
Invisible Identifiers - How Browser Fingerprinting Challenges Internet Privacy and
User Anonymity

Alexander Lawall
IU International University of Applied Science

Erfurt, Thüringen, Germany
alexander.lawall@iu.org

Abstract—Browser fingerprinting has emerged as a sophisti-
cated and increasingly prevalent technique for identifying and
tracking users online without relying on traditional methods
like cookies. This paper provides a comprehensive overview of
browser fingerprinting techniques, ranging from passive and
active methods like Hypertext Transfer Protocol (HTTP) header
analysis to advanced machine learning-assisted side-channel
attacks. By evaluating the uniqueness, stability, and entropy
of different methods, the study highlights how the synergistic
combination of multiple techniques enhances the accuracy and
persistence of user identification. The analysis demonstrates that
browser fingerprinting poses a significant challenge to digital
privacy by operating invisibly, often without user knowledge
or consent. Despite regulatory frameworks such as the General
Data Protection Regulation, the widespread use of fingerprinting
scripts remains largely unchecked, exploiting legal loopholes
and technological asymmetries. The paper also explores the
potential of privacy-preserving fingerprinting systems for secure
user authentication while emphasizing the urgent need for adap-
tive countermeasures, regulatory reforms, and increased user
awareness to protect individual privacy in the evolving digital
landscape.

Keywords-browser fingerprinting; device fingerprinting; track-
ing; privacy; active fingerprinting; passive fingerprinting.

I. INTRODUCTION

This work is an extended version of Fingerprinting and
Tracing Shadows: The Development and Impact of Browser
Fingerprinting on Digital Privacy, published at SECURWARE
2024 [1], [2]. In the increasingly digitized world, the issues of
online privacy and data security are becoming more complex.
Particularly in tracking — monitoring users and their devices
across different web servers — browser fingerprinting has
emerged as an effective technique for creating detailed user
profiles. Unlike the storage of information via cookies, which
requires explicit user consent as mandated by the European
General Data Protection Regulations (GDPR) guidelines, fin-
gerprinting does not require such consent. A browser finger-
print can be generated in the background without any obvious
signs to the end user, leaving them unaware of whether and
to what extent they are being tracked.

It is possible to manipulate a device locally to alter its fin-
gerprint. This is often not feasible for all users, unlike deleting
cookies. This invisible threat is not apparent to the general
public and raises significant privacy concerns, as individuals
can be tracked unnoticed. These profiles can contain private
information, depending on the server operators, including age
group, ethnic origin, social circles, and interests of the affected
person.

Browser fingerprinting poses a threat to the privacy of the
general public. Contrary to being a threat, it is an opportunity
to provide valuable information to enhance the authentication
mechanisms. Both perspectives are explored throughout this
paper. The focus will be on the various techniques of finger-
printing to understand how accurate and detailed user profiles
can be created. The main research questions that this paper
seeks to answer are:

RQ1 “What methods are used in browser fingerprinting and
what user data are collected in the process?”

RQ2 “How has the development of browser fingerprinting as
a user identification method influenced user privacy and
data protection in the digital space?”

The paper is structured as follows: Section I introduces
browser fingerprinting and its privacy implications. In Section
II, the theoretical background explains how fingerprinting
works and its legal challenges. Section III outlines techniques
like HTTP Headers, Canvas, and WebGL Fingerprinting. Sec-
tion IV examines the impact of fingerprinting on privacy and
the regulatory landscape. Section V concludes with a summary
of the findings, emphasizing the need for stronger privacy
measures and further research on countermeasures.

II. THEORETICAL BACKGROUND

This section lays the conceptual foundation for understand-
ing browser fingerprinting, detailing its underlying mecha-
nisms, legal ambiguities, and role in modern tracking practices.
It introduces both passive and active techniques used to collect
identifying data from users’ browsers without explicit consent,
highlighting the technical simplicity yet high effectiveness of
these methods. Furthermore, it explores the growing tension
between evolving tracking technologies and regulatory pro-
tections like the GDPR, illustrating how fingerprinting often
operates in legal gray zones that undermine user privacy and
control.

A. Fingerprinting

Browser fingerprinting refers to collecting characteristic
information that the browser directly or indirectly reveals
about itself. Often used to track users, this technology has
also found applications in IT security, such as fraud detection.
Unlike tracking methods like cookies, browser fingerprinting
does not require storing data on the user’s computer, allowing
the process to occur secretly and without consent [3, p. 1].
Consequently, creating a new identity, similar to deleting

36International Journal on Advances in Security, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



cookies, is not easily achievable, and GDPR privacy laws
often provide little protection. Unlike cookie tracking, browser
fingerprinting is not explicitly mentioned in the GDPR. It
should fall under the collection of identifiable information
but website operators frequently claim “legitimate interest”,
enabling such data collection without the user’s consent [4].

Active transmission of data is not required for browser
fingerprinting, as loading a webpage can transmit various
pieces of information, such as the user’s preferred language,
within the HTTP headers. This passive data collection pro-
vides only a limited amount of information, so it is often
supplemented with active data collection methods. An active
approach typically employs JavaScript to interface with the
browser and gather information, such as screen resolution,
installed add-ons, and graphics card data, merging them into
a unique fingerprint [5, pp. 1, 3].

Similar to human fingerprints, browser fingerprinting relies
on the uniqueness of browser characteristics, which typically
do not change significantly with regular use. This allows for
accurate user identification over extended periods [5, p. 2].
However, not all collected data points are equally unique or
stable, necessitating careful selection of information to achieve
accurate results. The fingerprinting algorithm combines both
passively and actively collected data into a unique string.
Depending on the operator’s goals, adjustments can be made;
for instance, using cookies, the fingerprint might be less stable
but more unique, while tracking users without cookies requires
high stability [6, pp. 1-5]. Eckersley’s study showed that
participant browsers already had high entropy, indicating many
unique characteristics sufficient for accurate fingerprinting,
though not stable enough for long-term accuracy. In recent
years, potential entropy has increased with new techniques
like HTML Canvas, WebGL-based hardware fingerprints, au-
dio API fingerprints, plug-in-based fingerprints, and methods
utilizing mouse movements or differences in HTML parsing
between browsers, making cross-browser user identification
possible [5, pp. 4-5].

B. Concerns for Digital Privacy

Historically, the greatest threat to online tracking was posed
by cookies, along with other technologies like Flash cookies,
which have lost significance in recent years. Changes by
browser manufacturers, such as Mozilla, which rendered many
exploited technologies, so-called “super-cookies”, ineffective
[7], and additional browsers planning to block or eliminate
third-party cookies in the coming years [8], have shifted the
landscape. Following the GDPR, the use of non-essential cook-
ies has been further restricted and standardized for the first
time, defining how users share their data through cookies [9].
In contrast, browser fingerprinting occurs in the background
and leaves no stored information on the user’s computer. Thus,
the use of fingerprints not only circumvents previous issues
related to local storage, such as privacy laws and technical
limitations but also persists even when local data is deleted or
when incognito mode is used.

A 2021 study of the Alexa Top 100,000 websites found that
nearly 10% of the sites used scripts to generate fingerprints
[10, pp. 11-12]. Comparing this to a similar 2014 study,
which recorded 5.5% of the top 100,000 sites using canvas
fingerprinting scripts, reveals an almost doubling of usage over
seven years [11]. This suggests a shift towards online tracking
using this technology, which is much harder to detect and
prevent compared to cookies. The creation of a fingerprint is
imperceptible to the user, with no simple way to effectively
change or delete their fingerprint. Cookie banners give a false
sense of security while tracking continues in the background
without consent.

Thus, browser fingerprinting poses an active threat to pri-
vacy, as users often have no control over the collection and
use of their data. This stands in opposition to many current
data protection principles, such as the GDPR.

III. METHODS OF BROWSER FINGERPRINTING

In the context of browser fingerprinting techniques, the
methods of data collection are varied and comprehensive.
Therefore, specific properties and criteria are used to select
techniques. The following sections will encompass the ex-
planation of the techniques in terms of their functionality
and their applications will be discussed to provide a detailed
understanding of their use. An evaluation based on the advan-
tages and disadvantages of each technique is also included to
weigh their effectiveness and potential risks. Given the ever-
increasing number of techniques, only the most commonly
used, established, or novel methods will be presented here.

A. HTTP Header Attributes

1) Definition and Basics: The HTTP request header is
a part of every HTTP request exchanged between a client
(web browser) and a server, transmitting various functional
and compatibility-related information [12]. While individual
attributes are typically not unique, their combination can en-
hance the distinctiveness of a client within a larger population.
This explanation is based on HTTP version 1.1, with HTTP/2
introducing fundamental structural changes. However, most
attributes remain in use within the modified header frame [13].

2) Analysis: The attributes of HTTP request headers can
vary depending on the browser and its version. For fingerprint-
ing purposes, it is crucial to select fields that remain consistent
over time and are not easily influenced by user behavior. For
example, the Host header, which conveys the target server’s
domain, should be avoided as it is directly dependent on the
request destination. In contrast, the User-Agent field typically
exhibits high stability and provides extensive information,
making it particularly suitable for fingerprinting [14].

Studies by AmIUnique [15, p. 880] and PanOptiClick [6,
p. 5] identify the User-Agent, Accept, Content-Encoding, and
Content-Language fields as reliable attributes. These studies
collected user fingerprints voluntarily and demonstrated their
effectiveness in user identification. The User-Agent field, al-
though not standardized, frequently contains information about
browser compatibility, version, and operating system, often

37International Journal on Advances in Security, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



with varying levels of detail. Due to its lack of standard-
ization and manufacturer-specific implementations, the User-
Agent field exhibits high entropy, with modifications typically
occurring only through browser updates [16].

The Accept, Content-Encoding, and Content-Language
fields convey less information individually but can reveal
insights into the operating system, browser type, and language
preferences. Uncommon languages or specific language-region
combinations may yield unique fingerprints [17]–[19]. Addi-
tional fields such as Referer, Connection, Content-Length, X-
Forwarded-For, Cookie, and Cache-Control can complement
fingerprinting but provide minimal uniqueness on their own.
However, the presence of certain headers like X-Forwarded-
For may indicate specific configurations or proxy usage [15,
pp. 879-880].

The DoNotTrack (DNT) header, although originally in-
tended to signal tracking preferences, has paradoxically be-
come a fingerprinting target due to its voluntary nature and
lack of enforcement [20, p. 313]. Furthermore, the sequence
of header fields may serve as an additional fingerprinting
feature, particularly when combined with manipulated User-
Agent information. Cookies, while transmitted within HTTP
headers, require client-side storage and are thus excluded from
this discussion.

3) Advantages: The primary advantage of utilizing HTTP
headers for fingerprinting is the entirely passive nature of
information collection. As described in the analysis section,
header transmission occurs automatically with each request
and can be extracted by most web servers, such as Nginx,
without significant overhead [21]. Since all processing takes
place on the server side, this method remains invisible to
the user and does not require client-side scripts, making the
network traffic indistinguishable from regular requests. In
summary, this method is efficient, unobtrusive, and compatible
with most web servers, processing data on the server side
without a noticeable impact on the client.

4) Disadvantages: Despite their utility, HTTP headers offer
limited information due to the low entropy of most attributes.
The User-Agent field, while informative, is widely recognized
and can be manipulated using browser extensions like User-
Agent Switchers (i.e., User-Agent Switcher for Chrome).
Consequently, the reliability of this attribute alone should be
critically assessed.

Additionally, the use of HTTP header-based fingerprinting
without explicit user consent raises significant privacy con-
cerns under the General Data Protection Regulation (GDPR).
Therefore, any implementation should undergo legal review
prior to deployment to ensure compliance with data protection
regulations [22].

B. Enumeration of Browser Plugins

1) Definition and Basics: Browser plugins, whether pre-
installed or user-added, have historically constituted one of
the most significant methods for system recognition, alongside
font detection. Most browser features are indirectly modified,

with the exception of extensions, which maintain their popu-
larity. The capability to obtain precise enumeration of these
extensions remains highly sought after [15, pp. 878-880].

2) Analysis: Information-rich plugins, such as Flash, have
gradually disappeared from the market. Since 2016, most
browsers, including Firefox, no longer support the formerly
widespread Netscape Plugin Application Programming Inter-
face (NPAPI). This development has resulted in the detection
of installed extensions via JavaScript and the navigator.plugins
object in modern browsers primarily revealing only standard
plugins like PDF viewers [23]. Although the removal of
plugins represents significant progress for privacy protection,
the limited capability to read certain plugins for compatibil-
ity purposes continues to provide opportunities to identify
differences between systems and browsers, thereby enabling
inferences about the system. Direct detection of user-installed
add-ons is not possible, which restricts the significance of
collectible data for fingerprinting [15, pp. 886-887].

Despite the impossibility of directly reading user-installed
extensions, researchers have discovered novel methodologies
for their enumeration. Chromium-based browsers possess the
capability to access extension settings via a local URL. A
project in GitHub exploits this vulnerability by requesting
internal resources such as images for over 1,000 different
extensions in the background. The status code can indicate
whether the respective extensions are installed [24].

Ad blockers represent particularly popular add-ons, and
their behavior in removing unwanted content from pages can
also be detected. Ad blockers typically employ known lists of
advertising companies and CSS elements for removal. A script
can create such an element and verify whether it has been
modified. With a sufficient dataset, the existence of deployed
blocklists can be demonstrated [25].

Currently, it is also possible to read a portion of the
programs installed on a device beyond extensions. A vul-
nerability in various browsers allows for reading the status
of the handler protocol to determine whether the associated
software is installed. Programs such as Skype and Zoom add
these protocols within the system to enable launching the
corresponding program with parameters via a link.

3) Advantages: Given that extensions are installed by users
and considering the extensive market of available extensions,
this method offers high uniqueness coupled with stability for
fingerprinting purposes.

4) Disadvantages: This technique provides profound in-
sights into the privacy of unsuspecting users. A study demon-
strated that beyond less sensitive information like interests,
extremely sensitive data can be inferred, including health
conditions, practiced religion, and political views [26, pp. 11-
12].

Since precise reading of extensions is not possible, this
process relies on limited methods, making it error-prone.
Therefore, continuous maintenance and updating are required
to ensure its reliability.

38International Journal on Advances in Security, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



C. Canvas Fingerprinting
1) Definition and Basics: Canvas fingerprinting represents

a technique for generating a digital fingerprint through the
utilization of the Canvas element introduced in HTML5.
This methodology employs the Canvas API to render a 2D
graphic imperceptibly in the background. The manner in which
various browsers and devices process this image varies due
to differences in hardware acceleration, installed fonts, and
graphic libraries. The resultant fingerprint exhibits exceptional
stability and uniqueness [3, pp. 1-3].

2) Analysis: A script embedded within a webpage incorpo-
rates an invisible Canvas element that renders a predetermined
2D graphic in the background. Utilizing the Canvas context,
textual elements can also be rendered with diverse fonts
and font sizes. WebFonts additionally facilitate the dynamic
loading of fonts from the internet. These can be specifically
selected according to purpose to evaluate systems for unique-
ness in font rendering.

The resulting image data can be extracted via the functions
getImageData and toDataURL, subsequently formatted into a
fingerprint as desired, for instance, through the application of
a simple hashing algorithm. The hash is then transmitted to a
server via a web request for processing and storage.

Beyond storing the fingerprint for subsequent identification,
an alternative application methodology involves comparing the
fingerprint with an extensive database of known fingerprints
and corresponding system configurations. With a substantial
dataset, reliable predictions regarding the system’s configura-
tion can be established [3, pp. 2-4].

3) Advantages: The research findings of Mowery and
Shacham demonstrated that the implementation of Canvas fin-
gerprinting is exceptionally straightforward, requiring minimal
lines of client-side code. It utilizes fundamental JavaScript
functions and is deployable across all common web appli-
cations. The fingerprint generation process occurs inconspic-
uously for the user and presents significant challenges for
blocking. This is attributable to the frequent deployment of
Canvas operations on the web and the complex challenge of
distinguishing normal applications from fingerprinting scripts.

The creation of the fingerprint, due to its simplicity, can
be executed with high velocity and exhibits high stability in
conjunction with high uniqueness and entropy. Consequently,
its application is particularly valuable in real-time tracking
applications [3, pp. 1-5].

4) Disadvantages: Alterations in browser environments,
such as updates or graphic settings, may influence the stability
of the fingerprint. Additionally, the variability of hardware
and software configurations can lead to inconsistencies. As
an active technique, the execution of code on the client
side is unavoidable and entails the risk of detection and
potential blockage by, for example, blocklists targeting known
fingerprinting scripts [3, pp. 3-7].

Although the utilization is imperceptible to the user, the
limited number of interfaces for retrieving generated Canvas
data ensures that these can be monitored and manipulated by
extensions [10, p. 4]. Add-ons such as CanvasBlocker exploit

this to provide users with the option to prevent data extraction
or manipulate the data in the Canvas, thereby generating
a continuously new fingerprint and rendering identification
impossible [27].

Finally, while the implementation of Canvas fingerprinting
is relatively straightforward, the data analysis and interpreta-
tion are comparatively complex and may require a certain level
of expertise in the field to be processed correctly [3, pp. 6-8].

D. WebGL Fingerprinting

1) Definition and Basics: WebGL fingerprinting is a tech-
nique utilizing the WebGL JavaScript API, based on OpenGL
ES 2.0, allowing web applications to render both 2D and
3D graphics with high performance by directly accessing the
GPU [28]. Unlike Canvas fingerprinting, which focuses on 2D
graphics and identifies software differences mainly through
fonts and graphic libraries, WebGL fingerprinting provides
deeper and more precise detection capabilities. It captures
unique hardware information, particularly details about the
graphics processor, distinguishing it significantly from Can-
vas fingerprinting and broadening its application for tracking
purposes [3, p. 4]. The inherent trade-offs between WebGL
and Canvas fingerprinting ensure that neither method entirely
supplants the other; their complementary nature makes them
suitable for different scenarios.

2) Analysis: WebGL fingerprinting uses a Canvas ele-
ment to access the API. Similar to Canvas fingerprinting,
it creates an invisible element performing 3D operations
in the background to collect data without user interac-
tion. A straightforward application involves accessing spe-
cific variables, such as UNMASKED VENDOR WEBGL and
UNMASKED RENDERER WEBGL, using the getParameter
function in the WebGL context. These variables provide in-
formation about the graphics hardware manufacturer (Vendor)
and model (Renderer). For example, a Vendor entry like “Intel”
indicates an integrated graphics unit, while “Nvidia” combined
with ”GeForce GTX 970” as Renderer indicates a dedicated
graphics card. These details can reveal insights into the system
being used [29, p. 17]. Privacy concerns have led browsers
like Apple’s WebKit to provide generic information instead of
specific data to protect user privacy. Since 2020, WebKit has
masked Vendor and Renderer information, as well as shading
language details [30]. Firefox similarly groups graphics pro-
cessor models into categories instead of displaying specific
models [31]. In practice, this means that an Nvidia card from
the 900 series onward, for example, is reported as “GeForce
GTX 980” [32]. In summary, research investigating hardware
fingerprinting using HTML5 demonstrated the capability to
identify devices based on GPU performance. It utilizes the
graphics processor’s clock frequency and clock skew to render
complex 3D graphics, measuring GPU performance based on
the number of frames rendered within a period, providing
insights into the GPU’s frequency and core count [33, pp.
3-4].

Furthermore, WebGL fingerprinting can render graphics,
employing techniques like shadows, textures, lighting, anti-

39International Journal on Advances in Security, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



aliasing, and transparency, to generate system-specific unique
outputs. However, the three-dimensional environment results
in increased client-side resource utilization and more com-
plex code compared to the simpler 2D Canvas [3, p. 4].
While Laperdrix et al. initially deemed WebGL unreliable
for fingerprinting in 2016, subsequent research demonstrated
otherwise. Cao et al. [34] refuted Laperdrix et al.’s findings,
attributing the inconsistencies to non-standardized rendering
tasks and uncontrolled variables such as canvas size and anti-
aliasing settings. By implementing 20 consistently defined
tasks rendered under carefully controlled parameters, Cao et al.
achieved a 99.24% success rate, surpassing Laperdrix et al.’s
90.84%. Their work also demonstrated the ability to identify a
system across different browsers with a 91.44% stability [34,
p. 2].

To enhance fingerprint stability, the ”DrawnApart” project
focuses on subtle variations in GPU Execution Units (EUs)
rather than relying on differences in graphic rendering. This
method exploits the unique characteristics of a device’s GPU
stack to detect speed variations across different EUs, creating
a robust and reliable GPU signature. Experiments involving
over 2,500 devices showed a fingerprint stability increase of
up to 67% compared to other current techniques [35, pp. 1,
6-12].

3) Advantages: As demonstrated by Cao et al., WebGL can
offer high uniqueness and stability [34]. Its direct interface
with the system ensures consistency across browsers, making
it challenging for users to evade identification through simple
browser changes or reinstalls. Despite changes to enhance
WebGL’s resistance to fingerprinting, it reliably identifies
users. The successor to WebGL, WebGPU, is currently in
development, promising even more privacy risks due to its
closer hardware access, allowing for classifications with up
to 98% accuracy in 150 milliseconds, a reduction from the 8
seconds WebGL took [36].

4) Disadvantages: The complexity of WebGL fingerprint-
ing is significantly higher compared to previous techniques,
necessitating careful consideration whether a simpler Canvas
approach combined with other methods might be accurate
enough for specific use cases. Intensive tasks in a 3D envi-
ronment can also strain the target system, leading to longer
fingerprint creation times [3, p. 4]. Implementing WebGL
requires caution, as shown by the cases of Laperdrix et al.
and Cao et al., and opting for a ready-made solution might
be advisable. Moreover, WebGL shares Canvas’s vulnerability
to blocked or misread data if detection methods rely on
differences in rendered graphics. Even novel methods like
DrawnApart can be mitigated through countermeasures, such
as limiting to a single EU [35, p. 12]. WebGL may also
not be available or disabled on some devices, necessitating
consideration of alternatives, such as using the 2D Canvas.

E. Audio Fingerprinting

1) Definition and Basics: The Web Audio API is a
JavaScript interface for processing and synthesizing audio
signals in web browsers, part of the HTML5 standard. It can

identify systems through manufacturing differences in audio
hardware. Methods analyze signal processing characteristics,
hardware differences, and system responses to specific audio
signals for fingerprinting [37, pp. 1107-1109]. The API’s indi-
rect access to audio hardware allows for system identification
based on subtle variations introduced during manufacturing.

2) Analysis: Audio fingerprinting involves various acoustic
measurements to create a unique device fingerprint. It requires
an AudioContext linking an AudioBuffer, Oscillator, and
Compressor. The AudioBuffer represents a small audio seg-
ment, while the Oscillator generates a waveform at a defined
frequency using a mathematical function. The Compressor
manipulates the audio signal. The unique waveform generated
and manipulated reflects system characteristics, allowing a
unique fingerprint to be created by applying a hash function
to the final waveform [38], [39]. This method, known as
“Dynamic Compressor (DC)”, is highly stable, producing the
same fingerprint for the user each time using a reliable hash
function [37, pp. 1109-1111].

Another method is the “Fast Fourier Transform” (FFT), con-
verting audio signals from the time domain to the frequency
domain. It measures hardware implementation differences to
identify characteristics. FFT is less stable than DC, often
requiring multiple attempts for consistent results. DC and FFT
are often used together for more reliable outcomes [37, pp.
1111-1114].

Researchers from New Orleans compared various tech-
niques, including custom-designed ones, alongside DC and
FFT. These included creating “Custom Signals”, “Merged
Signals”, and analyzing generated AM and FM waves. All
techniques showed good stability, averaging two to four at-
tempts for fingerprint matching [40, pp. 3-5].

3) Advantages: The generated fingerprints are highly sta-
ble and can differentiate systems based on their properties.
Queiroz and Feitosa showed that mobile devices using Firefox
could be consistently recognized and grouped by their stable
fingerprints [37, p. 1119]. Techniques like DC are simple
to implement and offer high stability. Other promising tech-
niques, especially when used together, could enhance potential
but are more challenging to implement [40, pp. 1-3].

4) Disadvantages: While audio fingerprinting offers high
stability, it lacks uniqueness and accuracy on its own and
should be used with other fingerprinting techniques [37, p.
1119]. Additionally, the Web Audio API can be disabled on
devices or manipulated by add-ons like “Canvas Blocker”,
which also blocks and manipulates Canvas and WebGL [27].

F. Font Fingerprinting

1) Definition and Basics: Font fingerprinting is a browser
fingerprinting technique that identifies devices by recogniz-
ing installed fonts. This method operates on the premise
that each device possesses a specific combination of fonts.
This combination can be unique or, when combined with
other fingerprinting techniques, contribute to a unique and
relatively stable digital fingerprint. Installed fonts are among
the more unique identifiers of a device, often providing the

40International Journal on Advances in Security, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



highest entropy, especially when considered alongside other
data points such as installed plugins, information gleaned via
the Canvas API, and the browser’s User-Agent [20, p. 314].
These elements together enable the creation of a detailed and
individualized device profile, which can be used for tracking
and identification purposes.

2) Analysis: Until the end of 2020, Adobe Flash was fre-
quently used to enumerate installed fonts. With the deprecation
of Flash Player and its removal from common browsers, new
methods had to be developed [34, p. 10]. Since pure JavaScript
does not offer a direct function to detect installed fonts, a
fallback mechanism is employed. This involves applying a
specific font, and if it is unavailable, the system defaults to
a standard fallback font. The technique leverages the different
dimensions that fonts require to render the same text. A
text string is rendered in a specific font, and the resulting
dimensions are compared to expected values. This allows the
determination of whether a specific font is available or a
fallback was used [20, p. 311].

Using JavaScript, invisible div elements can be created,
containing selected texts with specified fonts. The dimensions
of the element are then compared with known target values,
and a match is recognized as the font being installed. The list
of all installed fonts can then be combined into a fingerprint
via a hash algorithm [20, p. 311].

Another method is using the Canvas element. As described
in Section III-C, the Canvas can render texts in requested
fonts and use fallbacks if these are not available. Unlike direct
text, the Canvas element has a fixed size, but the measureText
function of the Canvas context allows reading the width of the
drawn text, allowing further inferences about available fonts
[41, p. 12].

It should be noted that JavaScript under Chrome and Edge
currently allows reading local fonts, but the Local Font Access
API used for this is experimental, only available in these two
browsers, and requires user consent, making it unsuitable for
fingerprinting purposes [42].

3) Advantages: Font recognition offers high entropy and
stability since fonts are rarely changed. Fonts can be installed
by the user or by software, with each operating system pre-
installing different fonts. This allows the identification of the
operating system and potentially its version, as manufacturers
can make adjustments. It also allows the detection of installed
software packages like Office or Photoshop, which installs
fonts for use [5, p. 7].

4) Disadvantages: Without Flash, font recognition is done
through “brute-force” methods, reducing accuracy if unknown
fonts are installed. This requires selecting a list of fonts to
test and measuring them against the values to be tested. If
fonts are installed that are not within the list, they cannot
be detected, reducing the accuracy of the result [34, p. 10].
Another problem is fonts that have too strong similarities in
their dimensions to possible fallbacks. This can lead to false
positives, so a forced fallback test should be performed for a
text beforehand. Since the fallback font is unknown, a non-

existent font is requested, and the resulting dimensions are
used to recognize other non-existent fonts [20, p. 311].

Finally, it is still possible to manipulate the read fonts
through extensions [43] or, as in the case of Apple’s WebKit,
to only deliver values pre-installed by the operating system,
causing users to blend into the crowd [44].

G. Screen Fingerprinting

1) Definition and Basics: Screen fingerprinting identifies
a device by analyzing various screen-related characteristics,
including screen resolution, pixel depth, color depth, and
browser window size. This method leverages the uniqueness
of screen configurations and browser modifications, which can
create rare resolution combinations [45, p. 20].

2) Analysis: JavaScript provides attributes for screen and
browser window characteristics through the window.screen ob-
ject, offering details like color depth (colorDepth), screen ori-
entation (screenOrientation), and screen dimensions (screen-
Height, screenWidth). Values, such as window.innerWidth and
window.innerHeight, determine the browser window’s inner
area, which can be altered by toolbars or bookmark bars [34,
p. 3].

3) Advantages: Screen and window resolution information
typically have high entropy, making them useful for stabiliz-
ing fingerprints when combined with other techniques. This
method is particularly effective for distinguishing between
desktop, tablet, and mobile devices, as these have distinct
resolutions and aspect ratios compared to standardized desktop
screens [37, p. 277].

4) Disadvantages: Since values are derived from browser
attributes rather than hardware tests, they can be limited or
altered by extensions or privacy settings. Browsers like TOR
set the window to a fixed size of 1000x1000 pixels, reducing
uniqueness, and browsers like Firefox always report a color
depth of 24. Additionally, users with multiple monitors or
those using zoom functions can affect the accuracy of screen
fingerprinting, as there is no reliable way to determine the
zoom factor directly, which reduces entropy [34, p. 10].

H. WebRTC Fingerprinting

1) Definition and Basics: WebRTC is a standard and ac-
cessible JavaScript interface available in most browsers. It
facilitates real-time communication over stateless HTTP by
establishing direct connections between participants, allowing
the extraction of local network adapter information. This can
reveal private and public IP addresses, which can be used for
fingerprinting or identifying users behind proxies or VPNs [41,
p. 12]. It also provides information about connected devices,
such as microphones, webcams, and speakers.

2) Analysis: Unlike other browser mechanisms like camera
or microphone access, establishing a WebRTC connection re-
quires no permissions or user notifications. After successfully
connecting to the target computer via a Session Traversal
Utilities for NAT (STUN) server, the individual addresses can
be read from the RTCPeerConnection object in the form of
iceCandidates [46, p. 667].

41International Journal on Advances in Security, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



This data can be used for fingerprinting, but the data collec-
tion does not have to stop there. Since WebRTC always seeks
the shortest path for a connection, it is possible to enumerate
the local network through, for example, port scanners, creating
a unique picture of the target’s environment. Furthermore, it
is possible to read all local addresses of the adapters, which,
in addition to connections to VPNs, can also include set-up
virtual adapters for Virtual Machines [46, pp. 667-668].

The DetectRTC project [47] demonstrates what functions
are directly available through WebRTC. The most important
are the microphones, webcams, and speakers. However, the
exact device names are not possible without the necessary
permissions. WebRTC does, however, allow reading the Media
Device IDs of the respective devices, which, in connection
with the respective active WebRTC functions, lead to unique
fingerprints [48].

3) Advantages: Extracting private and public IPs provides
deep insights, especially for identifying targets behind VPNs
or proxies. No other technique can silently reveal addresses
behind Network Address Translation (NAT) [49, p. 273]. The
collected data is highly unique; a study with 80 devices found
over 97% uniqueness using only WebRTC [46, p. 668].

4) Disadvantages: WebRTC might be disabled in the target
browser, or extensions might block its usage without user
consent. To read the Media IDs of the devices, a request for
access rights for the respective devices is required. This can
alert the user that a page may be performing dubious actions
in the background. This is therefore not recommended for a
secret operation.

Finally, WebRTC requires an infrastructure in the form of a
STUN server, which must be set up independently or used by
third parties. This makes it a technique that requires further
dependencies and should therefore be considered depending
on the intended use.

I. CSS Fingerprinting

1) Definition and Basics: Different to the active finger-
printing techniques using JavaScript, CSS fingerprinting is
a passive method. CSS is a stylesheet language primarily
used to enhance the presentation of HTML elements. Over
time, the CSS specification has expanded to include selectors
and filters, enabling limited dynamic selections, which this
technique leverages [50, p. 10].

2) Analysis: Until 2010, the :visited selector could identify
if a website had been visited by changing the link color,
detectable via JavaScript. This was possible because browsers
displayed already visited links in a different color, and this
color difference was read out by JavaScript. After this was
patched, researchers explored time-based methods to read user
history, but these required JavaScript and were impractical [51,
p. 4].

In 2015, Takei et al. introduced a JavaScript-free method
using CSS properties and multiple @media queries to fetch
URLs based on defined rules. By considering the requesting
IP address and URL parameters, the server could then identify

system properties like screen dimensions, resolution, touch-
screen presence, installed fonts, browser, and OS [52, pp. 3-5].
A current GitHub project demonstrates this method’s practical
capabilities [53]. Individual CSS properties were used together
with a variety of @media queries to call up URLs according
to defined rules.

3) Advantages: CSS fingerprinting’s independence from
JavaScript allows it to identify even cautious users who block
JavaScript or use extensions like NoScript. Software projects
like TOR usually block JavaScript or use extensions like
NoScript to give the user the possibility to execute selected
scripts. This technique can even detect if JavaScript is disabled
via noscript tags [52, p. 2]. Since this method is currently little
used and rather unknown, further research has shown that
no practical solution currently exists for users to effectively
prevent it.

4) Disadvantages: Takei et al.’s method provides limited
data, which, without JavaScript, can only be supplemented by
techniques like header analysis (as presented in Section III-A).
Oliver Brotchie notes in his project repository that the method
is not currently scalable, as each request requires over 1MB of
CSS files to be downloaded. However, he warns that upcoming
CSS Values 4 implementation could reduce download sizes
significantly, making the method more practical. Additionally,
font recognition relies on brute-forcing, which, considering
network traffic, can be noticeable [53]. The font recognition,
as presented in Section III-F, is based on the principle of brute
forcing, i.e., the massive trying out of fonts, which can be
conspicuous when considering the network traffic.

J. Additional JavaScript Attributes

1) Definition and Basics: Most of the previously dis-
cussed techniques actively use JavaScript to extract infor-
mation from various interfaces. Additional possibilities are
briefly mentioned here to provide a more comprehensive
picture. Since these techniques share many characteristics with
other JavaScript-based methods, listing their pros and cons is
omitted.

2) Analysis: The navigator object in browsers provides
information, such as DoNotTrack status, user agent details,
platform, languages, cookies usage, granted and available per-
missions, and time zone [20, p. 9]. JavaScript implementation
varies between browsers and versions, and Mowery et al.
demonstrated that these differences are measurable and can
indicate the software and hardware used [3].

However, the implementation of JavaScript itself can also
vary from browser to browser and version to version. Mowery
et al. proved in 2011 that the different implementations of
functions are measurable and can therefore provide a conclu-
sion about the software and hardware used [3]. In addition to
the differences in the execution itself, there are also differences
in whether various functions are built into the browser and
usable on the platform. This offers an alternative way of
UserAgent detection, should this have been manipulated by
extensions, for example [54].

42International Journal on Advances in Security, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Another technique caused uncertainty among Tor users in
the past. Despite disabled Canvas, the getClientRects function
could be used to obtain the exact data of DOM elements.
Similar to the Canvas fingerprint, these factors could change
greatly depending on implementation, font sizes, and screen
resolutions, enabling identification in the otherwise anony-
mous browser [55]. The vulnerability has been fixed in Tor
but remains exploitable in other browsers [56].

3) Advantages: JavaScript-based fingerprinting techniques
are highly versatile and widely applicable since JavaScript
is essential for web functionality. These methods can collect
a broad range of information, such as user agent details,
time zones, and system settings, often without requiring user
consent or visibility. The stealthy nature of JavaScript fin-
gerprinting allows it to operate in the background, making
it difficult for users to detect. Moreover, JavaScript-based
attributes work consistently across different browsers, enabling
effective cross-browser tracking.

4) Disadvantages: However, JavaScript fingerprinting is
limited by browser-specific implementations, which can result
in inconsistent data collection. Privacy-focused browsers like
Tor or extensions, such as NoScript, actively block or obscure
JavaScript-based tracking, reducing its effectiveness. Addition-
ally, users are becoming more aware of privacy risks and in-
creasingly use tools to disable or modify JavaScript functions.
Finally, updates to browsers may close vulnerabilities or alter
features that JavaScript fingerprinting relies on, decreasing its
long-term viability.

K. Advanced Techniques Using Machine Learning

1) Definition and Basics: Most active techniques discussed
so far use JavaScript to gather hardware and software in-
formation. They rely on unique data combinations based
on implementation quirks or directly available information.
Newer methods often employ “side-channels”, capturing addi-
tional data by observing behavioral differences during various
operations within the execution environment. Methods like
plugin enumeration (cf. Section III-B), font fingerprinting (cf.
Section III-F), and CSS fingerprinting (cf. Section III-I) use
this approach in simple forms by testing known combinations
to gain indirect information. These side-channel methods can
be implemented with minimal effort but can also be used
in more sophisticated ways with machine learning to gather
otherwise unobtainable information [57, p. 1].

2) Analysis: Wang et al. explored using techniques such
as cache usage, memory consumption, and CPU activity to
identify visited websites. In earlier methods, CSS selectors
were leveraged to glean browsing history, revealing significant
privacy risks and prompting swift remedial actions. Side-
channel techniques utilize an array of strategies to yield more
accurate analyses of system behavior. These methods involve
complex calculations that impose a load on the hardware,
with machine learning models categorizing the results against
expected values from known sites. Their tests demonstrated
an accuracy rate of 80-90% in identifying websites [57, pp.
3-5]. While Wang et al. addressed multiple attack vectors,

including compromised machines with direct operating system
access, the feasibility of executing such attacks solely through
JavaScript measurements remains uncertain. Further research
is needed, but implementations using WebAssembly [58] and
the Performance API [59] are conceivable.

3) Advantages: This method is invisible to the user and pro-
vides insightful information not available through conventional
means. Currently, there are no effective methods to protect
users from such techniques [57, pp. 1-3].

4) Disadvantages: While previous techniques aimed to
identify a user over time, this method has the potential to
offer dangerous insights into the individual’s behavior behind
the screen. However, the technique is still in its initial stage and
remains a theoretical approach not yet tested in in real-world
scenarios. It is unlikely to be reliably utilized by malicious
actors in the near future [57, p. 6].

IV. DISCUSSION

Browser fingerprinting can be used positively for security,
as shown by technologies like BrFast and private, passive user
recognition methods. Such technologies offer promising alter-
natives for user authentication by leveraging device-specific
attributes without the need for intrusive cookies or explicit user
interaction. They provide a non-invasive method to identify
users, particularly for fraud detection and bot prevention.
However, there’s a significant risk of misuse, especially in
the field of advertising and mass surveillance. The advertising
industry, driven by creating accurate user profiles, heavily
invests in digital advertising, with data-driven ads accounting
for 60-70% of digital ad revenue in Germany. Personalized ads
significantly impact Generation Z, who discover products pri-
marily through social media and whose purchasing decisions
are increasingly influenced by algorithmic recommendations.

Traditionally, data collection relied on cookies, but users
developed ways to avoid tracking, such as deleting cookies
or using incognito mode. However, unlike cookies, browser
fingerprints are collected in the background, making them
invisible and far more persistent. Fingerprints are difficult
to alter, and their cross-browser and cross-device capabilities
exacerbate the problem by enabling long-term tracking across
multiple platforms [34]. GDPR regulations mandate user con-
sent for data collection, but enforcement is inconsistent, and
compliance with fingerprinting guidelines remains unclear,
even with new laws like Germany’s Telecommunications Tele-
media Data Protection Act (TTDSG) [60].

A. Affected Demographics

Online tracking is ubiquitous, affecting nearly all user
groups. A 2016 study of the top 1 million websites revealed
extensive tracking, with services like Google and Facebook
present on over 10% of sites [41]. Following the GDPR,
fingerprinting scripts increased significantly, with 68.8% of the
top 10,000 websites employing such methods by 2020 [10].
This shift illustrates how fingerprinting has replaced traditional
cookie-based tracking in response to regulatory pressure.

43International Journal on Advances in Security, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE I
OVERVIEW OF FINGERPRINTING METHODS

Fingerprinting Method Uniqueness Stability Entropy Impact on User Privacy Defense Techniques

HTTP Header
Attributes Low Moderate Low

Moderate impact: limited detail but
useful when combined with other
methods.

Altering or masking headers (e.g.,
randomizing User-Agent).

Enumeration of Browser
Plugins Moderate High High High impact: reveals sensitive data,

such as installed plugins.
Disabling plugin enumeration,
avoiding unnecessary add-ons.

Canvas Fingerprinting High Moderate High High impact: generates unique fin-
gerprints based on rendering.

CanvasBlocker extension to block
or manipulate rendering.

WebGL Fingerprinting High High High High impact: collects detailed
hardware data for tracking.

Block or manipulate WebGL out-
puts.

Audio Fingerprinting Moderate High Moderate High impact: captures unique audio
processing details.

Disable Web Audio API, use pri-
vacy extensions.

Font Fingerprinting High High Moderate High impact: identifies installed
fonts, making it persistent.

Limit font access with privacy-
focused browsers (e.g., Tor).

Screen Fingerprinting Moderate High Low
Moderate impact: uses screen res-
olution and window size but less
effective on mobile devices.

Fix window size or limit resolution
reporting with privacy browsers.

WebRTC Fingerprinting Very High High Very High Very high impact: exposes real IP
addresses, even behind VPNs.

Disable WebRTC, use extensions
that block data collection.

CSS Fingerprinting Low Moderate Low Low impact: provides limited sys-
tem and style information.

Limit or disable CSS fingerprinting
through extensions or scripts.

JavaScript Attributes Moderate High Moderate Moderate impact: uses various
browser features for tracking.

Disable unnecessary JavaScript
functions or use privacy extensions.

Advanced Machine
Learning Fingerprinting Very High Very High Very High

Very high impact: uses side-
channel data (e.g., CPU/cache) for
tracking.

Limit access to Performance API
and WebAssembly, emerging de-
fenses needed.

However, fingerprinting does not affect all users equally.
A study with 234 participants found that demographics like
age, gender, education, IT background, and privacy awareness
influence trackability. Men and those with higher education
were found to be less trackable, while users with lower privacy
knowledge or older devices were more easily identified [61].
Despite this, many participants believed they could protect
themselves from fingerprinting, underestimating its stealth and
technical complexity.

Additionally, fingerprinting poses a disproportionate risk to
marginalized communities. Research by Queiroz and Feitosa
shows that low-income users and those in the Global South
— who are more likely to use older mobile devices — are
significantly more identifiable through audio fingerprinting
[37]. This privacy divide creates a vulnerability gap, where
the users least capable of protecting themselves are the most
exposed.

B. Convergence of Fingerprinting Techniques

Browser fingerprinting, as explored through various meth-
ods in this paper (cf. Table I), represents a comprehensive
and evolving threat to digital privacy. Each fingerprinting tech-
nique, from HTTP Header Attributes to sophisticated methods
like Canvas, WebGL, and Audio Fingerprinting, offers unique
data points, but their power lies in their combinatorial use. This
synergistic exploitation of passive and active methods creates
a multi-dimensional profiling system capable of identifying
users with extraordinary precision and stability.

The cross-browser stability of WebGL and machine
learning-based techniques enables tracking across different
devices and sessions, while WebRTC Fingerprinting reveals
network-level information like private IP addresses. These

methods complement traditional fingerprinting approaches by
exposing additional system and network data layers, making
countermeasures significantly more difficult.

Furthermore, machine learning-based fingerprinting repre-
sents the next evolutionary step in this domain. Research by
Wang et al. demonstrated that side-channel attacks exploiting
CPU cache timing and memory consumption can identify users
with up to 90% accuracy without relying on any standard
browser attributes [57]. This convergence of fingerprinting
techniques into multi-layered profiling systems renders current
countermeasures increasingly ineffective.

C. Ethical and Legal Implications

The stealthy nature of browser fingerprinting raises signif-
icant ethical concerns regarding user autonomy and consent.
Although the GDPR explicitly defines personal data as any
information that can identify an individual, browser finger-
printing often circumvents this regulation under the guise of
legitimate interest [62].

However, recent court rulings suggest a tightening regu-
latory landscape. In 2023, the French data protection au-
thority CNIL fined Criteo for failing to obtain consent for
fingerprinting-based tracking, marking one of the first le-
gal cases explicitly addressing browser fingerprinting under
GDPR.

Nonetheless, global regulatory frameworks remain frag-
mented, and the majority of fingerprinting scripts operate
without user knowledge or legal verification. This regulatory
vacuum risks turning browser fingerprinting into a normalized
surveillance practice embedded within the digital economy.

44International Journal on Advances in Security, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



D. Towards Privacy-Respecting Fingerprinting

While fingerprinting is primarily associated with surveil-
lance, several emerging technologies seek to repurpose it for
privacy-enhancing applications. Projects like BrFast [15] and
Apple’s Private Access Tokens leverage ephemeral, crypto-
graphically unlinkable fingerprints to authenticate users with-
out persistent tracking.

However, the implementation of privacy-respecting finger-
printing requires transparent system design and regulatory
oversight. Without proper safeguards, even privacy-preserving
systems risk reinforcing the same surveillance mechanisms
they aim to replace.

E. Future Outlook

The future of browser fingerprinting lies in the convergence
of machine learning, side-channel attacks, and cross-device
tracking. This hybrid approach creates persistent, adaptive
tracking systems capable of circumventing existing counter-
measures.
Future research should prioritize:

• Developing adaptive defenses against machine learning-
assisted fingerprinting.

• Investigating cross-device tracking prevention methods.
• Designing transparent fingerprinting APIs that separate

security-related use cases from surveillance.
• Studying the privacy divide and ethical implications of

fingerprinting on vulnerable populations.

F. Consequences

Browser fingerprinting represents one of the most perva-
sive and least transparent forms of online tracking. Its rapid
evolution from basic HTTP headers to machine learning-
assisted side-channel attacks highlights the growing asym-
metry between users and data collectors. The convergence
of passive and active methods creates a multi-dimensional
profiling system that is increasingly resistant to countermea-
sures, challenging both privacy frameworks and user efforts to
remain anonymous online.

Despite its invasive applications, fingerprinting could also
be repurposed for privacy-enhancing authentication systems —
provided that transparent design principles and strict regulatory
safeguards are enforced. Bridging the gap between security
and privacy will be one of the defining challenges of digital
privacy in the coming decade.

V. CONCLUSION

In this final section, the paper synthesizes its findings
to assess the broader impact of browser fingerprinting on
digital privacy. It reflects on the dual-use nature of fin-
gerprinting—both as a security tool and as a surveillance
threat—and reaffirms the urgent need for stronger countermea-
sures, privacy-oriented browser practices, and regulatory inter-
ventions. The conclusion also identifies key areas for further
research and policy action, emphasizing that safeguarding user
anonymity in the digital space requires a coordinated effort
between technologists, regulators, and informed users.

A. Summary of the Research Outcome

This contribution has examined browser fingerprinting, a
growing technique in online tracking. It has demonstrated that
browser fingerprinting is a sophisticated method for identifying
and tracking users online without traditional methods like
cookies.

The analysis highlighted that browser fingerprinting poses
a complex challenge from both technical and privacy per-
spectives. While it provides companies and advertisers with
detailed insights into user behavior for targeted advertising, it
raises significant privacy concerns as users are often tracked
without their knowledge or consent. Despite stricter privacy
laws like the GDPR in the EU, browser fingerprinting remains
a grey area. Anti-fingerprinting techniques are limited and
continually evolving to keep up with new tracking methods.

In conclusion, browser fingerprinting plays and will con-
tinue to play a significant role in the digital landscape.
Both users and regulatory bodies must increase awareness of
browser fingerprinting practices and their implications.

B. Implications for Practice

Consent and Cookies: Always accept only the necessary
cookies in cookie banners and regularly delete cookies to hin-
der tracking and fingerprinting. This is particularly important
for news sites, which often misuse collected data without user
consent.

Blending in with the Masses: Reducing APIs and data
sources for fingerprinting can ironically make users more iden-
tifiable [63]. Thus, widely adopted browsers and protection
mechanisms should be used to stay less conspicuous.

Browser Choice: Choose browsers with robust privacy pro-
tections. On iOS, Safari is recommended due to its advanced
tracking protection and large user base [64]. For Android,
the Mull browser is highly rated for fingerprinting protection,
while Brave is a good, widely-used alternative. On desktops,
Brave, Librewolf, and Mullvad browsers are recommended for
their privacy features and user bases [65].

Browser Extensions: Limit the use of browser extensions,
as they can become sources of unique information. While some
extensions block known trackers or modify API outputs, these
protections are often already built into recommended browsers
like Brave and Librewolf [26] [63].

C. Future Research

Future research in browser fingerprinting should focus on
several key areas. First, countermeasures and defense mech-
anisms need to be explored further, especially in mitigating
the newer techniques that leverage machine learning and
side-channel attacks. These advanced methods can bypass
traditional privacy safeguards, such as disabling JavaScript or
using incognito modes, making the development of more ro-
bust anti-fingerprinting technologies imperative. Additionally,
research should explore the ethics and regulatory frameworks
surrounding fingerprinting, examining how existing privacy
and data protection laws like GDPR can be adapted to better
address fingerprinting practices. Another promising direction

45International Journal on Advances in Security, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



is improving cross-device tracking prevention by understand-
ing how fingerprinting works across different platforms and
hardware. Lastly, investigating user awareness and educational
tools on fingerprint privacy risks will help empower the general
public to protect their digital identities more effectively. Thus,
future research should focus on developing more effective
privacy techniques to balance commercial interests and user
privacy rights.

REFERENCES

[1] A. Lawall, “Fingerprinting and Tracing Shadows: The Development and
Impact of Browser Fingerprinting on Digital Privacy,” in Proceedings of
the IARIA SECURWARE 2024 Conference. IARIA, November 2024,
pp. 132–140.

[2] ——, “Fingerprinting and Tracing Shadows: The Development and
Impact of Browser Fingerprinting on Digital Privacy,” arXiv preprint
arXiv:2411.12045, 2024.

[3] K. Mowery and H. Shacham, “Pixel perfect: Fingerprinting canvas in
HTML5,” Proceedings of W2SP, vol. 2012, 2012.

[4] K. Szymielewicz and B. Budington. (2018) The GDPR
and Browser Fingerprinting: How It Changes the Game for
the Sneakiest Web Trackers. Accessed: 2024-09-27. [Online].
Available: https://www.eff.org/de/deeplinks/2018/06/gdpr-and-browser-
fingerprinting-how-it-changes-game-sneakiest-web-trackers

[5] D. Zhang, J. Zhang, Y. Bu, B. Chen, C. Sun, and T. Wang, “A
Survey of Browser Fingerprint Research and Application,” Wireless
Communications and Mobile Computing, vol. 2022, no. 1, p. 3363335,
2022. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1155/2022/3363335

[6] P. Eckersley, “How unique is your web browser?” in Privacy Enhancing
Technologies, M. J. Atallah and N. J. Hopper, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 1–18.

[7] S. Englehardt and A. Edelstein. (2021) Firefox 85 Cracks Down
on Supercookies. Accessed: 2024-09-27. [Online]. Available: https:
//blog.mozilla.org/security/2021/01/26/supercookie-protections/

[8] E. Woollacott. (2021) Browser fingerprinting more prevalent on the
web now than ever before. Accessed: 2024-09-27. [Online]. Avail-
able: https://portswigger.net/daily-swig/browser-fingerprinting-more-
prevalent-on-the-web-now-than-ever-before-research

[9] R. Koch. (2019) Cookies, the GDPR, and the ePrivacy Directive.
Accessed: 2024-09-27. [Online]. Available: https://gdpr.eu/cookies/

[10] U. Iqbal, S. Englehardt, and Z. Shafiq, “Fingerprinting the Fingerprint-
ers: Learning to Detect Browser Fingerprinting Behaviors,” in 2021
IEEE Symposium on Security and Privacy (SP). IEEE, 05 2021, pp.
1143–1161.

[11] G. Acar. (2014) Browser Fingerprinting and the Online-
Tracking Arms Race. Accessed: 2024-09-27. [Online]. Avail-
able: https://www.esat.kuleuven.be/cosic/news/the-web-never-forgets-
persistent-tracking-mechanisms-in-the-wild/

[12] “Request header,” accessed: 2024-09-27. [Online]. Available: https:
//developer.mozilla.org/en-US/docs/Glossary/Request header

[13] “HTTP/2 fingerprinting: A relatively-unknown method for web
fingerprinting,” accessed: 2024-09-27. [Online]. Available: https:
//lwthiker.com/networks/2022/06/17/http2-fingerprinting.html

[14] “HTTP Headers - MDN Web Docs,” accessed: 2024-07-27. [Online].
Available: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

[15] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty and the Beast:
Diverting Modern Web Browsers to Build Unique Browser Fingerprints,”
in 2016 IEEE Symposium on Security and Privacy (SP), 2016, pp. 878–
894.

[16] “User-Agent,” accessed: 2024-09-27. [Online]. Available: https://
developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent

[17] “Accept - HTTP,” accessed: 2024-02-27. [Online]. Available: https:
//developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept

[18] “Content-Encoding - HTTP,” accessed: 2024-02-27. [On-
line]. Available: https://developer.mozilla.org/en-US/docs/Web/HTTP/
Headers/Content-Encoding

[19] “Content-Language - HTTP,” accessed: 2024-02-27. [On-
line]. Available: https://developer.mozilla.org/en-US/docs/Web/HTTP/
Headers/Content-Language

[20] A. Gómez-Boix, P. Laperdrix, and B. Baudry, “Hiding in the Crowd:
an Analysis of the Effectiveness of Browser Fingerprinting at Large
Scale,” in Proceedings of the 2018 World Wide Web Conference, ser.
WWW ’18. Republic and Canton of Geneva, CHE: International
World Wide Web Conferences Steering Committee, 2018, p. 309–318.
[Online]. Available: https://doi.org/10.1145/3178876.3186097

[21] NGINX, “Managing request headers,” accessed: 2024-04-22. [Online].
Available: https://nginx.org/en/docs/http/ngx http headers module.html

[22] B. Wolford. (2024) What are the GDPR consent requirements?
Accessed: 2024-09-27. [Online]. Available: https://gdpr.eu/gdpr-
consent-requirements/

[23] “Navigator: plugins property,” accessed: 2024-09-27. [On-
line]. Available: https://developer.mozilla.org/en-US/docs/Web/API/
Navigator/plugins

[24] “Extension Detector,” accessed: 2024-09-27. [Online]. Available:
https://github.com/z0ccc/extension-detector

[25] “How ad blockers can be used for browser fingerprinting,” accessed:
2024-09-27. [Online]. Available: https://fingerprint.com/blog/ad-
blocker-fingerprinting/

[26] S. Karami, P. Ilia, K. Solomos, and J. Polakis, “Carnus: Exploring the
Privacy Threats of Browser Extension Fingerprinting,” in 27th Annual
Network and Distributed System Security Symposium, NDSS 2020, San
Diego, California, USA, February 23-26, 2020. The Internet Society,
2020.

[27] “CanvasBlocker,” accessed: 2024-09-27. [Online]. Available: https:
//github.com/kkapsner/CanvasBlocker

[28] “WebGL: 2D and 3D graphics for the web,” accessed: 2024-09-27.
[Online]. Available: https://developer.mozilla.org/en-US/docs/Web/API/
WebGL API

[29] T. Stephenson, “A Comparative Study on Analyses of Browser Finger-
printing,” Ph.D. dissertation, Wesleyan University, 2023.

[30] “WebKit,” accessed: 2024-09-27. [Online].
Available: https://github.com/WebKit/WebKit/commit/
ae710d34c23858295b385e3f95ad7f6edd29f9d7

[31] S. Lee, Y. Kim, J. Kim, and J. Kim, “Stealing webpages rendered on your
browser by exploiting gpu vulnerabilities,” in 2014 IEEE Symposium on
Security and Privacy. IEEE, 2014, pp. 19–33.

[32] S. J. Vaughn-Nichols, “Vendors draw up a new graphics-hardware
approach,” Computer, vol. 42, no. 05, pp. 11–13, 2009.

[33] G. Nakibly, G. Shelef, and S. Yudilevich, “Hardware Fingerprinting
Using HTML5,” arXiv preprint arXiv:1503.01408, 03 2015.

[34] Y. Cao, S. Li, and E. Wijmans, “(Cross-)Browser Fingerprinting via
OS and Hardware Level Features,” in Network and Distributed System
Security Symposium, 2017.

[35] Laor et al., “DRAWNAPART: A Device Identification Technique
based on Remote GPU Fingerprinting,” ArXiv, vol. abs/2201.09956,
2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:
246276013

[36] M. Mantel. (2022) Browser-Fingerprinting: PCs, Smartphones & Co.
lassen sich über die GPU tracken. Accessed: 2024-09-27. [Online].
Available: https://www.heise.de/news/Browser-Fingerprinting-PCs-
Smartphones-Co-lassen-sich-ueber-die-GPU-tracken-6345233.html

[37] J. S. Queiroz and E. L. Feitosa, “A Web Browser Fingerprinting Method
Based on the Web Audio API,” Comput. J., vol. 62, pp. 1106–1120,
2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:
86644316

[38] T. S. Brandes, S. Kuzdeba, J. McClelland, N. Bomberger, and A. Radl-
beck, “Rf waveform synthesis guided by deep reinforcement learning,”
in 2020 IEEE International Workshop on Information Forensics and
Security (WIFS). IEEE, 2020, pp. 1–6.

[39] E. Cheek, D. Khuttan, R. Changalvala, and H. Malik, “Physical finger-
printing of ultrasonic sensors and applications to sensor security,” in
2020 IEEE 6th International Conference on Dependability in Sensor,
Cloud and Big Data Systems and Application (DependSys). IEEE,
2020, pp. 65–72.

[40] S. Chalise and P. Vadrevu, “A Study of Feasibility and Diversity of Web
Audio Fingerprints,” arXiv preprint arXiv:2107.14201, 2021.

[41] S. Englehardt and A. Narayanan, “Online Tracking: A 1-million-site
Measurement and Analysis,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16.
New York, NY, USA: Association for Computing Machinery, 2016,
p. 1388–1401. [Online]. Available: https://doi.org/10.1145/2976749.
2978313

46International Journal on Advances in Security, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[42] “Local Font Access API,” accessed: 2024-09-27. [Online]. Avail-
able: https://developer.mozilla.org/en-US/docs/Web/API/Local Font
Access API

[43] “Font Fingerprint Defender,” accessed: 2024-01-20. [Online]. Available:
https://mybrowseraddon.com/font-defender.html

[44] “Tracking Prevention in WebKit,” accessed: 2024-01-20. [Online].
Available: https://webkit.org/tracking-prevention/

[45] P. Laperdrix, N. Bielova, B. Baudry, and G. Avoine, “Browser
Fingerprinting: A Survey,” ACM Trans. Web, vol. 14, no. 2, apr 2020.
[Online]. Available: https://doi.org/10.1145/3386040

[46] A. Reiter and A. Marsalek, “WebRTC: your privacy is at risk,” in
Proceedings of the Symposium on Applied Computing, ser. SAC ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
664–669. [Online]. Available: https://doi.org/10.1145/3019612.3019844

[47] “DetectRTC,” accessed: 2024-09-27. [Online]. Available: https://github.
com/muaz-khan/DetectRTC

[48] “Fingerprinting WebRTC,” accessed: 2024-01-20. [Online]. Available:
https://privacycheck.sec.lrz.de/active/fp wrtc/fp webrtc.html

[49] V. Bernardo and D. Domingos, “Web-based Fingerprinting
Techniques,” in Proceedings of the 13th International Joint
Conference on E-Business and Telecommunications, ser. ICETE
2016. Setubal, PRT: SCITEPRESS - Science and Technology
Publications, Lda, 2016, p. 271–282. [Online]. Available:
https://doi.org/10.5220/0005965602710282

[50] T. Bujlow, V. Carela-Español, J. Solé-Pareta, and P. Barlet-Ros, “A
Survey on Web Tracking: Mechanisms, Implications, and Defenses,”
Proceedings of the IEEE, vol. 105, no. 8, pp. 1476–1510, 2017.

[51] L. Olejnik, C. Castelluccia, and A. Janc, “Why Johnny Can’t Browse
in Peace: On the Uniqueness of Web Browsing History Patterns,” 12th
Privacy Enhancing Technologies Symposium (PETS 2012), 07 2012.
[Online]. Available: https://petsymposium.org/2012/papers/hotpets12-4-
johnny.pdf

[52] N. Takei, T. Saito, K. Takasu, and T. Yamada, “Web Browser Finger-
printing Using Only Cascading Style Sheets,” in 2015 10th International
Conference on Broadband and Wireless Computing, Communication and
Applications (BWCCA), 2015, pp. 57–63.

[53] “CSS-Fingerprint,” accessed: 2024-09-27. [Online]. Available: https:
//github.com/OliverBrotchie/CSS-Fingerprint

[54] “Feature Detection,” accessed: 2024-01-23. [Online]. Available: https:
//privacycheck.sec.lrz.de/active/fp fd/fp feature detection.html

[55] “Advanced Tor Browser Fingerprinting,” accessed: 2024-09-
27. [Online]. Available: http://jcarlosnorte.com/security/2016/03/06/
advanced-tor-browser-fingerprinting.html

[56] “Investigate impact of fingerprinting via getClientRects(),” accessed:
2024-09-27. [Online]. Available: https://gitlab.torproject.org/tpo/
applications/tor-browser/-/issues/18500

[57] H. Wang, H. Sayadi, A. Sasan, P. D. Sai Manoj, S. Rafatirad, and
H. Homayoun, “Machine Learning-Assisted Website Fingerprinting At-
tacks with Side-Channel Information: A Comprehensive Analysis and
Characterization,” in 2021 22nd International Symposium on Quality
Electronic Design (ISQED), 2021, pp. 79–84.

[58] “WebAssembly,” accessed: 2024-09-27. [Online]. Available: https:
//developer.mozilla.org/en-US/docs/WebAssembly

[59] “High precision timing,” accessed: 2024-09-27. [Online]. Avail-
able: https://developer.mozilla.org/en-US/docs/Web/API/Performance
API/High precision timing

[60] “Browser Fingerprinting und das TDDDG: Erlaubt oder nicht? [Browser
Fingerprinting and the TDDDG: Allowed or not?],” accessed: 2024-09-
27. [Online]. Available: https://dr-dsgvo.de/browser-fingerprinting-und-
das-ttdsg/

[61] G. Pugliese, C. Riess, F. Gassmann, and Z. Benenson, “Long-Term
Observation on Browser Fingerprinting: Users’ Trackability and Per-
spective,” Proceedings on Privacy Enhancing Technologies, vol. 2020,
pp. 558–577, 05 2020.

[62] K. Szymielewicz and B. Budington. (2018) The gdpr and browser
fingerprinting: How it changes the game for the sneakiest web trackers.
Electronic Frontier Foundation (EFF). Accessed: 2024-09-27. [Online].
Available: https://www.eff.org/de/deeplinks/2018/06/gdpr-and-browser-
fingerprinting-how-it-changes-game-sneakiest-web-trackers

[63] N. Al-Fannah and C. Mitchell, “Too little too late: can we control
browser fingerprinting?” Journal of Intellectual Capital, vol. ahead-of-
print, 01 2020.

[64] K. Kollnig, A. Shuba, M. Van Kleek, R. Binns, and N. Shadbolt,
“Goodbye Tracking? Impact of iOS App Tracking Transparency and

Privacy Labels,” in Proceedings of the 2022 ACM Conference on
Fairness, Accountability, and Transparency, ser. FAccT ’22. New
York, NY, USA: Association for Computing Machinery, 2022, p.
508–520. [Online]. Available: https://doi.org/10.1145/3531146.3533116

[65] X. Lin, F. Araujo, T. Taylor, J. Jang, and J. Polakis, “Fashion Faux
Pas: Implicit Stylistic Fingerprints for Bypassing Browsers’ Anti-
Fingerprinting Defenses,” in 2023 IEEE Symposium on Security and
Privacy (SP), 2023, pp. 987–1004.

47International Journal on Advances in Security, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


