolute accuracy
of the affected KAN architectures.

Another notable observation relates to computational com-
plexity and training duration. Despite improvements from the
use of Google Colab’s free-tier T4 GPU, training times for
KAN models remained substantially longer compared to the
simpler MLP architecture. Specifically, KAN architectures
typically required roughly ten times longer to train than

the baseline MLP. This discrepancy, attributed primarily to
the computational overhead associated with spline-based and
polynomial-based activation functions, highlights a significant
practical consideration for real-world deployment and iterative
training workflows.

Figure 11. Model Accuracy Comparison Before Attacks.

An additional intriguing finding involves the class-wise
balance of model performance, particularly evident from ex-
amining the F1 scores for individual digit classes, as illustrated
in Figure 12. The Linear KAN model demonstrates generally
balanced F1 scores across most digit classes but exhibits
a pronounced drop in performance on digit 9. Other KAN
models similarly reflect class imbalance patterns, suggesting
inherent limitations or biases within their activation func-
tion parameterizations, and suggesting that certain activation
functions or training methodologies may disproportionately
impact specific digit classes. Investigating the causes of these
class-specific discrepancies may offer valuable insights into
further optimizing KAN architectures or identifying data-
specific challenges. Such analyses remain outside the scope of
this current study but represent promising avenues for future
research.

Figure 12. Model F1 Score Comparison Before Attacks, source: [1].

Overall, these baseline performance evaluations provide
essential context for subsequent analyses of model robust-
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ness under various adversarial perturbations, enabling precise
quantification of robustness changes attributed explicitly to
adversarial conditions.

B. Gaussian Noise Attack Results

All evaluated models exhibited reduced accuracy when
exposed to Gaussian noise at the extreme level of 100, as
detailed in Table I. Figure 13 clearly illustrates the drop in
accuracy for each model before and after the noise attack.

The MLP Classifier demonstrated robust performance,
maintaining high accuracy at 94%, reflecting only a modest
reduction of approximately 4%. The Linear KAN model also
performed relatively well under noisy conditions, achieving
an accuracy of 86%, though this still represents a notable
accuracy drop of about 12%. In contrast, the other evaluated
KAN architectures: Naı̈ve Fourier, Jacobi, and Chebyshev,
experienced severe degradation in performance, with accuracy
declining dramatically to 16%, 51%, and 39%, respectively.

Figure 13. Model Accuracy Comparison After Noise Attack.

Figure 14 provides a visualization of the percentage accu-
racy losses, further underscoring the pronounced vulnerability
of polynomial-based KAN models to Gaussian noise attacks.
While Linear KAN demonstrates comparatively moderate
sensitivity to noise, its accuracy loss is still substantially
higher than the baseline MLP, suggesting inherent architectural
vulnerabilities of KAN models under noisy conditions. These
observations emphasize the necessity of further investigation
into mechanisms underlying KAN models’ sensitivity to noise,
guiding future enhancements in model robustness.

TABLE II
ACCURACY REDUCTION, (%).

Model Noise100 FGSM 0.5 PGD 0.5

Classifier 4 18 31

KAN Linear 12 69 87

Naı̈ve Fourier 76 81 70

Jacobi 41 84 88

Cheby 53 88 88

Figure 14. Accuracy Loss Comparison by Attack.

C. FGSM Attack Results

Under the FGSM attack with a perturbation parameter
(ϵ = 0.5), all evaluated models experienced significantly
greater accuracy losses compared to the Gaussian noise attack.
Figure 15 clearly illustrates this reduction in accuracy scores
for each model when subjected to FGSM-generated adversarial
examples.

Figure 15. Model Accuracy Comparison After FGSM Attack.

Consistent with previous attack outcomes, the baseline
MLP classifier demonstrated the strongest resilience among
all models, yet it still experienced a substantial accuracy
drop from 98% to 79%, representing a relative accuracy
loss of approximately 18%. The Linear KAN model, while
maintaining higher absolute accuracy compared to other KAN
architectures, displayed a considerable accuracy reduction,
falling from 98% to just 29%. Notably, this corresponds to
a relative loss of approximately 69% in accuracy, highlighting
Linear KAN’s vulnerability to the FGSM attack.

Interestingly, the Naı̈ve Fourier KAN model, which ex-
hibited poor performance under Gaussian noise conditions,
showed a relatively stronger resilience compared to other
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polynomial-based KAN variants under FGSM perturbations,
achieving an accuracy of 11%. While still significantly af-
fected, this result contrasts sharply with its extreme vul-
nerability under noise attacks. Jacobi and Chebyshev KAN
models suffered the most severe accuracy losses, dropping
from initial accuracies around 92-93% to below 10% accuracy
post-FGSM attack, underscoring their heightened sensitivity to
adversarially generated perturbations.

The relative accuracy losses across models under different
attack conditions are summarized in Table II and visually
depicted in Figure 14. This comprehensive visualization em-
phasizes the particularly devastating impact of the FGSM
attack on the polynomial-based KAN models.

An intriguing observation from these results is the apparent
inverse performance relationship between the polynomial-
based KAN models’ responses to Gaussian noise and FGSM
attacks. This phenomenon, visually apparent in the comparison
of Figures 14 and 15, suggests distinct underlying vulnerabil-
ities to different perturbation types. This finding provides a
compelling direction for future research, potentially exploring
the underlying mechanisms driving these divergent responses,
and informing more targeted strategies for robustness enhance-
ment.

D. PGD Attack Results

Under the PGD attack at an intensity level of 0.5, all
tested models suffered severe accuracy degradation. Figure 16
illustrates a significant decline in accuracy for each model
when subjected to the PGD adversarial perturbations.

Figure 16. Model Accuracy Comparison After PGD Attack.

Interestingly, while the MLP classifier demonstrated the
highest absolute accuracy (66%) following the PGD attack,
it experienced a considerable relative accuracy loss of about
31%, highlighting significant vulnerability despite its robust-
ness under other conditions. The Linear KAN, which per-
formed well under noise attacks, showed an exceptionally high
sensitivity to PGD attacks, with accuracy plunging drastically
to 11%, reflecting an 87% relative loss.

On the contrary, other KAN architectures, particularly Naı̈ve
Fourier KANshowed slightly better resilience in relative terms
compared to Linear KAN, albeit their absolute accuracy scores
remained critically low (22%). Notably, Chebyshev and Jacobi
KAN displayed minimal accuracy retention at around 5%.

It is important to emphasize that the overall degradation was
catastrophic for all models. The accuracy for the majority of
digit classes dropped dramatically to zero or near-zero for all
models, indicating extensive vulnerability across all tested NN
variants.

Nevertheless, from a relative accuracy retention standpoint,
Naı̈ve Fourier showed marginally better resilience than other
KAN variants, making it the least affected architecture under
the PGD attack scenario. This nuanced difference, although
minor in absolute terms, presents an intriguing avenue for
future investigation into what specific properties of Naı̈ve
Fourier activation functions might contribute to improved
resilience against iterative adversarial perturbations like PGD.

These observations are visually summarized in Figure 16,
clearly highlighting the extensive accuracy loss across all
models, reinforcing the potent effectiveness of PGD attacks
on current NNs architectures.

E. Adversarial Training Results

To further examine the robustness of our models, we
conducted adversarial training experiments by progressively
reducing the proportion of clean MNIST data in the training
set (85%, 70%, and 55%) and simultaneously increasing the
adversarially perturbed examples. Tables III, IV, and V sum-
marize the performance of each model under these conditions.

TABLE III
ACCURACY BY MODEL. TRAIN SET: 85% MNIST.

Model Clean Noise100 FGSM 0.5 PGD 0.5

Classifier 0.97 0.93 0.96 0.88

KAN Linear 0.98 0.80 0.98 0.99

Naı̈ve Fourier 0.92 0.18 0.97 0.98

Jacobi 0.92 0.82 0.69 0.74

Cheby 0.92 0.50 0.88 0.90

TABLE IV
ACCURACY BY MODEL. TRAIN SET: 70% MNIST.

Model Clean Noise100 FGSM 0.5 PGD 0.5

Classifier 0.97 0.92 0.96 0.89

KAN Linear 0.97 0.76 0.98 0.98

Naı̈ve Fourier 0.92 0.18 0.94 0.97

Jacobi 0.92 0.80 0.66 0.72

Cheby 0.91 0.54 0.91 0.93

Our adversarial training experiments revealed significant
robustness gains across all evaluated models, demonstrating
substantial resilience improvements against FGSM and PGD
attacks, even when training data contained high proportions
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TABLE V
ACCURACY BY MODEL. TRAIN SET: 55% MNIST.

Model Clean Noise100 FGSM 0.5 PGD 0.5

Classifier 0.97 0.92 0.96 0.89

KAN Linear 0.97 0.71 0.94 0.96

Naı̈ve Fourier 0.92 0.19 0.95 0.98

Jacobi 0.91 0.80 0.65 0.71

Cheby 0.91 0.60 0.92 0.96

of adversarial samples. Linear KAN exhibited remarkable
improvement, achieving 98% accuracy under FGSM and 99%
accuracy under PGD with 85% clean data. Even at the lowest
clean data level (55%), Linear KAN maintained 94% and 96%
accuracy for FGSM and PGD respectively, though accuracy
dropped significantly to 71% under high-level noise attacks.
Figure 17 visually highlights the robustness improvement
across adversarial scenarios, and Table VI provides detailed
information.

Figure 17. Model Accuracy by Train set Linear KAN.

The Naı̈ve Fourier KAN demonstrated a dramatic trans-
formation, jumping from poor performance (11% FGSM and
22% PGD accuracy at 100% MNIST clean data) to 97% and
98% accuracy respectively at 85% clean data. Even further
reduction to 55% clean data sustained high performance,
achieving 95% for FGSM and 98% for PGD (Figure 18,
Table VII). However, Naı̈ve Fourier continued to underperform
in noise attacks across all data compositions, never exceeding
20% accuracy.

Jacobi and Cheby KAN models also improved significantly,
albeit with more moderate gains. Jacobi KAN, which initially
had catastrophic performance under FGSM (8%) and PGD
(5%) at 100% MNIST, improved considerably to 69% and
74% respectively at 85% MNIST clean data. However, further
reduction in clean data slightly diminished robustness, settling
at 65% FGSM and 71% PGD at 55% MNIST (Figure 19,

TABLE VI
PERFORMANCE METRICS BY ATTACK. KAN LINEAR.

TestSet Precision Recall F1-score Accuracy

10
0%

M
N

IS
T Clean 0.98 0.98 0.98 0.98

Noise 0.90 0.86 0.86 0.86

FGSM 0.50 0.29 0.30 0.29

PGD 0.20 0.11 0.07 0.11

85
%

M
N

IS
T Clean 0.98 0.98 0.98 0.98

Noise 0.86 0.80 0.81 0.80

FGSM 0.98 0.98 0.98 0.98

PGD 0.99 0.99 0.99 0.99

70
%

M
N

IS
T Clean 0.97 0.97 0.97 0.97

Noise 0.83 0.76 0.75 0.76

FGSM 0.98 0.98 0.98 0.98

PGD 0.99 0.98 0.98 0.98

55
%

M
N

IS
T Clean 0.97 0.97 0.97 0.97

Noise 0.82 0.71 0.71 0.71

FGSM 0.94 0.94 0.94 0.94

PGD 0.96 0.96 0.96 0.96

Figure 18. Model Accuracy by Train set Naive Fourier.

Table VIII).

Cheby KAN showed an impressive recovery from initial
single-digit accuracy figures to consistently high performances
(88% FGSM and 90% PGD at 85% MNIST), improving
further as clean data proportion decreased, reaching 92%
FGSM and 96% PGD at 55% MNIST (Figure 20, Table IX).

The MLP classifier displayed robust and consistent improve-
ment, maintaining high performance with minor fluctuations.
With 85% clean data, the MLP reached 96% FGSM and 88%
PGD accuracy, and notably, further reductions of clean data
to 55% sustained performance, yielding 96% FGSM and 89%
PGD accuracy (Figure 21, Table X).
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TABLE VII
PERFORMANCE METRICS BY ATTACK. NAÏVE FOURIER.

TestSet Precision Recall F1-score Accuracy
10

0%
M

N
IS

T Clean 0.92 0.92 0.92 0.92

Noise 0.17 0.16 0.16 0.16

FGSM 0.22 0.11 0.07 0.11

PGD 0.53 0.22 0.20 0.22

85
%

M
N

IS
T Clean 0.92 0.92 0.92 0.92

Noise 0.19 0.18 0.17 0.18

FGSM 0.97 0.97 0.97 0.97

PGD 0.98 0.98 0.98 0.98

70
%

M
N

IS
T Clean 0.92 0.92 0.92 0.92

Noise 0.20 0.18 0.17 0.18

FGSM 0.94 0.94 0.94 0.94

PGD 0.97 0.97 0.97 0.97

55
%

M
N

IS
T Clean 0.92 0.92 0.92 0.92

Noise 0.20 0.19 0.19 0.19

FGSM 0.95 0.95 0.95 0.95

PGD 0.98 0.98 0.98 0.98

Figure 19. Model Accuracy by Train set Jacobi.

V. EVALUATION AND DISCUSSION

Our experiments show that the same spline flexibility that
gives KANs their predictive power also makes them prone to
overfitting. Under adversarial perturbations, KANs can lose far
more accuracy than a standard MLP, creating a serious risk in
security-sensitive contexts.

Adversarial training is an effective countermeasure. Inject-
ing a small fraction (5%) of adversarial samples per AA type
into the training set restores robustness across all variants,
improving accuracy by more than 60 points under strong PGD
attacks. Although generating those perturbed samples adds
computational cost, the resulting resilience gains justify this
overhead for any real-world KAN deployments.

Not all KANs respond equally. Linear and orthogonal-spline
(Jacobi, Chebyshev) variants recover most of their robustness
with modest adversarial mixing. The Fourier KAN, while
nearly perfect under adversarial attacks after training, remains

TABLE VIII
PERFORMANCE METRICS BY ATTACK. JACOBI.

TestSet Precision Recall F1-score Accuracy

10
0%

M
N

IS
T Clean 0.93 0.93 0.93 0.93

Noise 0.68 0.51 0.52 0.51

FGSM 0.07 0.08 0.05 0.08

PGD 0.05 0.05 0.02 0.05

85
%

M
N

IS
T Clean 0.92 0.92 0.92 0.92

Noise 0.83 0.82 0.82 0.82

FGSM 0.69 0.69 0.69 0.69

PGD 0.74 0.74 0.73 0.74

70
%

M
N

IS
T Clean 0.92 0.92 0.92 0.92

Noise 0.82 0.80 0.80 0.80

FGSM 0.66 0.66 0.65 0.66

PGD 0.72 0.72 0.72 0.72

55
%

M
N

IS
T Clean 0.91 0.91 0.91 0.91

Noise 0.82 0.80 0.80 0.80

FGSM 0.66 0.65 0.65 0.65

PGD 0.71 0.71 0.70 0.71

Figure 20. Model Accuracy by Train set Cheby.

highly vulnerable to Gaussian noise. Its noise accuracy never
exceeds 20 % even at high perturbation ratios. This tells us
that adversarial training alone cannot address stochastic-noise
weaknesses; techniques such as input denoising is required.
The Jacobi KAN shows the smallest net gain overall and may
benefit from hybrid hardening tailored to its spline structure.

The next section outlines future directions, including sys-
tematic tuning of adversarial and noise ratios for each KAN
type, theoretical analysis of spline susceptibility, and more
efficient adversarial-sample generation methods.

VI. CONCLUSION AND FUTURE WORK

In this work, we have: 1) Quantified the vulnerability of
four KAN architectures, revealing up to 88% under adversarial
attacks (and up to 76% under noise conditions). 2) Shown
that modest adversarial training (5% perturbed samples per
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TABLE IX
PERFORMANCE METRICS BY ATTACK. CHEBY.

TestSet Precision Recall F1-score Accuracy
10

0%
M

N
IS

T Clean 0.93 0.92 0.92 0.92

Noise 0.56 0.39 0.38 0.39

FGSM 0.08 0.05 0.03 0.05

PGD 0.01 0.04 0.01 0.04

85
%

M
N

IS
T Clean 0.92 0.92 0.92 0.92

Noise 0.65 0.50 0.51 0.50

FGSM 0.88 0.88 0.88 0.88

PGD 0.91 0.90 0.89 0.90

70
%

M
N

IS
T Clean 0.92 0.91 0.91 0.91

Noise 0.68 0.54 0.55 0.54

FGSM 0.91 0.91 0.91 0.91

PGD 0.93 0.93 0.92 0.93

55
%

M
N

IS
T Clean 0.91 0.91 0.91 0.91

Noise 0.70 0.60 0.61 0.60

FGSM 0.92 0.92 0.92 0.92

PGD 0.96 0.96 0.95 0.96

Figure 21. Model Accuracy by Train set Classifier.

AA type) recovers more than 60 points of robustness. 3)
Identified that Fourier KANs remain noise-sensitive even after
adversarial training, highlighting the need for future research
and hybrid noise–adversarial defenses.

Our results demonstrate significant variation among KAN
models in their response to AA and provide a comparative
analysis against traditional MLP classifiers. Consistent with
previous findings [1], [7], in the unprotected setting, the
MLP baseline outperforms all KAN variants under FGSM and
PGD attacks. However, after adversarial training, Linear and
Fourier KANs exceed the MLP’s robustness, reaching nearly
99% accuracy against PGD, highlighting the effectiveness of
targeted hardening for these architectures.

One critical observation in our study was the significant
imbalance across classes within KAN models, particularly
evident in Figure 12. Further investigation into the underlying
causes of this imbalance could provide valuable insights into

TABLE X
PERFORMANCE METRICS BY ATTACK. CLASSIFIER.

TestSet Precision Recall F1-score Accuracy

10
0%

M
N

IS
T Clean 0.98 0.98 0.98 0.98

Noise 0.94 0.94 0.94 0.94

FGSM 0.79 0.79 0.79 0.79

PGD 0.66 0.66 0.65 0.66

85
%

M
N

IS
T Clean 0.97 0.97 0.97 0.97

Noise 0.93 0.93 0.93 0.93

FGSM 0.96 0.96 0.96 0.96

PGD 0.89 0.88 0.88 0.88

70
%

M
N

IS
T Clean 0.97 0.97 0.97 0.97

Noise 0.92 0.92 0.92 0.92

FGSM 0.96 0.96 0.96 0.96

PGD 0.89 0.89 0.89 0.89

55
%

M
N

IS
T Clean 0.97 0.97 0.97 0.97

Noise 0.92 0.92 0.92 0.92

FGSM 0.96 0.96 0.96 0.96

PGD 0.89 0.89 0.89 0.89

improving the robustness and general performance of KANs.
Understanding these mechanisms might not only enhance our
theoretical understanding of KAN architectures but also guide
practical improvements for diverse applications.

Adversarial training experiments provided substantial new
insights. Introducing progressively greater proportions of ad-
versarial data into the training sets notably improved resilience
across all models. This approach significantly enhanced KAN
models’ robustness, especially Linear and Naı̈ve Fourier
KANs, which achieved near-perfect accuracy (98%–99%)
under both FGSM and PGD attacks with 85% clean data.
Remarkably, even reducing clean training data to as low as
55%, these models maintained high accuracy (above 94%),
demonstrating their considerable potential for adversarial ro-
bustness. In contrast, Jacobi and Cheby KANs showed sub-
stantial, though less pronounced, improvements, indicating
that different activation functions significantly influence ad-
versarial training outcomes.

Our study did not specifically address training efficiency,
but the substantial training time observed for KAN models
highlights a potential area for future research. Understanding
and optimizing the trade-off between training efficiency and
adversarial robustness, especially for novel architectures like
KANs, is critical for broader adoption and practical applica-
tions.

Future Research Directions

Building on our results, we identify several promising areas
for future investigation:

• Deepening theoretical understanding of why certain KAN
models (e.g., Fourier) exhibit greater resistance to PGD
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attacks, potentially guiding new architectural designs or
activation function choices.

• Developing specialized adversarial robustness training
strategies tailored explicitly for different KAN architec-
tures to further leverage their inherent strengths.

• Exploring additional AA methodologies and evaluating
KAN robustness on more diverse datasets. Future work
should rigorously test KAN robustness using datasets
beyond MNIST, such as CIFAR-10 or ImageNet, to
validate the generalizability of our findings and their
practical implications.

• Investigating and addressing the observed class imbalance
issue within KAN models to improve both robustness and
general classification performance.

• Assessing the balance between computational efficiency,
training time, and model robustness to enhance the prac-
tical deployment of KAN models in real-world applica-
tions.

Pursuing these identified research directions will significantly
deepen our theoretical understanding of KAN robustness,
fostering advancements toward practically deployable, secure,
and interpretable ML models.
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