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Abstract—Since the last decade, it is well known that Industrial
Control Systems (ICS) are under attack and attackers nowadays
increasingly use stealthy malware (i.e., stegomalware) imple-
mented by steganographic embedding methods to in- and exfil-
trate hidden information. Unfortunately, current mechanisms to
distinguish between network steganographic embedding methods
and embedded message types need improvement for a potential
attribution of attackers. For the analysis of steganographic em-
bedding methods which are utilized in stealthy malware, the work
presented in this paper builds upon a state-of-the-art analysis
testbed proposed earlier, which is recapitulated here. It offers
the opportunity to analyze network steganographic embedding
methods in ICS to elaborate methods to detect and distinguish
between them to gain forensic information for attribution of
potential attackers and their methods. In this work, we introduce
a novel machine learning based approach to distinguish between
five selected embedding methods and two embedded message
types. We use the analysis testbed to evaluate and determine the
accuracy of the novel approach compared to a state-of-the-art
approach. In our extensive evaluation, our novel approach has
shown to be able to distinguish between network steganographic
embedding methods with an average accuracy of 85.7%, which
is an improvement in comparison to the state-of-the-art by
+5.9% and enables a more accurate attribution of attackers.
Additionally, the novel approach is able to improve the accuracy
of distinction between embedding method and embedded message
type by +9.3% in comparison to the evaluated state-of-the-art
approach.

Keywords-Information Hiding; Intrusion Detection and Attribu-
tion; Network Steganography; Stealthy Malware; Industrial Control
Systems

I. INTRODUCTION

This paper is based on the conference publication in [1] and
significantly extends it. Some formulations and explanations
are taken directly from [1].

During the last decade, stealthy malware based on stegano-
graphic embedding techniques (i.e., information hiding tech-
niques) is increasingly used by attackers, confirmed by re-
cent attack vectors in [2], which show that attackers use
information hiding techniques to stay undetected. Stealthy
malware uses completely unobtrusive data to create hidden
channels, which for example are utilized to embed malicious
code or to command and control. Since the Stuxnet-Attack
in 2010, it has been clear that Industrial Control Systems
(ICS) are under attack with stealthy malware. In this attack,
Ink-files were utilized as cover data and in-memory code
injections were used to hide the attack [3]. Additionally, recent
attacks like the Ukrainian [4] and the Indian power grid attack

[5] demonstrate that attacks with information hiding based
malware on ICS become more and more common, especially
due to the motivation to stay undetected as long as possible
in order to in- and exfiltrate stealthy data.

Currently, several potential information hiding attack vec-
tors for stealthy malware with steganographic embedding
techniques and potential defense mechanisms are introduced
(e.g., in [6], [7], [8] and [9]).

In our earlier work [1], we presented an Analysis Testbed
for Steganographic Network Data (ATSND), which enables
the opportunity for comprehensive analysis and comparison
of these methods to identify potential similarities, differences,
and effects of the embedding methods on the cover data
and to derive defense and detection mechanisms for specific
embedding methods. The evaluation results of [1] show that
it is possible to distinguish between analyzed embedding
methods after a detection, which can lead to the opportunity
to identify the context of potential attackers (attribution) with
machine learning based methods.

The accuracy of the state-of-the-art approach in [1] to
distinguish between embedding methods is decent, but needs
improvement for a more reliable attribution. Furthermore, the
approach was evaluated to distinguish between a limited num-
ber of three embedding methods, which should be extended
for a more conclusive evaluation and to derive a more reliable
assumption about the separation precision of an approach.
Additionally, the results from [1] show that the detection of
embedded types (e.g., strings consisting of invariant single
characters vs. text messages consisting of heterogeneous com-
binations of characters) needs improvement.

Thus, the contribution of this paper is a significant exten-
sion of the work presented in [1] and can be summarized as
follows:

• Introduction of a novel feature space to train a novel
neural network driven classification model for the dis-
tinction between steganographic embedding methods and
embedded message types.

• Comparison between the classification results of novel
feature space and the state-of-the-art feature space from
[1] to derive an assumption about a potential improve-
ment of classification accuracy.

• Extension of evaluation by two (one novel, one from
state-of-the-art) to a total of now five steganographic
embedding methods and novel (extended) training and
test data for more meaningful evaluation results.

112International Journal on Advances in Security, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



In the evaluation, we analyze if there is an opportunity to
distinguish between five steganographic embedding methods
and if we are able to differentiate between embedded message
types (invariant and heterogeneous messages) with a machine
learning driven classification based on our novel handcrafted
feature space in comparison to a state-of-the-art feature space.

The paper is structured as follows: In Section II, we present
related work and fundamentals. In Section III, we deploy
our ATSND to our specific use case. Our evaluation setup
to analyze five embedding methods with ATSND, including
evaluation goals, data and environment, is presented in Section
IV. Section V presents the evaluation results, and Section VI
concludes the paper with a summary and future work.

II. FUNDAMENTALS AND RELATED WORK

In this section, we summarize fundamentals of network
steganography in ICS, describe recent steganographic attack
vectors for network steganography in ICS, and present our
previously introduced synthetic steganographic embedding
(SSE) concept to produce synthetic steganographic network
data for a fast and easy generation of network data with
recent steganographic embedding methods. Furthermore, an
overview of methods to analyze steganographic network data
for detection and attribution purposes is given.

A. Network Steganography in ICS

“Steganography is the art and science of concealing the
existence of information transfer and storage”, according to
[10]. Besides the various possibilities for unobtrusive em-
bedding, such as digital media data (images, audio, video
et cetera), the subdomain network steganography targets the
transfer and storage of hidden information in network com-
munication traffic. From attackers perspective, a warden (e.g.,
intrusion detection system) observes the network traffic and
the embedding of stealthy malware should be inconspicuous
in a sense that a warden would not be able to differentiate
between genuine communication and communication with
steganographic embedding [6]. An embedding of hidden in-
formation with steganographic techniques can be realized, for
example by manipulating the network packets payload on least
significant values or by modulating time intervals between
specific packets [11].

Network steganography and stealthy malware in ICS are
special, due to limited channel capacity and thus the lower
amount of available data for potential embedding compared
to traditional Information Technology (IT) networks. Further-
more, the transmitted network packets are usually smaller in
ICS since only meta-data or a few values (e.g., from sensors)
are transferred per packet. Additionally, ICS specific protocols
like OPC UA (Open Platform Communications Unified Ar-
chitecture) [12] or Modbus-TCP [13] are often encapsulated
in TCP/IP (or other transport protocols), which creates the
opportunity for utilizing the data fields of the ICS specific
protocols in addition to TCP/IP protocol headers. It is also
not uncommon for the ICS-specific payload to be transmitted
unencrypted, because ICS are often considered as closed
networks and not subject to attacks in practice.

Potential network steganographic embedding patterns and a
related terminology are summarized in [14]. A generic taxon-
omy and overview with the intention of a unified understand-
ing of terms and their applicability for network steganographic
methods can be found in [10].

B. Selected Steganographic Embedding Methods for ICS

In this section, we present four relevant exemplary attack
vectors with regards to their steganographic embedding meth-
ods in ICS. These Embedding Methods (EM ) are selected
because all of them use timestamp modulations (i.e., timing
channel) to embed hidden information, which is a plausible
attack vector, since every network packet includes them. We
are aware that there are alternative embedding concepts like
Least Significant Bit (LSB) embeddings in sensor data fields
of network packets, but in the context of this article, we focus
on timestamps only, because they can be applied regardless of
the category of the network communication (e.g., sensor data
or other) and suggest relatively higher capacity.

The state-of-the-art EM and one novel steganographic em-
bedding method will be presented in the following subsections
They will be analyzed and compared with the analysis testbed
presented in Section II-D from [1].

1) Steganographic Embedding Method 1 (EM1): The ap-
proach presented in [6] uses packet timestamps (Ti) for em-
bedding while utilizing a dynamic encoding approach based on
the hour, minute, and second values, as well as an embedding
key and an initialization vector. In the approach, low-value-
digits of the timestamp are manipulated. This approach is
able to hide one ASCII-symbol in four of the five highlighted
digits of a timestamp in the coding “HH:MM:SS.fffffffff”,
where H,M,S,f stand for digits of the hour, minute, second and
fractional digits of the second of the time value respectively
(Example: Ti= 10:00:00.123456789). The actual embedding
positions are determined using the embedding key, which
determines the first digit right of the floating point for the
fractional second values. Converting a sequence of ASCII-
symbols to binary values results in a bitstream BS which is
embedded in chronological order into every available packet.
Due to the different modulated values of the variables in-
volved, the encoding of the output values varies in perception.
The formalized algorithm description can be found in Section
III-B1.

2) Steganographic Embedding Method 2 (EM2): A quite
simple and easy to comprehend embedding method is in-
troduced in [8]. The embedding scheme assumes an attack
vector with a corrupted Programmable Logic Controller (PLC)
via Supply-Chain-Attack. The PLC sends delays in the mi-
crosecond range (µs1, µs2, µs3) to embed a hidden message
via timing delays. This means an exemplary timestamp Ti

= 10:00:00.123456789 is manipulated on the digit positions
µs1 = 4, µs2 = 5, µs3 = 6. The embedding scheme converts
an ASCII-message into a bitstream BS. For embedding a bit
of BS, timestamps in three consecutive OPC UA (server)
packets are altered (Ti, Ti+1, Ti+2). To stay inconspicuous,
the timestamps (Ti+3, Ti+4, Ti+5) of the following three
OPC UA packets remain completely untouched. The approach
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arbitrarily chooses the digit ‘4’ to embed bit = 0 and digit ‘9’
to embed bit = 1. For the algorithm formalization see Section
III-B2.

3) Steganographic Embedding Method 3 (EM3): EM3 is
based on EM2 and was introduced in [1]. EM3 extends
EM2 with the addition of a key for a dynamic encoding and
positioning of the embedding (see Section III-B3 for formal-
ization of algorithm). EM3 enables a more sophisticated and
unobtrusive embedding, introducing dynamic cipher digits C0

and C1 for bit values 0 and 1, which leads to an encoding
where the seed of the embedding is generated with a random
number.

4) Steganographic Embedding Method 4 (EM4): A sophis-
ticated steganographic embedding method is introduced in [15]
and was initially designed to alter transmitted sensor values
in ICS. The formalization of the embedding algorithm can
be found in Section III-B4. In this embedding method, each
character of a message is converted into an 8 bit representation
of its ASCII code cA. Afterwards cA is encrypted with an
encryption key KE creating the encrypted character cAE .
Prior to embedding, four consecutive digits from a single
OPC UA timestamp are transformed into a 16 bit long binary
representation and the embedding takes place on the 8 least
significant bits. cAE is then embedded replacing the last
8 digits of the binary timestamp. The binary timestamp is
transformed back into its four digit decimal representation and
replaces the original (unaltered) timestamp.

5) Steganographic Embedding Method 5 (EM5): Beyond
the state-of-the-art, we present a novel steganographic
embedding method EM5 in this work. It will be described
and formalized in Section III-B5.

To conclude this section, we want to align the embedding
methods EM1−5 to the generic taxonomy for steganographic
methods of [10]. EM1−5 can clearly be classified in the do-
main overlapping network and Cyber Physical System (CPS)
and can be assigned to the CPS sub-taxonomy. In this sub-
taxonomy, the embedding methods belong to the categories
E1.2c1. CPS Random State/Value Modulation and E1.3c1.
CPS Least Significant Bit State/Value Modulation.

C. Synthetic Steganographic Data Generation

Diverse and heterogeneous steganographic ICS data is
needed to train and evaluate potential defense mechanisms for
ICS. However, each steganographic embedding needs mostly
sophisticated and complex ICS setup, which is very time
consuming to assemble, and in addition, it raises various
security and safety issues. Because of this, the approach
of [8] introduces a concept to generate artificial stegano-
graphic network data with a limited embedding pace and a
specific steganographic embedding technique based on TCP-
timestamps. Based on [8], an advanced Synthetic Stegano-
graphic Embedding (SSE)-concept is presented in [7]. It offers
the possibility to embed hidden information everywhere in
uncompromised network packet recordings with an embedding
pace near real time. This makes it possible to quickly and
easily generate test data for many different embedding meth-

ods for analysis. In [8], it is assumed that the most important
aspects to be simulated in network traffic are:

1) the physical network including layout and components,
2) the network traffic including types of flows, directions,

protocols used, typical payloads, etc., and
3) the type and characteristics of the (steganographic) hid-

den channel.

Both approaches simulate only the last aspect (3) of this list,
the other two are directly adopted from an uncompromised
recording of a physical setup. In the presented state-of-the-
art ATSND (see Section II-D), the SSE-concept from [7] is
used to generate the steganographic data based on the selected
steganographic embedding methods and will be described in
more detail.

D. Analysis Testbed for Steganographic Network Data (AT-
SND)

The Analysis Testbed for Steganographic Network Data
(ATSND), as originally proposed in [1], has the purpose to
compare and evaluate different (network) steganographic em-
bedding methods to offer the possibility to make a distinction
between them for a potential determination or classification of
attackers or embedded message types. It includes five phases:

• Phase 1 (P1): recording of cover-data,
• Phase 2 (P2): selection and formalization of methods,
• Phase 3 (P3): generation of synthetic steganographic data,
• Phase 4 (P4): selection and extraction of features and
• Phase 5 (P5): analysis based on the features.

The phases of ATSND are recapitulated in the following
subsections and visualized in Figure 1.

1) Phase 1 of ATSND (P1): The analysis testbed begins
with Phase 1 where Cover Data (CD) has to be recorded
from an uncompromised laboratory ICS network setup. CD
can be recorded with different hard- and software capturing
tools (e.g., Wireshark [16]). The output file of the recording
should be extracted in the pcap or pcapng file format for
further processing, since these formats are well suited logging
protocols for the structural recording of network data. The
recording should only contain relevant traffic for a specific
purpose. The cover data builds a comparative baseline of the
ICS network data to illustrate the impact of the embedding
by means of a comparative analysis before and after the
embedding. Further, it is also the basis for the steganographic
embedding with the selected embedding methods (see Phase
2) to generate the steganographic network data in Phase 3. The
specific experimental setup of our laboratory ICS is described
in Section IV-B.

2) Phase 2 of ATSND (P2): Once a network cover data
file is recorded, embedding methods for the analysis in
Phase 5 have to be selected and should be formalized with
a pseudo code representation for an uniform, comparable
and comprehensible illustration. In this work, we select four
embedding approaches from state-of-the-art and introduce one
novel embedding method. The formalization of the embedding
methods is presented in Section III.2.

114International Journal on Advances in Security, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 1. Analysis Testbed for Steganographic Network Data (ATSND) from [1]

3) Phase 3 of ATSND (P3): For the creation and generation
of the steganographic network data based on the embedding
methods from Phase 2 (EM1, EM2, and EM3), the SSE-
concept [7] (introduced in Section II-C) is used. As men-
tioned, the SSE-concept offers the possibility to generate
steganographic network data synthetically, and this results in
some obvious advantages for the analysis testbed: no matter
which embedding method is analyzed, it is not required to
physically incorporate a corrupted, complex ICS setup in order
to generate the steganographic network data containing hidden
information. Thus, it is well suited because it delivers the
opportunity for an easy and fast generation of steganographic
network data without the need of a physical setup. The SSE-
concept has the following four segments:

• Segment I: Record and Pre-Process Network Data,
• Segment II: Synthetic Embedding Option A (SEOA),
• Segment III: Synthetic Embedding Option B (SEOB), and
• Segment IV: Retrieval.

Segment I also deals with the recording of network data, thus
Segment Element (SE) I.1 can be skipped for ATSND since
the data capturing is completed after P1. For the synthetic
generation of steganographic network data, it offers two syn-
thetic embedding options (Segment II: SEOA and Segment
III: SEOB). SEOA is a very fast and efficient embedding
without accessing structural elements of a packet and SEOB

delivers a more comfortable embedding with easier access to
structural elements of a network packet based on json-objects.
The retrieval in Segment IV is used to check if an embedding
of a hidden message with a selected embedding method is
successful. More details can be found in [7].

4) Phase 4 of ATSND (P4): To extract features from pcap
or pcapng files, the relevant structural elements of the relevant
network packets should be converted into csv or txt data for
processing afterwards. For this purpose, Tshark (Wireshark
console application) [16] with the -T fields -e field option can
be used to select data fields of network packets that are relevant
for feature extraction and analysis. It is recommended to use
handcrafted statistical feature spaces with as much discrimina-
tory power as possible to analyze steganographic network data.

This should lead to comprehensible and explainable analysis
results allowing for forensic traceability.

5) Phase 5 of ATSND (P5): Based on the extracted features
from multiple embedding methods in P4, a statistical analysis
can be carried out. Therefore, various statistical computational
techniques such as machine or deep learning based approaches
can be taken into consideration based on the selected and
extracted features. Thus, for the analysis, different data mining
and machine learning tools or libraries, such as WEKA [17],
Orange [18], Tensorflow [19] or Keras [20] are well suited to
analyze differences and commonalities of embedding methods.
Generally, the analysis can focus on different use case specific
aspects, for example: detectability, attributability, embedding
scheme, and more depending on the goals and objectives of a
study.

E. Analysis of Steganographic ICS Network Data

A basic overview of potential methods to analyze and de-
fend against stealthy malware based on network steganography
is presented in [21]. In [1], a machine learning based approach
is used to distinguish between steganographic embedding
methods. The approach was initially introduced in [22] to
detect network steganography in network recordings based on
a handcrafted feature space with an accuracy of 92.9%. The
approach performs a frequency analysis of occurrence for the
digits 0 to 9 on selected positions on the packet timestamps.
This feature space (FSSOTA) is used for our evaluation and
introduced in Section III-D.

III. APPLICATION OF ATSND

As mentioned previously, we will use the Analysis Testbed
for Steganographic Network Data (ATSND) from [1] (see
Section II-D) for the analysis of five different embedding
methods in this work. Therefore, we structure this section
according to the five phases of the analysis testbed. In our
specific use-case we want to evaluate if we are able to
differentiate between five steganographic embedding methods
and different message types with two machine learning based
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classification engines for a potential attribution of attackers
based on their used steganographic embedding method EM .

A. Applying Phase 1 of ATSND (Recording of CD)

As mentioned, the first phase of the ATSND concept is
dedicated to the collection of network Cover Data (CD)
from a laboratory ICS setup. CD can be captured with any
capturing tool, as long as the output can be provided in pcap
or pcapng format. Additionally, the output file should only
contain relevant traffic with a specific purpose. The pcap
and pcapng file formats are well suited logging protocols for
the structural recording of network data. CD builds the base
for the further generation of steganographic network data in
Phase 3, using the selected embedding methods from Phase 2
(see Section III-B). Furthermore, CD is used as a statistical
baseline of the captured ICS network data. This way the impact
of each of the embedding methods can be illustrated in detail.

In order to separate training and test data, we create two
separate recordings for this work. We record the training data
for 25 minutes and the test data for 8 minutes in our laboratory
setup which is presented in more detail in Section IV-B. In
our setup, the PLC and Gateway are connected directly by
an Ethernet cable, thus stand-alone packet capturing hardware
[23] is used to capture the traffic between them.

B. Applying Phase 2 of ATSND (Selection and Formalization
of Embedding Methods)

In this phase, it is essential to select and formalize stegano-
graphic embedding methods that shall be analyzed. The for-
malization helps to improve the comprehensibility of the se-
lected embedding methods and delivers a uniform presentation
of them. As previously mentioned, we select four state-of-the-
art methods presented in Section II-B and one novel method
(see Section III-B5). All of the algorithms work with an Array
A (A = {T1, ..., Ti}) which contains all Timestamps Ti of
network packets available for manipulation in our pseudocode
representation. The specific formalizations for the state-of-
the-art approaches EM1, EM2, EM3, EM4 and the novel
embedding method EM5 will be described in the following
subsections.

1) Formalization of Steganographic Embedding Method
EM1: EM1 was initially introduced in [6] and takes a
dynamic encoding approach while manipulating low value
digits of the OPC UA timestamp. An initialization vector I
and an encoding key K are used in addition to variables
taken from each timestamp to encode the hidden message
m with characters c. Variables D, E, F and G (meaning:
see Figure 2) are all derived directly from the timestamp, as
well as H (H = {H0, ...,H3}), which is the 4-digit field in
which the encoded message characters cE are embedded. After
the encoding process is finished, the output of S decides the
embedding position in H .

2) Formalization of Steganographic Embedding Method
EM2: Iterating through A, EM2 embeds a bit of the input
bitstream into 3 consecutive timestamps, encoding 0 and 1
by the digital values of 4 and 9, respectively. In the process,
three different digits are used for the embedding represented

Figure 2. Formalized Algorithm for EM1.

in µ1−µ3. Manipulated timestamps are then saved in the AM
array. This is repeated for each bit in the bitstream until the
end of A is reached or all bits are embedded. The algorithm
was introduced in [8] and is represented in Figure 3.

Figure 3. Formalized Algorithm for EM2.

3) Formalization of Steganographic Embedding Method
EM3: Basically, EM3 is an advanced and more sophisticated
version of EM2 and was introduced in [1]. It should be more
challenging to detect and to attribute EM3 in comparison
to EM2. The main difference is the key-based generation
of embedding symbols (digits) C0 and C1, as well as the
key-based variation of the embedding position j within the
timestamp. The algorithm is formalized in Figure 4.
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Figure 4. Formalized Algorithm for EM3.

4) Formalization of Steganographic Embedding Method
EM4: This embedding method was introduced in [15] and its
formalization is presented in Figure 5. In the formalization,
the variable c represents a character of the message m and
cA the 8 bit representation of the ASCII code decimal digit
of the character. It is encrypted with encryption key KE and
results in an 8 bit encrypted bitstream cAE of the ASCII code
decimal digit, which is embedded into a 16 bit representation
of a converted timestamp Ti16B (into the 8 least significant
bits). After embedding, Ti16B is converted back into its initial
representation.

Figure 5. Formalized Algorithm for EM4.

5) Formalization of Steganographic Embedding Method
EM5: Steganographic embedding method EM5 represents a
novel method. EM5 embeds a message m into the microsec-
onds µ1 − µ3 of OPC UA (server) timestamps Ti (e.g., Ti =

10:00:00.123456789, embedding positions are marked bold).
Before embedding each character c of m, m is saved to array
MAD as the corresponding decimal ASCII representation of its
characters c. After every element of MAD is embedded, first
494, then 949 are embedded into the following timestamps to
signal the end of m. EM5 was chosen for evaluation since
it is a more simple algorithm which should be accurate to
detect and to attribute based on the limited number of ASCII
characters.

Figure 6. Formalized Algorithm for EM5.

C. Applying Phase 3 of ATSND (Generation of Synthetic
Steganographic Data)

For the synthetic generation of steganographic network data,
the introduced SSE-concept is used (see Section II-C). In the
evaluation, this work uses synthetic embedding option SEOA,
since it offers a much more efficient and faster embedding to
generate synthetic steganographic network data based on the
manipulation of hexdump elements of the network packets. All
5 selected steganographic embedding methods EM1, EM2,
EM3, EM4 and EM5 are generated with SEOA based on the
recorded cover data CD in P1.

D. Applying Phase 4 of ATSND (Selection and Extraction of
Features)

To extract features from pcap or pcapng files, the relevant
structural element of the relevant network packets should
be converted into csv or txt data to process it afterwards.
Therefore, Tshark (Wireshark console application) [16] with
the -T fields -e field option can be used to select data fields
of network packets that are relevant for feature extraction and
analysis. We recommend the usage of handcrafted statistical
feature spaces with as much discriminatory power as possible
to analyze steganographic network data. This should lead to
comprehensible and plausible analysis results.

In this work, we use two handcrafted feature spaces to train
two separate machine learning based models for our analysis in
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P5. One feature space FSLegacy is used from state-of-the-art
to set a baseline for our analysis goals. Additionally, we design
a novel feature space FSNovel to investigate if it is possible to
achieve more accurate results in our analysis. The two feature
spaces are presented in the following subsections. Both feature
spaces analyze the last 6 digit positions of network packet
timestamps because they are well suited for steganographic
embedding, since every network packet has a timestamp and
a potential delay in micro- and nanosecond areas is absolutely
unobtrusive. A potential attack vector for our use case could
look like those introduced in Section IV-B. Both feature
spaces analyze multiple network packets to extract a feature
vector (i.e., sample), because obviously a single packet with
steganographic embedding should look unobtrusive (if not, it
would not be steganographic). A measurable or quantifiable
anomaly caused by a steganographic embedding can only
occur by analyzing multiple network packets. In this work,
we use 100 network packets to extract a sample (i.e., feature
vector with label) for the feature spaces. This length (100
packets) has been selected based on state-of-the-art ( [15],
[22]). The optimal length with maximum separation precision
can only be determined by an explorative analysis of different
lengths, which is out of the scope for this work.

1) Feature Space FSSOTA: The state-of-the-art feature
space was introduced in [22], which performs a frequency
analysis for the digits 0 to 9 on the mentioned six last and
least significant digits in network packet timestamps. Thus,
10 features (values) for each analyzed digit position between
0.0 and 1.0 representing the percentage of occurrence for
each digit 0 to 9 are extracted from a sample with multiple
packets (as mentioned, 100 packets used to extract a sample
or i.e., feature vector). The frequency analysis results in a 60-
dimensional feature space which is used to train two ‘legacy’
multilayer perceptrons (MLP) to potentially distinguish be-
tween embedding methods and cover data (MLP6LG, legacy
MLP with 6 classes, based on FSSOTA) and to distinguish
between the embedded message types and embedding methods
(MLP11LG, legacy MLP with 11 classes based on FSSOTA).
The selected features shall be extracted for multiple samples
from all embedding methods with different message types and
cover data to build MLP6LG and MLP11LG for analysis in P5.

2) Feature Space FSNovel: Our novel feature space
FSNovel extends FSSOTA. We add additional features based
on potential artifacts caused by the embeddings. This includes
the standard deviation of the digit frequencies for every digit
position in the millisecond and microsecond ranges. Addi-
tionally, we calculate the standard deviation across the digit
standard deviations to analyze the manipulation of single digit
positions. The standard deviation over only the microseconds
is also used, as embedding methods EM2 and EM3 only
use these positions for the embedding process. In addition,
the standard error of the mean of the digit distribution is
calculated for each position. As a further feature, the digit
transition rate is used. This feature describes the percentage
of packets in which the digit at a given position changes
from the preceding packet. An embedding method with a
high embedding density such as EM5 might cause digits to
change less frequently. Furthermore, EM5 changes the first

digit position to a low digit. Therefore, we use the average
digit value for each position. Moreover, we use Pearson’s
chi-squared test [24] for the distribution of digits for each
position. This test describes the likelihood that an observed
distribution is the result of a random sample expecting a given
distribution. For the milli-, micro- and nanosecond digits of a
timestamp, we expect a uniform distribution. A steganographic
embedding like EM2 uses constant values which change this
uniform distribution. Additionally, the skewness of the digit
distribution is calculated for every position. This describes
whether the distribution is weighted towards the higher or
lower end of the digits. Finally, we use the kurtosis for the
digit positions, which describes the steepness in a distribution.
In total, this results in a 104-dimensional feature space to train
two ‘new’ multilayer perceptrons to potentially distinguish
between embedding methods and cover data (MLP6NE , new
MLP with 6 classes based on FSNovel) and to distinguish
between the embedded message types and embedding methods
(MLP11NE , new MLP with 11 classes based on FSNovel).

E. Analysis (P5)

For our analysis, we will investigate if it is possible to
distinguish between the five selected steganographic embed-
ding methods (EM1−5) and cover data (CD) after a potential
detection of an anomaly, to potentially attribute an attacker
with MLP6NE and MLP6LG (6-class classification challenge).
Additionally, we analyze if it is possible to distinguish be-
tween embedded message types and steganograpic embedding
methods with MLP11NE and MLP11LG (11 class classification
challenge). The specific evaluation goals are presented in
Section IV-A.

IV. EVALUATION SETUP

A. Evaluation Goals

The evaluation extends the evaluation of [1] significantly
and addresses the following goals:

• G1: Determination of the classification accuracy for
MLP6NE (new MLP based on novel feature space
FSNovel) and MLP6LG (‘legacy’ MLP based on state-
of-the-art feature space FSSOTA) to analyze if and how
accurate they are able to distinguish between the five
selected steganographic embedding methods (EM1−5)
and the cover data (CD), and to investigate if new
MLP6NE can outscore the state-of-the-art MLP6LG in
this 6-class-classification-challenge.

• G2: Determination of the classification accuracy for
MLP11NE and MLP11LG to analyze if and how accurate
they are able to distinguish between the five selected
steganographic embedding methods, the two embedded
message types (invariant IV message type, which means
a repeated letter and heterogeneous HE message type,
which means a random text message, see Section IV-C)
and the cover data, and to investigate if new MLP11NE

can outscore the state-of-the-art MLP11LG in this 11-
class-classification-challenge.

The classification accuracy ACC can be determined with
ACC = (CCS

AS ) ∗ 100, where CCS is the number of correctly
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TABLE I
NETWORK DATA SETS FOR FEATURE EXTRACTION; STEGANOGRAPHIC DATA IS EMBEDDED SYNTHETICALLY IN RECCD .

Name Type of Recording Embedding Method Message Type Hidden Message No. of relevant Packets No. of extracted Samples
RECTrain−CD Cover Training-Data - - - 25,613 514

RECTrain−EM1IV EM1 invariant ‘a’ (repeated) 25,613 514
RECTrain−EM1HE EM1 heterogeneous ‘IARIA-Journal-2025 ’ + Lorem ipsum ... (until full) 25,613 514
RECTrain−EM2IV EM2 invariant ‘a’ (repeated) 25,613 514
RECTrain−EM2HE EM2 heterogeneous ‘IARIA-Journal-2025 ’ + Lorem ipsum ... (until full) 25,613 514
RETrain−EM3IV Steganographic EM3 invariant ‘a’ (repeated) 25,613 514

RECTrain−EM3HE Training-Data EM3 heterogeneous ‘IARIA-Journal-2025 ’ + Lorem ipsum ... (until full) 25,613 514
RECTrain−EM4IV EM4 invariant ‘a’ (repeated) 25,613 514
RECTrain−EM4HE EM4 heterogeneous ‘IARIA-Journal-2025 ’ + Lorem ipsum ... (until full) 25,613 514
RECTrain−EM5IV EM5 invariant ‘a’ (repeated) 25,613 514
RECTrain−EM5HE EM5 heterogeneous ‘IARIA-Journal-2025 ’ + Lorem ipsum ... (until full) 25,613 514

RECEval−CD Cover Test-Data - - - 8,703 177
RECEval−EM1IV EM1 invariant ‘a’ (repeated) 8,703 177
RECEval−EM1HE EM1 heterogeneous ‘IARIA-Journal-2025 ’ + Lorem ipsum ... (until full) 8,703 177
RECEval−EM2IV EM2 invariant ‘a’ (repeated) 8,703 177
RECEval−EM2HE EM2 heterogeneous ‘IARIA-Journal-2025 ’ + Lorem ipsum ... (until full) 8,703 177
RECEval−EM3IV Steganographic EM3 invariant ‘a’ (repeated) 8,703 177
RECEval−EM3HE Test-Data EM3 heterogeneous ‘IARIA-Journal-2025 ’ + Lorem ipsum ... (until full) 8,703 177
RECEval−EM4IV EM4 invariant ‘a’ (repeated) 8,703 177
RECEval−EM4HE EM4 heterogeneous ‘IARIA-Journal-2025 ’ + Lorem ipsum ... (until full) 8,703 177
RECEval−EM5IV EM5 invariant ‘a’ (repeated) 8,703 177
RECEval−EM5HE EM5 heterogeneous ‘IARIA-Journal-2025 ’ + Lorem ipsum ... (until full) 8,703 177

classified samples and AS is the number of all samples in the
corresponding class. The results for G1 and G2 are presented
in Section V.

B. Attack Vector and Laboratory ICS Setup of Evaluation

The recording of the cover-data in phase 1 of ATSND is
done on a Fischertechnik® Lernfabrik 4.0 24V [25] model.
The modeled production line consists of 2 transportation
cranes, a storage rack, an environmental sensor and multiple
conveyor belts, actuators and other sensors. A Siemens S7-
1500 PLC controls the actuators and sensors, and connects to
another network via a gateway for remote supervision. The
gateway communicates directly with the Siemens-PLC using
the ICS specific OPC UA protocol. Since the gateway acts as
a middleman for the remote interface, its main responsibility
is to collect the data of all sensors and actuators in real time.
To do this, the gateway periodically requests the values of
the sensors directly from the PLC. In contrast, the real time
data (current and target position) of sensors and actuators is
published by the PLC in shorter intervals, but only while they
are active. The setup performs a close-to-reality production
process including real communication involved between all
components and makes use of industrial standard controllers,
thus it can be considered to produce realistic and plausible
ICS network traffic.

Since the OPC UA communication between the PLC and
Gateway is numerous, predictable, and outward-facing (mean-
ing leaving the Operational Technology (OT) ICS network
towards Information Technology (IT) focused domains of an
infrastructure), it forms a suitable cover to exfiltrate data.
The fact that the communication occurs between two separate
network zones would be especially beneficial for a possible
attacker. A possible goal for this exfiltration could for example
be the theft of confidential process information. In this attack
scenario, the attacker has to manipulate the OPC UA responses
coming from the PLC. This could be achieved by corrupting
the control logic on the PLC itself using a supply-chain-attack.

C. Evaluation Data Sets

The cover data recorded in Phase 1 of ATSND (see Section
III-A) is the base for further generation of synthetic stegano-
graphic data. In order to prevent overfitting and evaluate the
MLP externally with data it has not seen before, there are
two cover data sets. The larger one (RECTrain) consists of
25613 relevant packets and is used for training of the MLPs.
For the evaluation a smaller, disjoint data set (RECEval)
consisting of 8703 relevant packets is used. Our data sets are
created with the SSE-concept [7], which allows a message
to be synthetically embedded into a pcap or pcapng capture
file. All of the embedding methods used in this paper, are
modifying the recorded cover data sets synthetically. All
used embedding methods modify the last digits of the OPC
UA Timestamp in a network packet as described in Section
III-B. In a real world attack scenario this manipulation could
be achieved by a corrupted server (e.g., PLC, via supply-
chain-attack) which sends timing-delays to embed the hidden
information. The steganographic taxonomy introduced in [10]
would categorize the used embedding methods under the LSB
state/value modulation category.

Since one of the goals of this paper is to see if it is
possible to distinguish between invariant and heterogeneous
messages, we need to define the two messages to embed.
The embedded invariant message consists of the repeated
letter ‘a’. In order to represent the (character) similarity of
natural text in the heterogeneous message, we chose to use
the phrase IARIA-Journal-2025, followed by as much Lorem
Ispum text as possible for each recording and embedding
method. Table I shows a summary of all combinations of
recording, embedding methods and embedded messages. For
example RECEval−EM3IV describes the recording based on
the Evaluation cover, with the InVariant message embedded
by embedding method EM3. In the following steps, the
resulting steganographic data is used to extract samples of
feature vectors. These are in turn used to train and evaluate
our resulting MLPs.

The data used to train our MLPs for evaluation is based
on the training data set from I. For the cover data training
recording, we extract 514 samples (i.e., extracted feature
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vectors with label). For the generated data for Goal G1, we use
the combined feature vectors of both message types for every
embedding method. This means for every embedding method
we have 1028 samples. For Goal G2 we use the same cover
training data, while the generated data is based only on the
corresponding recording for every combination of embedding
method and message type. This results in 514 samples for
every training data subset. The training data setup is shown in
Table II.

TABLE II
TRAINING DATA SETS USED FOR TRAINING MLP6LG , MLP6NE ,

MLP11LG AND MLP11NE FOR EVALUATION OF G1 AND G2 .

Data Sets used to train MLP6LG and MLP6NE :
Training Data Set Name Label of Samples Features for MLPs extracted

from:
Number of
Samples

Goal

TSCD CD RECTrain−CD 514
TSEM1 EM1 RECTrain−EM1IV ,

RECTrain−EM1HE

1028 (2x514)

TSEM2 EM2 RECTrain−EM2IV ,
RECTrain−EM2HE

1028 (2x514)

TSEM3 EM3 RECTrain−EM3IV ,
RECTrain−EM3HE

1028 (2x514) G1

TSEM4 EM4 RECTrain−EM4IV ,
RECTrain−EM4HE

1028 (2x514)

TSEM5 EM5 RECTrain−EM5IV ,
RECTrain−EM5HE

1028 (2x514)

Data Sets used to train MLP11LG and MLP11NE :
TSCD CD RECTrain−CD 514

TSEM1IV EM1-IV RECTrain−EM1IV 514
TSEM1HE EM1-HE RECTrain−EM1HE 514
TSEM2IV EM2-IV RECTrain−EM2IV 514
TSEM2HE EM2-HE RECTrain−EM2HE 514
TSEM3IV EM3-IV RECTrain−EM3IV 514 G2
TSEM3HE EM3-HE RECTrain−EM3HE 514
TSEM4IV EM4-IV RECTrain−EM4IV 514
TSEM4HE EM4-HE RECTrain−EM4HE 514
TSEM5IV EM5-IV RECTrain−EM5IV 514
TSEM5HE EM5-HE RECTrain−EM5HE 514

For our evaluation of the model, we use the evaluation data
set from Table I. The cover data set contains only the original
recordings, resulting in 177 samples. For Goal G1 we use the
combined recordings from both message types. Each recording
then contains 354 samples per embedding method. The model
for Goal G2 uses the recording for every embedding method
and message type separately, so every data subset contains 177
samples. The evaluation data sets can be seen in Table III.

TABLE III
TEST DATA SETS USED FOR EVALUATION TO ACHIEVE G1 AND G2 .

Data Sets used to evaluate MLP6LG and MLP6NE :
Test Data Set Name Label of Samples Features extracted from: Number of

Samples
Goal

DSCD CD RECEval−CD 177
DSEM1 EM1 RECEval−EM1IV ,

RECEval−EM1HE

354 (2x177)

DSEM2 EM2 RECEval−EM2IV ,
RECEval−EM2HE

354 (2x177)

DSEM3 EM3 RECEval−EM3IV ,
RECEval−EM3HE

354 (2x177) G1

DSEM4 EM4 RECEval−EM4IV ,
RECEval−EM4HE

354 (2x177)

DSEM5 EM5 RECEval−EM5IV ,
RECEval−EM5HE

354 (2x177)

Data Sets used to evaluate MLP11LG and MLP11NE :
DSCD CD RECEval−CD 177

DSEM1IV EM1-IV RECEval−EM1IV 177
DSEM1HE EM1-HE RECEval−EM1HE 177
DSEM2IV EM2-IV RECEval−EM2IV 177
DSEM2HE EM2-HE RECEval−EM2HE 177
DSEM3IV EM3-IV RECEval−EM3IV 177 G2
DSEM3HE EM3-HE RECEval−EM3HE 177
DSEM4IV EM4-IV RECEval−EM4IV 177
DSEM4HE EM4-HE RECEval−EM4HE 177
DSEM5IV EM5-IV RECEval−EM5IV 177
DSEM5HE EM5-HE RECEval−EM5HE 177

V. EVALUATION RESULTS

In this section, the determined classification results on
the introduced evaluation setup for evaluation goal G1 with
MLP6LP and MLP6NE and for G2 with MLP11LP and
MLP11NE are presented.

A. Results for G1

In G1 we determine the classification results for the ‘legacy’
MLP6LP based on state-of-the-art feature space FSSOTA and
the ‘new’ MLP6NE based on novel feature space FSNovel.
This determination should show whether the presented ma-
chine learning based models are able to distinguish between
the 5 presented steganographic embedding methods (EM1−5)
and cover data (CD). Additionally, we want to find out if the
novel model can outperform the state-of-the-art approach.

TABLE IV
CONFUSION MATRIX OF CLASSIFICATION RESULTS ON TEST-DATA OF

MLP6LG AND MLP6NE FOR G1 (BOLD: CORRECTLY CLASSIFIED
SAMPLES, CD = 177 SAMPLES, EMn= 354 SAMPLES)

classified →
Actual

CD EM1 EM2 EM3 EM4 EM5 ACC
(rounded)

CD 90 | 103 9 | 0 0 | 1 43 | 45 35 | 28 0 | 0 51 | 58
EM1 5 | 1 318 | 348 0 | 0 12 | 5 19 | 0 0 | 0 90 | 98
EM2 1 | 1 0 | 0 352 | 353 0 | 0 1 | 0 0 | 0 99 | 99
EM3 77 | 78 23 | 0 0 | 0 179 | 238 75 | 38 0 | 0 51 | 67
EM4 24 | 40 15 | 0 0 | 0 31 | 41 283 | 273 1 | 0 80 | 77
EM5 0 | 0 0 | 0 0 | 0 0 | 0 1 | 1 353 | 353 99 | 99

Overall Samples: 81 | 86

The classification results for both MLPs are presented in
Table IV. We can state that both models are basically able
to distinguish correctly for a majority of test samples for all
classes (classification accuracies are visualized in Figure 7).

Figure 7. Classification Accuracy for MLP6LG and MLP6NE for each
embedding method and cover data.

MLP6LP reaches an overall accuracy (correctly classi-
fied samples in relation to all samples) ACC = 80.9%
and MLP6NE is significantly more accurate with ACC =
85.7%. The classification accuracy can be especially improved
with MLP6NE for steganographic embedding method EM1

(ACCMLP6LG
= 89.9%, ACCMLP6NE

= 98.3%) and EM3

(ACCMLP6LG
= 50.6%, ACCMLP6NE

= 67.2%), and the
cover data (ACCMLP6LG

= 50.8%, ACCMLP6NE
= 58.2%).

For EM4 MLP6LP is slightly more precise in terms of classi-
fication accuracy (ACCMLP6LG

= 79.9%, ACCMLP6NE
=

77.1%). Both models have the same accuracy of ACC =
99.7% for EM2 and EM5, these methods are, as assumed,
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TABLE V
CONFUSION MATRIX OF CLASSIFICATION RESULTS ON TEST-DATA OF MLP11LG AND MLP11NE FOR G2 (BOLD: CORRECTLY CLASSIFIED SAMPLES,

177 SAMPLES PER CLASS)

classified as →
Actual

CD EM1-IV EM1-HE EM2-IV EM2-HE EM3-IV EM3-HE EM4-IV EM4-HE EM5-IV EM5-HE ACC
(rounded)

CD 70 | 78 5 | 1 11 | 0 0 | 0 0 | 0 8 | 28 51 | 31 4 | 10 28 | 29 0 | 0 0 | 0 40 | 44
EM1-IV 8 | 1 120 | 176 33 | 0 0 | 0 0 | 0 4 | 0 5 | 0 6 | 0 1 | 0 0 | 0 0 | 0 68 | 99
EM1-HE 4 | 0 22 | 0 134 | 176 0 | 0 0 | 0 8 | 0 6 | 0 1 | 1 2 | 0 0 | 0 0 | 0 76 | 99
EM2-IV 0 | 0 1 | 0 0 | 0 172 | 174 4 | 2 0 | 0 0 | 0 0 | 1 0 | 0 0 | 0 0 | 0 97 | 98
EM2-HE 3 | 3 1 | 0 0 | 0 1 | 1 170 | 171 0 | 0 0 | 0 0 | 2 2 | 0 0 | 0 0 | 0 96 | 97
EM3-IV 33 | 31 4 | 0 10 | 6 0 | 0 0 | 0 16 | 47 90 | 66 6 | 3 18 | 24 0 | 0 0 | 0 9 | 26
EM3-HE 31 | 27 5 | 1 3 | 7 0 | 0 0 | 1 15 | 42 93 | 75 4 | 2 22 | 26 0 | 0 0 | 0 53 | 42
EM4-IV 3 | 8 3 | 0 3 | 1 0 | 0 2 | 0 3 | 5 11 | 10 120 | 113 32 | 40 0 | 0 0 | 0 68 | 64
EM4-HE 19 | 25 7 | 1 8 | 2 0 | 0 0 | 0 1 | 8 20 | 21 29 | 19 92 | 101 0 | 0 0 | 0 52 | 57
EM5-IV 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 177 | 177 1 | 0 100 | 100
EM5-HE 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 1 | 0 176 | 177 99 | 100

Overall Samples: 69 | 75

the most easiest ones to attribute correctly. Additionally, we
shall notice that the accuracy for both approaches on cover data
(CD) should be improved in future work, because it would
trigger false positives in a real world scenario, but if we state
that an attribution takes place after a previous detection (so we
can exclude cover data), then especially the novel MLP6NE

has a decent precision to distinguish between embeddings.

B. Results for G2

In G2 we determine the classification results for MLP11LP

based on FSSOTA and MLP11NE based on FSNovel. This
determination should show if the approaches are able to dis-
tinguish between the five selected steganographic embedding
methods (EM1−5), the two embedded message types (IV
and HE) and the cover data (CD). Additionally, we want to
find out if the novel model can outperform the state-of-the-art
approach.

The results for both models are shown in Table V. We can
state that both models are still able to distinguish correctly
between used embedding methods for a majority of test
samples. Accuracy for MLP11LP and MLP11NE for all classes
is visualized in Figure 8. Through all samples, MLP11LP

delivers ACC = 68.8%. MLP11NE delivers ACC = 75.2%
overall samples and thus clearly outperforms MLP11LP . The
distinction between embedded message types is comparatively
accurate for EM1, EM2 and EM5 for MLP11LP . For EM3

the accuracy is limited, but this is explainable, due to the
key-based pseudo-random embedding code generation, which
makes it hard to distinguish between embedded message types.

However, on a holistic view, we can state that a distinction
between embedding method and embedded message type is
possible and accurate, especially with MLP11NE , which is
based on our novel handcrafted feature space for embedding
methods with no message encryption (EM1, EM2 and EM5).

Figure 8. Classification accuracy for MLP11LG and MLP11NE for each
message type with embedding method and cover data.

VI. CONCLUSION AND FUTURE WORK

In this paper, we analyze the possibility to distinguish
between five steganographic embedding methods and two
different message types based on a state-of-the-art analysis
testbed for steganographic ICS network data with an extensive
evaluation/analysis setup. We elaborate a novel feature space
to train a machine learning driven approach with multilayer
perceptron as classification engine. Our novel approach, which
significantly extends a state-of-the-art-method previously pre-
sented, is able to distinguish between steganographic embed-
ding methods with an accuracy of 85.7%, which outperforms a
state-of-the-art-method by +5.9%. This creates the opportunity
for a more accurate attribution, which can possibly identify
the context of attackers (for example: software fingerprinting).
Additionally, we are able to distinguish between stegano-
graphic embedding methods and embedded message types
with an accuracy of 75.2%, which significantly improves
the ability to conclude what type of message was embed-
ded (improvement of +9.3% compared to state-of-the-art).
Message type classification following a successful detection
of steganographic channels may help in the attribution of
different malicious payloads of stealthy malware in the future.
This can be potentially achieved by differentiation between
different malware code types as payload (e.g. script/shellcode
vs. binary code vs. command & control instructions), deployed
by different attacker groups. While steganographic communi-
cation of malware is considered to be used for illegitimate
data aggregation within limited boundaries of ICS subnets,
future stegomalware attacks may also make use of gateway
communication, traversing borders between isolated ICS sub-
networks and Information Technology (IT) network segments
of the informational infrastructure of enterprises. Thus, the
combination of additional forensic traces discovered on the
system under attack (such as TCP/IP network traces) and
steganalytic properties such as the payload type and length
may allow to attribute the origin of the attack in the future
for example for data in- and exfiltration via the gateway more
precisely.

In future work, we would like to analyze more message
types (e.g., source-code-like structures) and significantly more
steganographic embedding methods. Additionally, our novel
feature space has the potential to be extended for a more
accurate classification. We will expand our experiments with
network data from more complex ICS systems and with
longer network data recordings to create a significantly larger
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number of samples for training and testing. Additionally, more
potential classification models based on traditional and modern
machine learning techniques should be trained and analyzed
to potentially improve the classification performance.
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