International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http.//www.iariajournals.org/security/

Redesign and Feasibility Verification of
Access Control System
Based on Correlation Among Files

Yuki Kodaka
Department of Informatics,
The Graduate University
for Advanced Studies
Tokyo, Japan
email: y_kodaka@nii.ac.jp

Abstract—TFile access control is an effective method for pro-
tecting information from unauthorized access both inside and
outside an organization. However, conventional methods based on
organizational structure have some limitations. Modern business
requires flexible access control that reflects the dynamic changes
in workflow. Still, it is difficult to achieve the requirement
at the same time the prevention of information leakage and
destruction due to cyberattacks. Therefore, this paper proposes
an access control system based on the correlation among files.
The correlation is inferred from users’ access histories within
the same group, and access privilege is determined based on
the strength of the correlation. This system adapts to changing
access needs and prevents unauthorized access by automatically
denying access with low file-to-file correlation in a series of
accesses. The initial implementation of the system was carried out
in a simplified environment, which raised issues about whether
the system could be feasible and efficient in real-world, more
complex scenarios. This work extends the findings of our previous
paper by addressing identified issues with the proposed system
through targeted modifications. To further validate the system’s
performance and feasibility in real-world scenarios, we conducted
subsequent implementation and verification experiments under
conditions that were not only more practical but also involved
higher loads. These efforts aimed to rigorously test the system’s
scalability and efficiency in environments that closely mimic ac-
tual operational conditions. As a result of these modifications and
experiments, the system demonstrated the capability to handle
high-load conditions efficiently. This outcome suggests that the
potential impact on file system processing due to the introduction
of new features via the proposed system is not serious. Therefore,
our extended research confirms the proposed system’s robustness
and suitability for real-world application, highlighting its ability
to maintain efficiency even under significant stress. To ensure the
feasibility of the proposed system, future work should address
the effectiveness issue.

Index Terms—File Access Control;
LaPadula Model.

Graph Theory; Bell-

I. INTRODUCTION

This paper follows up our previous paper “Design and
Implementation of Access Control Method Based on Corre-
lation Among Files” already published in the proceedings of
CENTRIC 2023 [1].

Hirokazu Hasegawa
Center for Strategic Cyber
Resilience Research & Development,
National Institute of Informatics
Tokyo, Japan
email: hasegawa@nii.ac.jp

Hiroki Takakura
Center for Strategic Cyber
Resilience Research & Development,
National Institute of Informatics
Tokyo, Japan
email: takakura@nii.ac.jp

File access control has long been used as an effective
method of protecting an organization’s information assets. It
prevents unauthorized accesses by users and minimizes infor-
mation leakage due to cyber attacks. Various access control
methods have been proposed and developed [2]-[4].

However, many of the current methods and operations
are not flexible enough. Due to changes in the situations,
access control loses accuracy over time [5]. In some cases,
policymakers (high-level policy architects) and implementers
of policy designed by others are separated. And policies are
often managed by several persons rather than a single person
[6]. These also make flexible operation difficult.

Strict access control is required, especially in environments
where sensitive information is handled. For example, the Bell-
LaPadula model [7] was proposed to prevent the leakage of
information known only to the supervisor to subordinates.
However, in many cases, supervisors can write to files that
their subordinates can read and write to.

According to Proofpoint report [8], the cost of insider
threats has surged from $8.30 million in 2018 to $15.38
million in 2022, an 85% increase. In order to mitigate insider
threats, not only technical approaches like access control
systems, but also non-technical approaches like user behavior
analytics are needed [9].

To address these issues, we point out two challenges. First,
the principle of least privileges frequently discussed, but
there is no practical method of assigning access privileges
based on it. As business progresses, the required access
privileges are constantly changing. However, such changes are
always incurred and unpredictable beforehand. Second, there
is no method of implementing granular file access control
in response to constantly changing needs. Obviously, the
assignment of access privileges should be done with caution.
Excessive access privileges increase the risk of leakage or
destruction. On the other hand, insufficient access privilege
affects the ability of users to perform their operations. As a
result, it may undermine the efficiency and productivity of the
organization.

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

99

To solve these problems, we have proposed an access
control system based on the correlation among files [10]. The
correlation is inferred from user’s access histories. The system
automatically determines whether access is allowed or denied
based on the degree of the correlation. It responds to access
needs based on changing situations. The system automatically
denies accesses with low correlation. It prevents excessive
expansion of the access privilege. It is assumed that access
by malware is an uncorrelated access. Or, even access by an
insider is assumed to be uncorrelated if it is not related to the
person’s business. These accesses are different from legitimate
users. This system can prevent such file accesses. We designed
and implemented our system to include file-correlation-based
access control as one of its elements. However, there were
issues about this design, and the implementation was in a
simplified environment. To verify the system’s feasibility, it
was necessary to address these issues and verify its scalability
in a more practical environment. For this study, after making
modifications to our system, we extended implementation and
verification experiments under more practical and high-load
conditions.

This paper is organized in the following sections. Section II
refers to related work to this paper. Section III describes the
assumptions of the proposed system. After that, we explain
the design of the proposed system. Section IV describes the
implementation of the proposed system. Section V describes
the evaluation experiment of the proposed system. Section VI
concludes this paper and presents future work.

II. RELATED WORK

Users are sometimes denied access to files they actually
have the right to use, and administrators are required to
modify the access control of the files. They might make a
misconfiguration at the modification that gives more access
privileges than necessary. Xu et al. investigated how and
why such problems occur [11]. Although several reasons for
misconfiguration are shown, administrators must solve such
problems by themselves, and the possibility of misconfigura-
tion and the burden on administrators remains.

Beckerle and Martucci proposed the metrics to evaluate
and quantify access control rule sets in terms of security and
usability [12]. The metrics helps users generate better rule sets.
One of the evaluation indicators is the difference between the
owner’s intention and the rule set. However, the actual method
of getting the intention is out of the scope of the paper.

Mazurek et al. proposed reactive policy creation in response
to user’s access request [13]. The experiment involves sharing
files on digital devices at home with people, including super-
visors and co-workers. If a user tries to access a resource but
lacks sufficient privilege, they can use the proposed system to
send a request to the resource owner, who can opt to update
their policy and allow the access. This method requires the file
owner to make determinations for all unauthorized access.

Shalev et al. proposed an improved method for containers
that allows monitoring and logging of operations by the system

International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http.//www.iariajournals.org/security/

administrator [14]. The operations used by system adminis-
trators include not only support by internal IT department
employees, but also by third parties such as storage service
providers and automated management tools used by the IT
department. The system administrator is expected to operate
based on user requests (tickets in this paper), but there is no
mention of whether or not those requests are necessary.

Desmedt and Shaghaghi proposed an access control method
that considers three dimensions: subject, object, and operation,
rather than the conventional two dimensions of subject and
object [15]. These mainly counter internal threats and provide
granular access control by controlling operations. It shows how
to implement granular access control, but does not mention
how to update access privileges once they have been set.

Although not access control, research has been conducted
to identify legitimate and malicious users based on user
behavior. Mannila et al. introduced the Window-based Episode
Discovery (WINEPI) and Minimal Occurrence-based Episode
Discovery (MINEPI) algorithms, offering advanced methods
for analyzing patterns in event sequences known as ‘episodes’
[16]. WINEPI calculates the frequency of episodes within time
windows, effectively identifying common patterns. MINEPI
complements this by focusing on the minimal occurrences of
episodes, revealing the shortest intervals for episode begin-
nings. These approaches provide a comprehensive framework
for pattern detection, crucial in fields such as telecommunica-
tions and user behavior analysis.

Camina et al. focused on masquerade detection using user
navigation structure, employing the Naive Bayes classifier
[17]. The ‘user navigation structure’ refers to how a user inter-
acts with their file system. In their 2014 research, they shifted
focus to abstracting user behavior into tasks, utilizing both
Naive Bayes and Markov Chain classifiers [18]. Here, a ‘task’
is associated with a file system (FS) directory, encompassing a
number of related file system objects. These studies illustrate
the evolution in detecting masquerades, from analyzing direct
navigation patterns to abstracting user actions into categorized
tasks.

Huang et al. addressed the challenge of intrusion detection
through the analysis of user file access patterns [19]. Their
approach involves modeling user behavior using both Non-
frequency-based and Frequency-based feature sets. The former
includes metrics like the duration and diversity of file access
paths, while the latter focuses on aspects like access frequency
and file type variations. This comprehensive analysis of user
behavior significantly contributes to the effectiveness of intru-
sion detection systems.

Mehnaz and Bertino explored anomaly detection in file
system accesses by leveraging enhanced user profiles [20].
These profiles, incorporating frequency and access cluster
data similar to Mannila et al’s approach [16], are further
enriched by block-level analysis derived from access size logs.
The research involves comparing these comprehensive profiles
against users’ access patterns to effectively identify anomalies,
providing an advanced framework for detecting irregularities
in file system usage.

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

100

In research that utilizes these access patterns for detecting
unauthorized access, it is possible to distinguish between the
main similar access patterns and others. However, there is a
risk of misjudging the unique access patterns of individual
users.

III. DESIGN OF PROPOSED SYSTEM

In this section, we first discuss the file correlation-based
access control system proposed in our previous works [1],
[10]. We then address the issues identified with the system’s
design. Finally, we describe the modifications made to the
design in response to these issues.

A. Assumption

The proposed system assumes an organization consisting
of a hierarchical structure as shown in Fig. 1. Although agile
development is practiced, a certain organizational structure still
exists. This paper calls the largest segment of an organization,
such as a department in a typical enterprise, a group. Divided
units within the group are called subgroups, and further
divided units within a subgroup are called subsubgroups. In
the example shown in Fig. 1, each department is a group, and
each section is a subgroup.

General Administration
Group

General
Affairs

General
[T | Administration
Accounting

Design

Budget

1 Manufacture
Board
of Directors

Sales 1

| Sales -
Sales Promotion Sales Planning

Planning Subgroup
M&A
L— Development -
Business Market Market Reasearch
Development Research Subsubgroup
Department Section Subsection
(Group) (Subgroup) (Subsubgroup)

Fig. 1: Example of Organizational Structure

In this paper, we propose a file access control system based
on the correlation among files. Our working hypothesis is that
user access patterns are not random or irregular, but rather
exhibit a certain level of consistency and commonality.

In collaborative environments, it is a recognized fact that
users tend to be team-oriented [21]. This study operates under
the hypothesis that typical users within a Collaborative Infor-
mation System are likely to form and function as communities.

Therefore, we assume that the proposed system will be
effective in enhancing the security of team-based workflows.
This approach is particularly well-suited for business processes
that are team-oriented.

Fig. 2 shows the assumed access control environment.
Generally, an Access Control List (ACL) is implemented with
coarse-grained, such as per folder, for groups or subgroups.

International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http.//www.iariajournals.org/security/

The access privilege under a folder is determined using the
information in a directory service, such as Active Directory
(AD). If fine-grained access control is to be implemented, it
is set by the file owner or the administrator, but their load
becomes significant.

File server ’ Group
ﬂ _ R Person in charge
. il I I
i =
R RW
2= Setup User
------------------ information
R RW TF{
°® 09 ° 9
PO PO P~ <
- m ()
Subgroup 1 Subgroup 2 Subgroup 3 Service
Group 1 Resources shared across groups
.4> ﬁi?iiiiiiiﬁ‘
| =
Out of scope; -Group > Setup | Folder |
| @ = T | [E5] ACLs for folder |
[~ L raer

Fig. 2: Assumed Access Control Environment

In this paper, resources shared within each group are tar-
geted, and resources shared across groups are out of scope.

B. Overview of Proposed System

With the dynamic changes in the environment, the re-
quired privileges are constantly changing. To respond to such
changes, the proposed system has the capability to continu-
ously evaluate and manage access privileges. It executes two
main functions: the addition of necessary access privileges and
the revocation of unnecessary ones.

1) Addition of necessary access privileges: Granting of ac-
cess privileges is executed on the basis of two-step determina-
tion, i.e., automatic determination and manual determination.
When a user tries to access a file without access privileges,
such access is denied first. The proposed system triggered by
the event of access denial. Then the proposed system performs
an automatic access determination on the denied access. If the
results of the determination show that there is a correlation
between the files to which the user has access privilege and
the denied files, the ACL is changed to “allowed” to access the
file. Even if the access is denied as a result of the automatic
access determination, the user can request a manual access
control determination if the access is truly necessary. In this
paper, it is assumed that manual determination is performed
by the file owner.

2) Deletion of unnecessary access privileges: The revoca-
tion is executed when there has been no access for a certain
period of time. The proposed system records the file access
history of each user for a certain period in the past. If a user
has not accessed a file for this period, the access privilege is
considered no longer needed, and it is revoked. The longer the
period of access history recorded, the longer access privileges
can be retained, which offers advantages from a usability

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

101

International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http.//www.iariajournals.org/security/

User information >

Directory
Service

(lll)File owner's contact information

User\

M

Access request (File

> Automatic
Access Control
Calculator

Access records

for file

(3)File content:

File owner

(3)Accless denial
(V)If approved
1 -
Allow privilege

1
(4)Trigger

(V)
Manual
determination (V!)
Not

Result \ Determination request

\
Manual Access A .
Control «
Determinator = —(5)-(b)=—
File information Unauthorized
Flle Access
Detector

File

(6)
Management Denial

access information

(5)-(a)User informationJ

(d)Delete_
1 identified privileges
I

1
:—(12)-(a), (13) Determination result=—
1 (7)=—————> Access Control <~(10)Adjacency matrix=—

N O —
Denial
access i?formation

Pool of
Denial Access
Information

1
Updated adjacency matrix

11)If there is correlation
Allow privilege

Graph
adjacency
matrix

Automatic

Determinator
\ ((a)F{ecords for a certain period
(b)Current capabilities of all users—l

(12)-(b) New access privilege=p- Capability

(9) User's access privilege™

‘)

~(e)Delete identified privilege
(VII)New access privilege:

(I1) File owner information

: Automatic determination
: Manual determination

: Automatic revocation

Fig. 3: Architecture of Proposed System (yellow)

perspective. On the other hand, the shorter the recording
period, the quicker unused access privileges are removed,
providing benefits from a security perspective. Given these
trade-offs, the period of recorded access history should be
flexibly set according to the organization’s needs and the job
operations. As an example, this paper records the file access
history for the past month (the past 30 days).

C. Architecture of Original System

Fig. 3 shows the architecture of the proposed system. The
compoment of the proposed system is yellow color. It is
assumed that the other components, apart from the proposed
system, already exist within the organization. It includes the
assumed flow of access determination and the source of
information necessary for the determination. The proposed
system consists of an automatic access control calculator
(AACC), unauthorized file access detector (UFAD), automatic
access control determinator (AACD), manual access control
determinator (MACD), and four databases store the target
file information, the denied access information, the adjacency
matrix of the graph, and the access privileges by each user.

The procedure of the proposed system process is as follows.
The term “username” refers to a unique identifier for users,

similar to a user ID, which is managed within a directory
service. Similarly, “filename” refers to a unique identifier that
can be assigned to a full path or an ID given to a file.

« Automatic determination of access privileges (red line)

(1) Users access files
(2) File server determines whether the access is allowed
or denied based on the ACL set for each file
(3) (a) If allowed, the user gets the file content
(b) If denied, the user is notified of access denial,
and the access denial is recorded in the access log
(4) The UFAD is triggered by the event of access denial
(5) (a) The UFAD fetches the target user information from
the database for directory services
The user information is username, rank, affiliation
(b) The UFAD fetches the target file name from the
database for file management database
(6) If the record shows denial access for the target files
and the users,
the UFAD store it in the pool of denial access infor-
mation database
The denial access information is Timestamp, User-
name, Filename, Accesstype (R or W)

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

102

International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http.//www.iariajournals.org/security/

(7) The UFAD makes a determination request to the
AACD
(8) The AACD fetches the denial access information
from the pool of denial access information database
(9) The AACD fetches the user’s access privileges
from the the capability database
(10) The AACD performs the access determination using
graphs
(11) If there is a correlation, The AACD allows the access
privilege to the user
(12) If allowed,

(a) the AACD notifies the user of the result ‘Allowed’
The notification includes Timestamp, Username,
Filename and Accesstype (R or W)
(b) The AACD adds the new access privilege to the
capability database
(13) If denied,
the AACD notifies the user of the result ‘Denied’
The notification includes Timestamp, Username, File-
name and Accesstype (R or W)
Additionally, the user has the option to submit a new
access privilege request along with the reason for the
request
« Manual determination of access privileges (green line)
() The MACD receives the new access privileges request
from users
(I) The MACD fetches the file owner information from
the File server
(IIT) The MACD fetches the file owner’s contact informa-
tion from the directory service
The contact information is like email address or chat-
tool used in the organization
(IV) The MACD requests the file owner to determine
whether the access is allowed or not
(V) If approved, the MACD allow the access privilege to
the user
(VI) The MACD notifies the result to the user
(VII) The MACD adds the new access privilege to the
capability database
« Deletion of unnecessary access privileges (blue line)
(a) The AACD fetches the records for certain period from
the AACC
(b) The AACD fetches the capabilities, which detail the
current access privileges of each user
(c) The AACD compares the records with the capabil-
ities identifying user names, file names, and access
privileges (R or W) that are present in the capability
database but not in the records
(d) The AACD deletes the identified privileges from the
ACL
(e) The AACD also deletes the identified privileges from
the capability database

D. Function of each Component

The functions of each component are described below.

1) Automatic Access Control Calculator (AACC): The
AACC calculates graphs utilizing graph theory for correlation
determination. The graph infers the correlation among files
based on the user’s access histories, which are sourced as
records from access logs on the file server. Each event of a
user accessing a file is logged as a record.

The graph calculation is planned to schedule at two specific
times: the change of the date and at arbitrary intervals during
business hours. Firstly, at the stroke of midnight, the proposed
system fetches access records from the past 30 days up to the
day before from the file server, along with usernames, ranks,
affiliations as the necessary user information from the directory
service. This data is used to calculate the graph’s adjacency
matrix, as indicated by the black lines in Fig. 3. During
business hours, the proposed system continues to update this
information at set intervals, such as hourly. It fetches the
current day’s access records and user information to update
the adjacency matrix. The final graph is a composite of the
matrices generated at the date change and during the business
hours. This composite graph is then stored in a database for
adjacency matrices, as indicated by the black lines in Fig. 3.

For the graph calculation, the AACC maintains a dataset
that combines the access records from the past 30 days (up to
the day before) obtained at the moment the date changes, with
the access records of the current day acquired during business
hours. This ensures that the AACC possesses continuous
records of access from 30 days prior up to the most recent
data available at the predetermined intervals.

The calculation procedure is as follows. Data is access
records for a certain period, which is the past month (the past
30 days) in this paper.

a) Extract specific information from access records:
Specific information in the access records is fetched as the
access history used in the calculation. The specific information
is “Timestamp”, “Accesstype” (R or R/W), “Username”, “File-
name”. The extracted access histories are sorted by username
and time.

b) Categorize access histories by user rank and access
type: Extracted access histories are categorized by user rank
and access type. Ranks are assumed to be hierarchical. For
example, from the top, director, manager, section chief, mem-
ber. For each user rank, two access histories are categorized.
One is the access history of the “Read” access type for users
below the same rank. The other is the access history of the
“Write” access type for users in the same rank.

c) Create graphs from access histories: An example
graph is shown in Fig. 4. The graph consists of nodes (V1,
V5, V3) and links between nodes (L1_9, Lo_3, L1_3). In the
graph, nodes represent files. Links represent the correlations
among files. The graph is assumed to be undirected. The order
of accesses, A-B and B-A are counted as the same.

The graph is calculated using an adjacency matrix. Adja-
cency means that node ¢ and node j are adjacent to link ¢ — j
in the graph. An adjacency matrix is a square matrix used to
represent a finite graph. The elements of this matrix indicate
if a pair of nodes is adjacent or not in the graph. If so, it

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 4: Example of Graph

indicates the weights of the links between adjacent nodes. An
example of an adjacency matrix is shown in Table I.

TABLE I: EXAMPLE OF ADJACENCY MATRIX

FileA FileB FileC FileD

FileA 0 3 0 1
FileB 3 0 1 5
FileC 0 1 0 1
FileD 1 5 1 0

The following procedure is used to calculate link weights.

a. Get a list of files by rank and access type from categorized
access histories

b. Determine the size of the adjacency matrix from the list

Create adjacency matrix initialized to 0

d. Calculate weights of links from categorized access histo-
ries
Add link weights between consecutive files in the cate-
gorized access histories, if the same user accesses dif-
ferent files within a certain period of time (one hour
in this case). Furthermore, when calculating weights, we
consider the time inclination shown in (1) based on the

timestamp:
D n
1-— (1)
()

where D is the number of days elapsed from the most
recent day, Dy, is the number of calculation days, and
n is an adjustment parameter.
e. Normalize weights of links
Let A be the adjacency matrix before normalization, and
S(n) be the total weight of the links connected to each
node n. Normalization is performed as shown in (2):
A(i,j) | A1)
S5(i) S(7)
where B(%, j) is the element at the ith row and jth column
of the adjacency matrix after normalization, A(%, j) is the
element at the ¢th row and jth column of the adjacency
matrix before normalization, and A(j,) is the element at
the jth row and th column of the adjacency matrix before
normalization. Also, round off to the second decimal
place.

13

B(i,j) = 2)

The algorithm, which is the pseudocode of the above
procedure, is shown in Algorithm 1.

Table II shows the results of the above calculation steps
using Table I as an example.

International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http.//www.iariajournals.org/security/

Algorithm 1
Calculating link weight based on access histories
with time inclination

Require: Categorized access histories, list of target users, list
of target files
Ensure: Adjacency matrices for each rank and access type
1: Define list of ranks and list of access types
2: for each rank in list of ranks do
3: for each access type in list of access types do
4 Load a access history data
5 from categorized access histories
6: Obtain list of unique filenames from data
7 and sort them as specified
8 Initialize adjacency matrix
9: based on sorted filenames
10: for each user in data do

11: Group access histories by user

12: for each history in user’s group do

13: Set time limit according to access type
14: (1 hour for read, 2 hours for write)
15: if time difference to a next history

16: within limit and

17: a next history refers to different file then
18: Calculate elapsed time

19: since the log’s timestamp

20: Calculate weight

21: using time decay formula:

22: weight = 1 — (24 dwsyn
23: Add calculated weight "

24: to corresponding elements

25: in adjacency matrix

26: end if

27: end for

28: end for

29: Output adjacency matrix

30: end for

31: end for

TABLE II: EXAMPLE OF NOMALIZED ADJACENCY MA-
TRIX

FileA FileB FileC FileD

FileA 0.00 1.08 0.00 0.39
FileB 1.08 0.00 0.61 1.27
FileC 0.00 0.61 0.00 0.64
FileD 0.39 1.27 0.64 0.00

2) Unauthorized File Access Detector (UFAD): When ac-
cess is denial, a record is logged in the access log. The UFAD
is triggered by the event of this record being logged. Once
triggered, The UFAD compares the username and filename
from the record with the target usernames obtained from
directory service and the target filenames obtained from the
file management database. If there is a match, the UFAD
extracts the timestamp, username, filename and access type

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

104

(R or W) from the record and saves this information as denial
access information in the pool of denial access information.
Subsequently, a request for access determination is made to
the AACD.

3) Automatic Access Control Determinator (AACD): This
component plays a crucial role in managing access privileges.
When it is necessary to add access privileges, this component
is responsible for actually adding these privileges to the ACL.
Additionally, this component also has the role of removing
privileges from the ACL when they are deemed unnecessary.

a) Addition of necessary access privileges: The AACD
is activated upon receiving a determination request from the
UFAD. Its role involves making access privileges determina-
tions using information on access denial and the correlation be-
tween files. Specifically, it determines based on the correlation
between files that a user has already the access privilege to and
those that have been denied access. If the determination results
in granting, the privileges are added on the ACL. In case of
denial, the user is advised to request a manual determination
if truly necessary. The AACD continues this process as long
as there is data in the pool of denial access information.

The determination method is as follows. If the elements
of the adjacency matrix exceed a certain threshold, it is
considered correlated. The formula is shown in (3). Here, as
an example, the threshold is set at 0.8 or higher.

Matrix (Fileyd, Filepeyw) > 0.8 3)

where Matrix(Fileoq, Fileney) is the correlation between files,
File,ey is the new file to be accessed by user u, and Fileyyq is
the file already accessed by user u.

b) Revocation of unnecessary access privileges: When
the date changes, the AACC fetches records of access logs for
a certain period. The AACD then fetches these records from
the AACC. Additionally, the AACD fetches the current access
privileges for each user from the capability database. The
AACD compares the records with the current access privileges,
identifying user names, access types (R or W), and file names
that are present in the access privileges but not in the records.
It indicates that the user has not accessed those files with
those privileges for a certain period. The AACD then revocates
the identified user names, access types, and file names from
the ACL. Furthermore, the AACD also revocates these access
privileges for the identified user names, access types, and file
names from the capability database.

4) Manual Access Control Determinator (MACD): If the
result of the automatic determination is denial, manual de-
termination is carried out by the file owner in response to
the user request. The MACD serves as the receiver of the
access-privilege request from the user and the sender of the
manual access determination request to the owner of the file.
The user’s request includes a Timestamp, Username, Filename,
Access type (R or W), and the reason for the access privilege
request. Upon receiving a request, the MACD retrieves the
owner information of the specified Filename from the file
server. Additionally, the file owner’s contact information is ob-
tained from the directory service. This ensures that the MACD

International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http.//www.iariajournals.org/security/

can effectively communicate the manual access determination
request to the file owner, equipped with all necessary details
about the user’s request and the file in question.

5) Directory Service: This component store user informa-
tion. This setup assumes the use of pre-existing components
within the system environment prior to the implementation of
the proposed system. For example, AD can be considered as
such a component. The information stored in this component
includes user names, ranks, affiliations, and contact informa-
tion.

6) File Management Database: This component stores the
names of files targeted by the proposed system. The proposed
system uses this component to decide whether a file is to be
determineed.

7) Pool of Denial Access Information: This component
stores information about denial access. This includes the
timestamp, username, filename, and accesstype (R or W) all
of which are in the access record. The UFAD is responsible
for saving this information in this component. After a determi-
nation is made, the AACD then deletes this information from
this component.

8) Graph Adjacency Matrix: This component stores the
adjacency matrices of the graph. For each rank, matrices for
each access type (R or W) are saved. These adjacency matrices
are calculated by the AACC.

9) Capability: This component stores the capabilities for
each user. These lists include the access privileges owned by
each user, specifying the filenames and the accesstypes (R or
W).

E. Issues on Scalability and Efficiency

After the proposed system was designed, the performance
of the proposed system was tested in a brief environment.
As a result, it turned out that there were issues regarding
system scalability and efficiency [1]. Therefore, we modified
the proposed system to enhance its efficiency and confirmed
its improved scalability.

The first issue is the method of record detection. When
a large number of denials are incurred, all their records
are stored in an event log. The previous system maintained
detected denial records as history. In each detection, records
that the history did not have were fetched as missed detection.
When many denial records are incurred in the event log
file, it causes a heavy system load that the proposed system
might not identify all missed detections, and the situation
cannot be handled correctly. To address this, we refined the
detection method to improve efficiency and ensure scalability,
significantly reducing system load and improving detection
accuracy.

The second issue is the method of record filtering. The pro-
posed system could have caused delays in system processing.
Record filtering is done by the target user name and file name.
In addition to access logs, a large number of other logs are
generated in the system environment. Thus, it is necessary to
filter the target records among them. In the previous study,
the records were filtered by a component responsible for

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

105

International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http.//www.iariajournals.org/security/

User information >

Directory
Service

(lll)File owner's contact information

User\

Q)

Access request

Access log

> Automatic
f Access Control

File Calculator

@)

Manual Access, Denial access information
1

Control \ 4
Determinator

Unauthorized Pool of
File Access Denial Access
Detector Information

I

(5)Denial access information

: Automatic determination

: Manual determination

: Automatic revocation

(6)Determination request=>>

. for file F|Ie server
(3)-(a)File content -2
File owner - (3)—(b)|Access denial Determlnatlon
. (V)If approved by ACL |
(1) . Allow privilege - Updated
Access (4)Trigger adjacency matrix
__l_privileges ') '(Q)Delgtg‘ 10)If there is correlation
) request ! identified perlIegels Allow privilege
1
Manual) 1 Graph
determination Notify A-(11)-(a), (12)-(a)Determination result= (9)Adjacency matrix Adjacency
1 ;
Result | Automatic Access Matrix
1
1
1

(8)-(a)User informationJ

Control Determinator
<«—(a)Record for a certain period=—

A <€——————=(b)Current capability=——
of all users

(11)-(b)New access privilege=——> Capability

(8)-(c)User's access privilege:

(e)Delete identified privilege#

(VII)New access privilege

(I)File owner information

—(8)-(b)File information— File

management

Fig. 5: Architecture of Modified System (yellow)

detection. If a large number of access denials occurred, the
component was flooded with work. In the worst case, it could
not be handled and could become fully dysfunctional. We
have optimized the filtering process to handle high volumes
more efficiently, preventing system delays and ensuring the
component remains functional under increased load.

We modified the system’s design regarding record manage-
ment which traces the sequential number of the last record.
The system thus retrieves the difference between the last and
most recent records. Each record is assigned a sequential num-
ber by the operating system. By collecting not only the latest
record but also the records representing these differences, the
system prevents any missing denial records.

We also modified the system’s design regarding record
filtering for the detection component to specialize only in
the detection of denial records. The detection component
was detecting denial records and filtering whether they were
target records or not. We gave that role to a component for
determination. Thus, the load on the detection component is
lightened.

However, this modification is expected to increase the load
on the determination component. Since the above modifica-

tion could increase the independence of the detection and
determination components, When the load increases, a twist
could be devised within each component. For example, in the
detection component, if the number of detections is greater
than the preset maximum number, only the maximum number
of detections will be made and subsequent detections will
be made after the process is completed. In the determination
component, it is possible to record the determinations made
during a certain period of time in the past and not determine
the access types of the same user for the same file during that
period of time. In this way, it could reduce the number of
determinations.

These modifications have significantly improved the pro-
posed system’s efficiency and scalability, effectively address-
ing the initial concerns identified during the testing phase.

E. Architecture of Modified System

The architecture of modified system is shown in Fig. 5. The
first change from the previous study is Step (4) in automatic
determination of access privileges. After being triggered by
denied events, the system collects attempts of denied access
that have occurred since the last data collection, thereby

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

106

International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http.//www.iariajournals.org/security/

10 clients

EOU!SI’

(Windows 10 Pro)

9. 0

File Server Role
20 files

Automatic

Proposed system or<
/Granted access privilege—y- \
| I Graph
Csv

Current access privileges—

<€—Graph adjacency matrix—

adjacency matrix
Capability

| I <€——Graph adjacency matrix—|
Ccsv

Filenam:

<
Access Control

Pool of

Determinator rj File management Calculator
<«—Username (Y} Username, Rank, Affiliation——————> *
Allow access._ T User management Windows Security Log
privilege Denial access information (Event ID 4663)
1

CSV] <«—2Denial access information—

wal access information

[_j —Filename—> A
utomatic
Csv

Access Control

Unauthorizied
File Access
Detector

<«—\Windows Security Log
(Event ID 4656)

Server(Windows server 2019 standard)

Fig. 6: Implementation of Proposed System (yellow)

ensuring that simultaneous access denials are also detected
without omission. The second change is Step (8)-(a), (b) in
automatic determination of access privileges. The role of log
filtering is changed from the UFAD to the AACD, which
lightens the workload of the UFAD and concentrates the tasks
within the AACD, thereby ensuring scalability through effi-
cient processing. The AACD executes record filtering on the
basis of user and file information. If applicable, determinations
are made; otherwise, the AACD deletes the access information
without making a determination.

IV. IMPLEMENTATION OF PROPOSED SYSTEM

The proposed system was implemented in a more practical
environment than previous work [1], because the previous en-
vironment was a simplified one, created on a single operating
system on a single computer. We extended the system environ-
ment to address this limitation. The implemented environment
is shown in Fig. 6. Ten machines were prepared to function as
clients. Windows 10 Pro was installed as the operating system
on each client machine. One user was assigned to each client
machine. A single server was set up to serve both as a file
server and to host the proposed system. Windows Server 2019
Standard was chosen as the operating system for the server.
Twenty files, named from 00 to 19, were created on the file
server. Each of the four DBs in the proposed system consists
of CSV files.

The access log in Windows is “Security” in “Windows Log”
(hereinafter referred to as Windows Security Log).

The following is a description of the setting for the system
and the implementation of each component of the system.

A. Automatic Access Control Calculator (AACC)

This component has the role of graph calculation to rep-
resent the correlations among files and is implemented by
Python in addition to the PowerShell command for fetching
the Windows Security Log from the file server. It executes
“Import-Csv”’ command to import Username from CSV File
for User management and Filename from CSV File that stores
target file information. It executes “Get-WinEvent” command
to fetch the Windows Security Log from the file server. From
the log, the “Where-Object” command retrieves 4663 event
ID records of the target Username, Filename in the past
certain period. The record with Event ID 4663 in the Windows
Security Log indicates an attempt was made to access an
object. Therefore, it extracts such records from the log. Then,
it fetches information on Timestamp, Username, Filename,
Accesstype (R or W) in the retrieved record. It executes “Sort-
Object” command to sort the information based on Username
and Timestamp.

For graph calculations, The “read_csv” function from the
“pandas” library imports the user’s Rank from CSV File for
User management. Considering the rank, the sorted infor-
mation is classified for each rank for each operation (R or
W) determination graph. Using Algorithm 1, the graphs of
each operation in each rank is calculated from the classified
information. The “to_csv” function exports the graphs to the
CSV Files for Graph adjacency matrix.

The graph calculation was set up in two stages. The first
stage is calculated at 1:00 a.m. daily using data from 30 days
prior to the previous day. The second stage is calculated every
hour during business hours (9:00-17:00), using data up to the

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

107

present time of the day. After the second stage of calculation,
the graphs from the first and second stages were combined
and normalized. This is because graph calculation takes a lot
of time.

B. Unauthorized File Access Detector (UFAD)

In the file server, “Task Scheduler” monitors the Windows
Security Log and checks records with Event ID 4656. The
record with this Event ID means the request to an object, and
it includes the result of the request. Task Scheduler executes
the UFAD component implemented by Windows PowerShell
script when the request failure record is detected.

The script consists of four PowerShell commands. Firstly,
it executes “Get-WinEvent” command similar to the AACC.
From the log, the “Where-Object” command searches the
request failure record. Timestamp, Username, Filename, and
Access type (R or W) are extracted from the failure record
by the “Select-Object” command. Finally, “Export-Csv” com-
mand saves extracted data to a CSV file that serves as Pool
of Denial Access Information DB.

C. Automatic Access Control Determinator (AACD)

This component performs automatic access determination
using denied access information and is implemented in Python.
The “read_csv” function similar to the AACC imports User-
name and Filename from the oldest denied access information
stored in the CSV file for pool of denied access information.
The function imports Username from CSV File for User
management and Filename from CSV File that stores target
file information. If Usename and Filename of the denied access
information match with the target Username and Filename, the
code fetch Username, Filename, Accesstype from the oldest
denied access information. If they do not match, delete them
from CSV file for pool of denied access information without
determination.

The “read_csv” function imports the user’s Rank from CSV
File for User management. The function imports the user’s
access privileges from CSV File for Capability. The function
imports the rank’s adjacency matrix from CSV File for graph
adjacency matrix. The code determines if the maximum value
in the adjacency matrix exceeds the threshold value, where the
row is the filename stored in the CSV File for Capability and
the column is the Filename of the denied access information.

If the result of the determination is to allow, in the Python
code, the “os.system ()’ function is used to execute the
Windows “icacls” command, which allows the user the ac-
cess privilege for the file. The “socket” function from the
“socket” library create a new socket object. The “connect”
method of the socket object s connects to the specified IP
address (HOST) and port number (PORT). The “send” method
transmits a message to the connected server. This message
includes Timestamp, Username,Filename and Accesstype (R
or W). The “csv.writer” function from the “csv” library write
Username, Filename and Accesstype (R or W) into CSV file
for Capability as new access privilege.

International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http.//www.iariajournals.org/security/

If the result of the determination is to deny, a message is sent
using the ‘socket’ function as in the case of allowed privileges.
This message includes Timestamp, Username, Filename and
Accesstype (R or W). Additionally, the user has the option to
submit a new access privilege request along with the reason
for the request.

Regardless of the result of either determination, the oldest
denied access information is deleted. As long as data exists
in the CSV file for pool of denied access information, the
determination is repeated.

On each user’s client side, Python code utilizing the
“socket” function from the “socket” library is constantly run-
ning to receive the determination results. The “listen” method
of the socket object s place the socket in server mode and wait
for incoming connections. If data is received, the content of
the message is displayed in the GUI using the “messagebox”
from the “tkinter” library. Each client user is distinguished by
IP address, and port number 8000 is reconfigured to open for
this implementation.

D. CSV File for User Management

This file stored the user information in the following three
columns.

¢ Username
¢ Rank
o Affiliation

E. CSV File that stores Target File Information

This file stored target file information in the following one
column.

o Filename

FE. CSV File for Pool of Denied Access Information

This file stored the denied log information in the following
four columns.

o Timestamp

e Username

« Filename

o Accesstype (R or W)

G. CSV Files for Graph Adjacency Matrix

These files stored the adjacency matrices of the graph
calculated by AACC. There exist two types of adjacency
matrices for each rank, corresponding to two access types (R
or W).

H. CSV File for Capability

This file stores information about the accesstype (R, R/'W)
for which the user has privileges to access the file.

o Username
« Filename
o Accesstype (R or W)

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

108

International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http.//www.iariajournals.org/security/

TABLE III: PRELIMINARY EXPERIMENTAL RESULTS: RESPONSE TIME

Response Time (s)

Number of Users Ist Trial 2nd Trial 3rd Trial ~ 4th Trial ~ 5th Trial ~ 5-Trial Average Average per User
Original System

1(A) 6.85 6.22 6.62 5.96 6.69 6.47 6.47
2(A/B) 7.96 7.92 6.51 6.71 7.82 7.38 3.69
3(A/B/C) 791 9.56 7.34 9.49 8.58 8.58 2.86
4(A/B/C/D) 8.61 8.26 8.35 8.79 8.16 8.43 2.11
5(A/B/C/D/E) 8.79 8.95 9.56 9.10 9.46 9.17 1.83
6(A/B/C/D/E/F) 11.20 12.77 9.91 12.54 11.84 11.65 1.94
Modified System

1(A) 6.46 5.19 5.16 6.58 4.94 5.58 5.58
2(A/B) 5.46 5.50 5.64 4.76 4.83 5.24 2.61
3(A/B/C) 6.04 5.32 5.68 5.24 8.95 6.25 2.08
4(A/B/C/D) 10.41 522 5.62 5.39 5.82 6.49 1.62
5(A/B/C/D/E) 6.17 10.61 5.83 6.19 5.15 6.79 1.36
6(A/B/C/D/E/F) 6.00 10.62 6.11 5.78 6.44 6.99 1.16

V. EVALUATION EXPERIMENT

The main objective of this paper was to verify the feasibility
of the modified system in a real-world setting. The initial
method of verification, which used a limited number of users
and accesses, was found to be inadequate for a comprehensive
evaluation. To address this, we implemented the improved
system in a more practical environment and subjected it to high
stress for feasibility testing. This was done to demonstrate that
the proposed system, even when integrating processes from
existing file systems, does not lose its feasibility.

A. Preliminary Experiment

We conducted preliminary experiments to compare the
performance of both versions of our system (original and
modified). Performance was compared by conducting the
verification under the same conditions as those used in our
previous study [1].

1) System Environment: Both version of the system were
implemented in a experimental environment. We used Intel®
NUC 8 Pro Kit (NUC8v7PNH) as the hardware and Windows
11 Pro as the operating system (OS). We set up six users
(A---F) on the OS and ten files to be accessed by the user.

2) Methodology: We measured the determination time of
the both systems as a performance test. We measured the
response time from when users access unauthorized files to
when determination results are notified to the users.

3) Results: The results of the verification experiments are
listed in Table III. Number of Users columns indicates the
number and name of accessing users. The columns 1st Trial
through 5th trial show the response times for each number of
users. If the number of users is 2 or more, the latest response
time among users is noted. The 5-trial Average column shows
the average of five trials for the same number of users. The
average per user is calculated by dividing the five-trial average
by the number of users in the corresponding row.

The results indicate improved response times for both 5-trial
average and average per user. Despite the preliminary experi-
ment not supposing high-load conditions, the improvement in
the response time was observed.

B. Experimental Environment

We built a more practical environment to verify the scalabil-
ity of the modified system. The system environment is shown
in Fig. 7. Ten machines were prepared as clients. Each client
had Windows 10 as its operating system and segmented on the
network into subgroups. Each client machine was assigned to
one user, with each user being named from user_A to user_J.
One server was also prepared with the active directory, file
server, and the proposed system. Twenty files with file names
00 through 19 were created on the file server.

Router

192.168.{11,100, 101, 102}.254/24

= Q > Subgroup 1
RN AN 192.168.100.0/24
= < > Subgroup 2
= [] 192.168.101.0/24
>

File sever/

Subgroup 3 Proposed system

192.168.102.0/24

Fig. 7: Experimental Environment

Table IV shows the privileges allowed to each user for each
file. Each user was assigned a job rank. As noted next to the
user name in the user column of Table IV, we assigned rank
2 to users A, D, and H, and assigned rank 1 to the rest. It is
assumed that rank 2 is higher than rank 1. Each user’s rank is
taken into account when calculating the graph.

C. Dataset

Graph calculation requires data on each user’s access his-
tory. A simulated data set was generated for this experiment.
The following steps were taken to generate the simulated data
set.

1) Set the column items of the simulated data set to be

generated

o Timestamp
o Username
« Filename

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

109

International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http.//www.iariajournals.org/security/

TABLE IV: ACCESS PRIVILEGES FOR EACH USER IN A PRACTICAL ENVIRONMENT

UserName File_00 File_01 File_02 File_03 File_04 File_05 File_06 File_07 File_08 File_09
User_A (2) R R R R R/W R/W R/W
User_B (1) R/W R/W R/W R/W R/W
User_C (1) R/W R/W R/W R/W R/W
User_D (2) R R R R R R/W

User_E (1) R/W R/W R/W R/W

User_F (1) R/W R/W R/W R/W

User_G (1) R/W R/W R/W R

User H(2) R R R R/W R/W R/W R
User_I (1) R/W R/W R/W R/W R
User_J (1) R/W R/W R/W R/W R
UserName File_10 File_11 File_12 File_13 File_14 File_15 File_16 File_17 File_18 File_19
User_A (2) R R R R
User_B (1) R R/W R/W R R/W
User_C (1) R R/W R/W R R/W

User_D (2) R/W R/W R R R R

User_E (1) R/W R/W R/W R/W
User_F (1) R/W R R R/W

User_G (1) R/W R R/W R/W

User_H (2) R/W R R/W R R R/W R

User_I (1) R/W R R R R R
User_J (1) R/W R R/W R R R/W

| User | 00 | O1 | 02 |03 |04 |05 |06 |07 |08 |09 |10 |11 |12 |13 | 14 |15 |16 |17 |18 | 19 |
AQ) | 0 0 17 18 21 0 17 38 35 36 22 0 0 22 0 0 18 0 0 18
B() | 0 0 19 27 32 0 35 0 0 14 20 0 0 27 0 0 29 17 0 30
ca | o0 0 20 30 25 0 33 0 0 28 13 0 31 0 0 27 0 10 26 0
D2 | 0 26 0 17 0 35 21 21 30 0 37 0 31 0 29 15 0 22 16 0
E(l) | 0 25 0 27 0 24 31 0 0 0 32 0 0 0 33 23 0 0 0 37
F1) | 0 28 0 56 0 37 34 0 0 36 0 19 0 23 0 0 0 29 0
G | 0 33 0 45 0 26 16 0 0 0 34 0 0 0 0 23 33 40 0 0
HQ2) | 15 0 0 0 18 10 29 20 24 14 0 24 19 20 0 11 15 23 15 0
I | 26 0 0 0 34 32 25 0 0 15 0 22 25 0 20 0 20 0 11 20
Jay | 33 0 0 0 24 24 27 0 0 21 0 19 0 13 27 0 14 19 23 0

| User | 00 | O1 |02 |03 |04 |05 |06 |07 |08 |09 |10 |11 |12 |13 |14 |15 |16 |17 |18 | 19 |
AQ) | 0 0 0 0 0 0 0 17 |14 |13 |0 0 0 0 0 0 0 0 0 0
B(1) | 0 0 7 1w |12 |o 13 |0 0 5 0 0 0 16 |0 0 14 |0 0 12
cy | o 0 9 16 |13 |0 1 |o 0 1 |o 0 14 |0 0 13 |0 0 2 |0
D) | 0 0 0 0 0 0 0 0 15 |0 19 |0 12 |0 0 0 0 0 0 0
E) | 0 10 |0 10 |0 7 2 |0 0 0 14 |0 0 0 12 |5 0 0 0 14
F(1) | 0 2 |o 2 |0 21 |12 |0 0 0 20 |0 0 0 0 0 0 0 14 |0
G | 0 1 |o 24 |0 2 |o 0 0 0 13 |0 0 0 0 0 1w |18 |o 0
HQ) | 0 0 0 0 0 0 2 |s 13 |0 0 1 o|o 7 0 0 0 1 |o 0
m [12 |o 0 0 15 |19 |3 0 0 0 0 13 |0 0 0 0 0 0 0 0
I |7 0 0 0 2 |7 6 0 0 0 0 8 0 0 9 0 0 0 0 |o

o Accesstype (R or W)

2) Set the date and time of the simulated data set to be
generated. In this study, past month (past 30 days).
3) Generate simulated log data set
a) Set the time as 9:00-17:00
b) Set the probability of generating a log every 15 min
¢ On the hour: 70%
e 15 min past the hour: 50%
o 30 min past the hour: 30%
o 45 min past the hour: 20%
If not generated, move to the next hour (e.g., if not
generate at 9:15 — 10:00)
c) Select file

i) Set weight to each file

« File the user does not have privileges to: 0
« File the user has read privileges to: 0.3
« File the user has read/write privileges to: 0.5

ii) Calculate sum of these weights per user

iii) Generate a random number from O to total sum

iv) Select the file in which the accumulated weight
exceeds the random number for the first time

d) Select access type
If read is generated and the user has read/write privi-
leges for the file, there is a 40% chance of generating
write in the next 15 min
If not, generate read at a probability in (b)

e) Repeat the above steps for each user

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

110

International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http.//www.iariajournals.org/security/

111

TABLE VII: ADJACENCY MATRIX (rankl_read)

00 01 02 03 04 05 06 09 10 11 12 13 14 15 16 17 18 19

00 [0.00 0.00 0.00 0.00 0.10 0.09 0.14 0.19 0.00 0.18 0.13 0.15 0.14 0.00 0.22 0.14 0.10 0.117
01 0.00 0.00 0.00 0.18 0.00 0.27 0.20 0.00 0.27 0.00 0.00 0.00 0.13 0.12 0.08 0.17 0.15 0.06
02 0.00 0.00 0.00 0.17 0.18 0.00 0.12 0.09 0.01 0.00 020 020 0.00 0.11 0.08 0.09 0.13 0.13
03 0.00 0.18 0.17 0.00 0.08 0.18 0.30 0.08 023 0.00 0.19 0.14 025 022 0.21 0.14 0.14 0.17
04 0.10 0.00 0.18 0.08 0.00 0.10 021 0.11 026 0.03 0.17 0.13 0.16 0.10 0.10 0.21 0.21 0.14
05 0.09 0.27 0.00 0.18 0.10 0.00 026 0.16 0.10 0.27 0.13 0.00 0.17 0.11 0.23 0.07 0.19 0.16
06 0.14 0.20 0.12 030 0.21 026 0.00 0.23 025 0.12 027 0.12 0.16 0.11 0.18 030 0.14 0.14
09 0.19 0.00 0.09 0.08 0.11 0.16 023 0.00 0.05 0.19 0.10 0.04 0.00 0.07 0.11 0.09 0.18 0.14
10 0.00 0.27 0.01 023 0.26 0.10 0.25 0.05 0.00 0.00 0.04 0.05 0.19 0.15 0.15 0.10 0.06 0.18
11 0.18 0.00 0.00 0.00 0.03 0.27 0.12 0.19 0.00 0.00 0.00 0.00 0.14 0.00 0.10 0.15 0.17 0.02
12 0.13 0.00 0.20 0.19 0.17 0.13 027 0.10 0.04 0.00 0.00 0.00 0.10 0.14 0.03 0.07 0.15 0.09
13 0.15 0.00 0.20 0.14 0.13 0.00 0.12 0.04 0.05 0.00 0.00 0.00 0.15 0.00 0.11 0.01 0.10 0.18
14 0.14 0.13 0.00 0.25 0.16 0.17 0.16 0.00 0.19 0.14 0.10 0.15 0.00 0.23 0.03 0.02 0.15 0.20
15 0.00 0.12 0.11 022 0.10 0.11 0.11 0.07 0.15 0.00 0.14 0.00 0.23 0.00 0.05 0.07 0.05 0.13
16 022 0.08 0.08 0.21 0.10 0.23 0.18 0.11 0.15 0.10 0.03 0.11 0.03 0.05 0.00 0.22 0.09 0.09
17 0.14 0.17 0.09 0.14 0.21 0.07 030 0.09 0.10 0.15 0.07 0.01 0.02 0.07 0.22 0.00 0.02 0.05
18 0.10 0.15 0.13 0.14 0.21 0.19 0.14 0.18 0.06 0.17 0.15 0.10 0.15 0.05 0.09 0.02 0.00 0.00
19 [011 0.06 0.13 0.17 0.14 0.16 0.14 0.14 0.18 0.02 0.09 0.18 0.20 0.13 0.09 0.05 0.00 0.00
1. Set number of clients /-File seve Proposed systeﬂ
File 00-19
total 20 files
2. Setatime i i > 5
and the list of files 3. Read listed files _ﬁ
4. Success or Failure

Access instruction
script /

4 « Access time
. List of files

to be accessed

4. T'rigger

AACD
script

5. Notify result
after determination

Measure elapsed time
from when "Access instruction script" is executed
to when determination results are notified to user

Fig. 8: Experimental Methodology

A summary of the dataset exists. The summary concerning accessing files to the script. The verification experiment was
read is shown in Table V, while the summary about write is conducted using the following steps.
shown in Table VI. 1)
Graphs for access determination are calculated from the
generated access logs. These graphs are shown across multiple 2)
tables. Graphs related to rank 1 are shown in Table VII for
read determination and in Table VIII for write determination. 3)
Similarly, graphs related to rank 2 are displayed in Table IX 4)
for read determination and in Table X for write determination.
The method for creating graphs is described in the function of 5)
the AACC. The graphs for read determination are calculated
from the access histories of the same or lower rank users.
The higher rank users tend to have more files represented on
the graph compared to the lower rank users. The graphs for
write determination are calculated from the access histories

Set the number of clients
(Choosing from 1 to 10 clients)
Set the time and files to be accessed
(Selecting 1 to 20 files) to the scripts of selected clients
Clients read all files at once when time is up by the script
The File server detects denial logs of accesses and
executes the UFAD
The AACD makes determinations based on the logs and
notifies the user

At each client, we measured the elapsed time as a response
time from the Access instruction script starts to it receives the
notification.

Total Access is the number of accessing users multiplied by

of the same rank users. As the number of the same rank
users decreases for higher ranks, there is a higher likelihood
of having fewer files represented on the graph.

D. Methodology

The experimental methodology is shown in Fig. 8. Each
client has an “Access instruction script” for accessing files
in the file server. We can set a time of access and a list of

the number of files listed. For example, a total of 100 accesses
is 10 users accessing 10 files from 00 to 09. The number of
accesses was increased from 1 to 10 in increments of 1. After
10, the number of accesses was increased in increments of 10
up to 200.

Accesses were done sequentially to the listed files. Although
not strictly simultaneous accesses, the next files were accessed
with 0.2-s delay. This condition simulated an intense load on
our modified system. When the maximum number of access

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http.//www.iariajournals.org/security/

TABLE VIII: ADJACENCY MATRIX (rank1_write)

00 01 02 03 04 05 06 09 10 11 12 13 14 15 16 17 18 19

00 [0.00 0.00 0.00 0.00 0.19 033 020 000 0.00 039 0.00 0.00 0.00 0.00 0.00 000 023 0.00]

01 0.00 0.00 0.00 0.14 000 025 026 000 046 000 000 000 0.11 000 000 043 021 029

02 0.00 0.00 0.00 004 0.18 000 028 001 000 000 021 036 000 009 0.17 000 023 037

03 0.00 0.14 0.04 000 005 045 036 041 030 000 034 043 010 0.19 054 029 034 0.09

04 0.19 0.00 0.18 0.05 000 029 009 021 000 0.16 0.17 025 002 006 0.19 000 036 0.00

05 033 025 0.00 045 029 000 032 000 000 056 000 000 000 000 030 021 006 023

06 020 026 028 036 009 032 000 015 028 0.19 0.13 010 022 000 009 000 023 028

09 0.00 0.00 001 041 021 000 0.15 000 000 000 001 000 000 029 004 000 0.19 0.00

10 0.00 046 0.00 030 0.00 000 028 000 000 000 000 000 000 048 008 022 0.04 0.0l

11 0.39 0.00 0.00 0.00 0.16 0.56 0.19 0.00 0.00 000 000 000 041 000 000 000 0.00 0.00

12 0.00 0.00 021 034 0.17 000 0.13 001 000 000 000 000 000 041 000 000 022 0.00

13 0.00 0.00 036 043 025 000 0.0 000 000 000 000 000 000 000 0.14 000 0.00 0.00

14 0.00 0.11 0.00 0.0 002 000 022 000 000 041 000 000 000 000 000 000 000 0.44

15 0.00 0.00 0.09 0.19 006 000 000 029 048 000 041 000 000 000 000 000 0.10 0.28

16 0.00 0.00 0.17 0.54 0.19 030 0.09 004 008 000 000 0.4 000 000 000 0.17 0.00 0.00

17 0.00 043 000 029 000 021 000 000 022 000 000 000 000 000 0.17 000 0.00 0.00

18 023 021 023 034 036 006 023 0.19 004 000 022 000 000 0.10 000 000 0.00 0.00

19 | 000 029 037 009 000 023 028 000 00l 000 000 000 044 028 0.00 0.00 0.00 0.00

TABLE IX: ADJACENCY MATRIX (rank2_read)

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
00 [0.00 0.00 0.00 0.00 0.3 0.07 0.16 0.03 008 0.4 000 0.14 0.11 0.10 0.11 0.02 0.19 0.11 0.09 0.091
01 0.00 0.00 0.00 0.9 000 021 0.16 007 0.10 000 024 000 003 000 0.10 0.3 006 0.16 0.17 0.05
02 0.00 0.00 000 0.16 0.18 0.00 0.09 004 0.15 0.12 004 000 0.13 0.16 000 007 009 006 0.09 0.09
03 0.00 0.19 0.6 000 006 0.14 026 007 006 0.11 020 000 0.17 007 021 0.16 020 0.13 0.13 0.17
04 0.13 0.00 0.8 0.06 000 0.08 022 0.0 006 0.1 024 0.09 0.12 0.5 0.12 007 0.3 0.7 0.17 0.19
05 0.07 021 000 0.14 008 000 021 008 006 0.12 0.16 0.19 0.15 001 025 0.13 0.18 009 020 0.12
06 0.16 0.16 0.09 026 022 021 000 0.14 015 021 022 015 022 0.14 0.13 0.14 015 026 0.11 0.12
07 0.03 007 004 007 0.10 008 0.14 000 0.17 0.17 006 006 009 0.12 008 004 008 003 0.09 0.03
08 008 0.10 0.15 0.06 006 006 0.15 0.17 000 009 0.6 007 0.10 0.16 005 005 008 006 0.08 0.05
09 0.14 000 0.2 0.1 011 0.2 021 0.17 009 0.00 006 0.14 007 0.2 000 005 0.13 0.08 0.12 0.16
10 0.00 024 0.04 020 024 0.16 022 006 0.6 006 000 000 0.10 006 021 0.14 0.13 0.17 007 0.16
11 0.14 0.00 000 000 009 0.19 0.15 006 007 0.4 000 000 005 005 009 004 0.15 0.12 0.14 001
12 0.11 003 0.13 017 012 0.15 022 009 0.10 007 0.10 005 000 002 0.13 0.17 002 009 0.19 0.06
13 0.10 0.00 0.16 007 0.15 001 0.14 012 0.16 0.12 006 005 002 000 008 006 0.11 005 0.11 0.12
14 0.11 0.10 0.00 021 0.2 025 0.3 0.08 005 0.00 021 0.09 0.3 0.08 000 0.17 002 002 0.11 0.17
15 0.02 0.3 007 0.16 007 0.13 0.4 004 005 005 0.14 004 0.17 006 0.17 000 003 0.13 005 0.09
16 0.19 006 009 020 0.13 0.18 0.15 008 008 0.13 0.13 0.15 002 0.11 002 003 000 021 0.08 0.09
17 0.11 0.6 006 0.13 0.17 009 026 003 006 008 0.17 0.12 009 005 002 0.13 021 000 005 0.04
18 0.09 0.17 0.09 0.13 0.7 020 0.1 0.09 008 0.12 007 0.14 0.19 0.1 0.11 005 0.08 0.5 0.00 0.00
19 L 009 005 009 0.17 0.19 0.12 0.2 003 005 0.16 0.16 001 006 0.12 0.17 0.09 0.09 0.04 0.0 0.00.

TABLE X: ADJACENCY MATRIX (rank2_write)

06 07 08 09 10 12 17
06 0.00 0.37 0.0 0.0 0.00 0.00 0.00 0.00 0.83
07 0.37 0.00 0.65 1.17 000 045 000 0.00 0.08
08 0.00 0.65 0.00 036 041 044 036 0.57 0.37
09 0.00 1.17 036 0.00 000 000 000 0.00 0.00
10 0.00 0.00 041 0.0 0.00 0.00 146 0.0 0.00
11 0.00 045 044 000 0.00 0.00 000 0.00 0.66
12 0.00 0.00 036 0.00 146 000 000 0.0 0.00
13 0.00 0.00 0.57 0.0 000 000 000 000 0.82
17 0.83 0.08 0.37 0.00 000 0.66 000 0.82 0.00

instances, which is 200, was reached, 200 accesses occurred E. Result

within about 4 seconds.

The determination was made using graphs that were already
calculated. In fact, the graphs could be recalculated at the same
time as the determination. However, to align the experimental
conditions, the graphs were generated under fixed conditions.
Therefore, the determination time is not affected by the load
due to recalculation.

The results are listed in Table XI. Total Access is the total
number of files listed in each user’s script file. Unauthorized
Access (UA) is access to files for which a user does not have
read privileges among all accesses. Detected UAs are accesses
detected with our system among UAs. Missed detection is the
number of cases that our system failed to detect even though
access logs were generated. Double detection is the number of
cases in which our system detected double access logs for a
single access log. The first response time refers to the response
time of the proposed system for the first UA. Similarly, the

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

112

International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http.//www.iariajournals.org/security/

TABLE XI: EXPERIMENTAL RESULTS

Total Unauthorized Detected Missed Double First Last Average

Access (cases) Access (cases) UA (cases) Detection (cases) Detection (cases) Response Response Response
Time (s) Time (s) Time (s)

1 1 1 0 0 297 2.97 2.97

10 7 7 0 0 322 3.27 3.24

50 27 27 0 0 4.05 5.14 4.50

100 48 48 0 0 5.03 8.32 7.06

150 74 74 0.67 0.67 4.73 10.24 8.87

200 97 97.33 0.33 0.67 5.97 13.56 12.05

last response time refers to the response time of the proposed
system for the last UA. The average response time is calculated
as the mean of the response times for each determination made
with the system. The same trial was conducted three times
for each total accesses. Each value in Table XI represents the
average of three trials. Therefore, some values are decimal.

F. Discussion

From the results of our verification, we highlight three key
points regarding our modified system. The first point concerns
its scalability. The total number of accesses was varied from 1
to 200. The verification was conducted under conditions that
placed a heavy burden on the system, with approximately half
of the accesses being unauthorized. As a result, we achieved a
detection rate of over 98% for up to 200 cases, despite some
cases of missed or double detections.

The second point concerns the efficiency of the system.
The average response time was 2.97s with a single access.
In contrast, when the total number of accesses reached 200,
the average response time increased to 12.05s. Even though
the number of accesses went up by 200 times, the processing
time only increased 4 times. This suggests that our system
operates efficiently under heavy-load conditions.

The third point concerns missed and double detection.
Missed and double detection began to occur after the total
number of accesses exceeded 80. Although those numbers
are less than 2%, they need to be corrected to improve the
detection accuracy.

1) Limitation: We verified the efficiency and scalability of
our modified access-control system, but not its effectiveness. It
is necessary to show that our system could allow necessary ac-
cess and deny unnecessary access. Additionally, the proposed
method is considered to work well in team-oriented tasks, but
its effectiveness and the optimal team size for its application
have not been proven.

The modified system infers correlation among files only
from user access patterns. There is still potential to investigate
whether additional factors could be incorporated to infer more
accurate correlations.

VI. CONCLUSION AND FUTURE WORK

We implemented a modified version of our previously
proposed access-control system in a practical environment to
verify its scalability by applying a high load to it. This is
because the previous implementation and verification were
done in a simplified environment.

The verification results indicate that the system works under
high loads. Comparing the rate of increase in the number of
accesses to that in response time, the low rate of increase in
response time indicates that the system is capable of efficient
processing.

The evaluation results indicate that there are still some
detection errors and double detections, so that the system
needs further improvement to increase detection accuracy. The
feasibility of this system has not yet been validated, and there
is still potential for improvement to infer correlations. To
address these issues, we will evaluate the effectiveness of the
proposed method in teams of different sizes. Therefore, we
plan to further improve this system from this perspective.

ACKNOWLEDGMENT

This work was partially supported by JSPS KAKENHI
Grant Numbers JP19K20268, JP24K14959.

REFERENCES

[1] Y. Kodaka, H. Hasegawa, and H. Takakura, “Design and implementation
of access control method based on correlation among files,” in Pro-
ceedings of The 16th International Conference on Advances in Human
oriented and Personalized Mechanisms, Technologies, and Services, pp.
44-51, 2023.

[2] P. Samarati and S. C. Vimercati, “Access control: policies, models, and
mechanisms,” Foundations of Security Analysis and Design, R. Focardi,
R. Gorrieri, ed., Springer, pp. 137-196, 2001.

[3] D. F. Ferraiolo and D. R. Kuhn, “Role-based access control,” 15th
National Computer Security Conference, pp. 554-563, 1992.

[4] V. C. Hu et al., “Guide to Attribute Based Access Control (ABAC)
definition and considerations,” U.S. Department of Commerce, 2014.

[5] H. Xia, M. Dawande, and V. Mookerjee, “Role refinement in access
control: model and analysis,” INFORMS Journal on Computing vol. 26,
no. 4, pp. 866-884, 2014.

[6] L. Bauer, L. E. Cranor, R. W. Reeder, M. K. Reiter, and K. Vaniea, “Real
life challenges in access-control management,” in Proceedings of the
CHI Conference on Human Factors in Computing Systems, Association
for Computing Machinery, pp. 8§99-908, 2009.

[71 D. E. Bell and L. J. LaPadula, “Secure computer systems: mathematical
foundation report ESD-TR-73-275,” MITRE Corp., 1973.

[8] Ponemon Institute, “2022 cost of insider threats global report,” Proof-
point, 2022.

[9]1 D. Tsiostas, and N. Chouliaras, and 1. Kantzavelou, and L. Maglaras,

and C. Douligeris, and V. Vlachos, “The insider threat: reasons, effects

and mitigation techniques,” in 24th Pan-Hellennic Conference on Infor-

matics, pp. 340-345, 2020.

Y. Kodaka, H. Hasegawa, and H. Takakura, “A proposal for access

control method based on file relation inference from users behavior (in

Japanese),” IEICE Technical Report vol. 123, no. 86, pp. 40-47, 2023.

T. Xu, H. M. Naing, L. Le and Y. Zho, “How do system system

administrators resolve access-denied issues in the real world?,” in

Proceedings of the CHI Conference on Human Factors in Computing

Systems, pp. 348-361, 2017.

[10]

(11]

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 17 no 1 & 2, year 2024, http.//www.iariajournals.org/security/

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

M. Beckerle and L. A. Martucci, “Formal definitions for usable access
control rule sets from goals to metrics,” in Proceedings of the Ninth
Symposium on Usable Privacy and Security, pp. 1-11, 2013.

M. Mazurek, and P. Klemperer, and R. Shay, and H. Takabi, and L.
Bauer, and L.Cranor, “Exploring reactive access control,” in Proceedings
of the CHI Conference on Human Factors in Computing Systems,
Association for Computing Machinery, pp. 2085-2094, 2011.

N. Shalev, 1. Keidar, Y. Weinsberg. Y. Moatti, and E. B. Yehuda,
“WatchIT: who watches your IT guy,” in Proceedings 26th Symposium
on Operating Systems Principles, pp. 515-530, 2017.

Y. Desmedt and A. Shaghaghi, “Function-based access control (FBAC)
from access control matrix to access control tensor,” From Database to
Cyber Security, vol 11170, pp. 143-165, 2018.

H. Mannila, H. Toivonen, and A. Verkamo, “Discovery of frequent
episodes in event sequence,” Data Mining and Knowledge Discovery,
vol. 1, pp. 259-289, 1997.

B. Camina, R. Monroy, L. Trejo, and E. Sanchez, “Towards building a
masquerade detection method based on user file system navigation,” in
Proceedings of the 10th Mexican International Conference on Artificial
Intelligence, Lecture Notes in Computer Science, vol. 7094, pp. 174-
186, 2011.

B. Camina, J. Rodriguez, and R. Monroy, “Towards a masquerade
detection system based on user’s tasks,” in Proceedings of the 17th Inter-
national Symposium on Research in Attacks, Intrusions and Defenses,
Lecture Notes in Computer Science, vol. 8688, pp. 447-465, 2014.

S. Huang, Z. Cao, C. Raines, M. Yang, and C. Simon, “Detecting
intruders by user fie access patterns,” in Proceedings of the 13th
International Conference on Network and System Security, Lecture
Notes in Computer Science, vol. 11928, pp. 320-335, 2019.

S. Mehnaz and E. Bertino, “A fine grained approach for anomaly
detection in file system accesses with enhanced temporal user profiles,”
IEEE Transactions on Dependable and Secure Computing, vol. 18, Issue
6, pp. 2535-2550, 2021.

Y. Chen and B. Malin, “Detection of anomalous insiders in collaborative
environments wia relational analysis of access logs,” in Proceedings of
the 1st ACM conference on Data and application security and privacy,
pp. 63-74, 2011.

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

114

