
12

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Adapting to Change: A Study of the Software Architecture Evolution of a Physical

Security Information Management System

Oğuzhan Özçelik

ASELSAN A.Ş.

Ankara, Turkey

e-mail: oozcelik@aselsan.com.tr

Halit Oğuztüzün

Department of Computer Engineering

Middle East Technical University

Ankara, Turkey

e-mail: oguztuzn@ceng.metu.edu.tr

Abstract—Physical Security Information Management (PSIM)

system customizations tend to be similar to each other with

core requirements being more or less the same in different

projects. One of the most common differences in these projects

is the sensors being used. Some sensors could be integrated into

the PSIM system easily if they are compatible with a standard

communication interface such as Open Network Video

Interface Forum (ONVIF) protocols. But sensors that use a

special communication interface need to be integrated one by

one. A PSIM system is always expected to integrate additional

sensors to its inventory. In order to do this easily, the modules

that need to be developed to integrate a sensor must be

segregated and developed individually for each sensor. These

modules can be seen as features to be used in a software

product line architecture. The planned reuse mentality of

software product line engineering makes it possible to deliver

similar products within a short amount of time. In this work,

we aim to segregate the sensor integration of a PSIM system

and compare the old and new generations of the architecture

both qualitatively, based on their architecture models, and

quantitatively, based on test results. Several tests and surveys

have conducted in order to inspect the new architecture’s

performance.

Keywords-Physical Security Information Management

Systems; Physical Protection Systems; Software Product Line

Engineering.

I. INTRODUCTION

A Physical Security Information Management (PSIM)
system integrates diverse independent physical security
applications and devices. Applications such as building
management or network video recorder systems, and devices
such as security cameras, access control systems, radars and
plate recognition systems are used interconnectedly through
a centralized platform. It is designed to ensure the physical
security of a facility, city or an open field, while providing a
complete user interface to the security operators to monitor
and control them. With the help of PSIM systems, security
personnel can make prompt decisions about a security
situation by investigating the comprehensive picture the
PSIM system generated with the data that it gathered,
associated and analyzed.

This work is a continuation of our previous work [1]. We
have conducted a survey to see the problem, and the gains
we achieve with this architectural change better. And we

have tested the old and new architecture in order to see
whether the new architecture comes with a performance loss.

Physical Protection System (PPS) is also a common term
to refer to such a system. Mary Lynn Garcia described the
PPS functions, which can be seen in Figure 1, in three main
categories: detection, delay, response [2]. Detection is the
discovery of a malevolent incident. Measuring the threat
level of an action would also be beneficial while deciding the
following functions’ extents. This measurement must
provide information about the importance of detection and if
it is important, every detail about the cause of the alarm. The
level of detail is primarily based on the type of sensor that
detected the alarm. Next function of a PPS is delay. After the
adversary action got detected, the first thing to do is delaying
its operations. This can be accomplished by locks, barriers or
security personnel in the perimeter. The reason for this
function is basically stalling the adversary in order to gain
time for the next function, response. Response is the
cumulative actions taken by the security personnel or system,
in order to prevent adversary action.

The subject PSIM system of this work is called SecureX,
which is not the name of the actual system, but a placeholder
used for confidentiality reasons. SecureX is a PSIM system
that aims to satisfy the needs mentioned above and to
provide an easy integration environment for new sensors and
applications. The ever-increasing number of such new
systems and particular security needs of different customers
drove SecureX team to embrace a software product line
engineering approach in order to reduce the response time to
reply to the customers’ demands. These demands vary from

Figure 1. Functions of a Physical Protection System [2].

13

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

practical improvements to integrating a new sensor or
security application as a feature to the system. SecureX is
deployed with the full feature set and only at runtime these
features are reduced to the ones required by a given
customer, using different configuration files. Any new
integration required by a customer needs to be developed as
a feature in SecureX. Afterwards, a new SecureX build must
be generated. Following every new integration, a new testing
process takes place and because the previously integrated
system might not always be available for testing, it must be
guaranteed that the new integration will not affect the
previously completed integrations. In this work, a new
method for integrating such new systems while reducing the
number of required tests is proposed. The new method is also
going to be an evolutionary step toward a product line
architecture.

The rest of the paper is structured as follows. In Section
II, several PSIM products and their specializations are
mentioned. Also, we briefly explain how they approach the
sensor integration problem and why that is not enough in the
case of SecureX. In Section III, the general architecture of
SecureX is described and the point where sensor integration
takes place is shown. Also, the technology that will be used
is described. In Section IV, this sensor integration point is
described in more detail. In Section V, the problems with the
current architecture are explained and in Section VI, a new
architecture that solves those problems is described. In
Section VII, results of a survey and performance tests are
detailed. In Section VIII, the benefits of the new architecture
are shown by further explaining how it solves each problem
of the current design.

II. RELATED WORKS

There are several companies offering PSIM products.
Although they provide every essential feature of a PSIM
system, they may have different specializations. Some
companies are more promident in video management
systems and some in geographic information systems. Plate
recognition and access control systems are also fields in
which a PSIM system can be used. In the SecureX’s case, all
four types of systems mentioned now can be used together.

Genetec [3] provides a video analytics tool to detect
intrusions. They also develop access control systems and use
plate recognition systems to monitor vehicles. Milestone [4]
uses its own Network Video Recorder (NVR) system and
provides an easy-to-use video management system. They
work with numerous different companies and provide an
easy integration framework to work with them. Nedap [5] is
specialized in access control systems and they work with
other companies like Genetec and Milestone to get integrated
in their PSIM systems as well. However, not many details
exist on how they work internally. These products integrate
some general communication standards like ONVIF [6]
protocols and also release Software Development Kits
(SDK) and expect sensor manufacturers or customers to
integrate their custom subsystems into the PSIM system as
well. This way, they accelerate sensor integration by
including numerous 3rd parties. While developing an SDK to
use in integrations is a feasible solution, in the SecureX’s

case, the main objective is developing an architecture that
can simplify not only the sensor integrations, but also the
component selection to deploy because different customers
have different requirements. Another requirement is that the
new architecture will be able to remove the update and test
overhead. A software product line architecture would be
suitable to accomplish this goal.

Recently, Tekinerdogan et al. [7] described how a PSIM
system should be designed with software product line
engineering methodologies to reduce the cost of
development by improving reuse. The present work
describes a step in architectural evolution toward a product
line architecture.

In different programming languages, there are many
frameworks in which a software product line could be
implemented. One specific technology that has the software
product line implementation capability is called Open
Services Gateway Technology (OSGi) framework for Java
[8]. Its details will be explained in the coming chapters, but
its abilities are shown by Almeida, E. et al [9]. In their work,
they tried to provide a method that can be used in the domain
implementation phase of software product lines. They
conducted experiments using a pilot project in order to
investigate the feasibility of their method. Seven M.Sc.
students with industrial software development experience are
selected and after a short training, the participants were
expected to complete the tasks assigned to them. After the
project had been completed, the quantitative analyses
showed that the method is beneficial in developing software
components with high maintainability while lowering the
overall complexity. The participants also got surveyed and
their answers indicated that the method provides useful
guidance, thanks to the OSGi, a technology which is very
suitable to be used in software product line development. But
subjects without experience with this technology noted that
they had challenges using it. However, these challenges are
nothing that training cannot be overcome. Overall, their
experimental study showed that using a software product line
architecture with OSGi helps developers to build products
with better quality.

III. ARCHITECTURE OF SECUREX

SecureX is a PSIM system that is used in a wide variety

of fields from border or airport security to protecting various

critical facilities and oil or gas pipelines with special

sensors. In some projects, the system is used in low

performance computers and tablets while some projects use

high performance servers. Some projects requires a dozen

sensors to protect a small remote location and some uses

thousands of sensors in a highly concentrated manner inside

a city. Some projects are a combinations of those.

Houndreds of small, secure facilities with dozens of sensors

each, connected hierarchically to each other and at the top,

controlled by high authority security officers. These

different projects comes with different requirements from

both public and private instutions. SecureX has to be able to

adapt the different needs of each customer. This need

14

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

caused SecureX to be a highly configurable system that is

tailored for every new customer and project.
SecureX has a distributed architecture which can be seen

in Figure 2. Graphical User Interface (GUI) Clients of
SecureX are installed on the computers of security officers,
enabling them to monitor the entire security infrastructure of
the area under surveillance. These clients are connected to
the SecureX Server application which handles the
communication between SecureX components. The server is
also responsible for recording events, including detections
and errors sent from adapter components to the central
database. SecureX could also be installed in a hierarchical
fashion in which higher servers could also control and
monitor the security components that are connected to the
servers under them. Under the SecureX Server, there are
adapter applications for each sensor group such as camera,
radar, plate recognition systems, access control systems, etc.
These adapters are the points where the SecureX
environment makes its connections to the outer world.

When a user wants to perform some action with a sensor,
after pressing a button in the SecureX GUI Client, a message
will be sent to the SecureX Server. Then, the server delegates
this message to the adapters and other servers that are
hierarchically under that server. The message arrives at the
sensor’s adapter and, according to the Interface Control
Document (ICD) used in its integration, a message would be
sent to the sensor to perform the desired action. Events and
detections caught by the sensors would follow the reverse
route and find their way to the SecureX GUI Clients.

SecureX is developed using the OSGi framework, which
is a Java framework to develop modular software [10]. It is a
platform in which manufacturers and developers can use as a
software component framework. It is a versatile deployment
API that can manage the life cycle of applications.

A. OSGi

The OSGi framework, based on its specifications, is a
framework that can be used for creating highly modular Java
systems. With its component model, it is a very reasonable
candidate to be used in software product line development. It
provides a simple way to change software components not
only without a need to rebuild the entire system, but also
dynamically changing them at the runtime. This shows the
main capability of OSGi that simplifies the development of
variation points, which is a crucial aspect of software product
line architecture. The components are called “bundles” in the
OSGi world, and the framework provides methods for
installing, uninstalling and updating those bundles [11]. The
life cycle that each bundle undergo in the OSGi framework
can be seen in the Figure 3.

Every application that runs on the OSGi framework is
expected to be able to immediately respond to the component
changes at runtime. Any component might get an update or
gets installed at runtime and the application that uses the
component must properly react to this change and migrate to
the new component. OSGi is a dynamic environment that
expects applications to catch up to its changes.

Every bundle in an OSGi application has a start level that
is defined in the bundle configuration files. When an
application that runs on the OSGi framework starts, its
bundles get initialized in the order of their start levels.
SecureX uses this ordered initialization procedure and
runtime bundle installation capabilities to optimize its
initialization time by only installing the key bundles at first
and installing the remaining bundles at the runtime.

IV. EXISTING ADAPTER ARCHITECTURE

There are several adapter applications developed for
different types of sensors such as Camera Adapter, Radar
Adapter or Seismic Adapter etc. Their working principles are
quite similar. The SecureX Server connects to the adapters
and the adapter connects to the sensors. To segregate the
sensor integration, we must first analyze the existing adapter
architecture.

Figure 3. OSGi bundle life cycle. [11]

Figure 2. Deployment model of SecureX.

15

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A few of the bundles in the Camera Adapter program can
be seen in Figure 4. SecureX uses this framework to take
advantage of its service architecture. We use the Camera
Adapter application to describe the adapter architecture, but
all adapter applications of SecureX are quite similar.

The Camera Adapter application consists of many OSGi
bundles whose purposes vary from providing network
connection interfaces or utility tools, to message definition of
sensors. These message definition bundles contain the
methods for encoding and decoding messages to and from
the sensor. Generally, the message formats for each sensor
are different. They have different data types, header types,
checksum calculation methods, big or little endian formats.
Some sensors accept JSON formatted string messages, and
some require encoding messages in a certain length byte
array and sending them. Information about how to
communicate with a sensor is given in its ICD. A message
bundle is basically an implementation of the related ICD.

The Configuration Manager class in the Core bundle is
mainly responsible for opening a Transmission Control
Protocol (TCP) port to accept incoming server connections
and initializing the Message Handlers. Each sensor’s type,
model, unique identifier key and required information about
establishing a connection to it is written in a configuration
XML file. The Configuration Manager constantly iterates
over these files, creating a Camera Communicator and a
specific Message Handler for every new or updated file.
Messages are received by the TCP server and forwarded
from there to the Camera Communicator and lastly to the
sensor’s Message Handler.

A Camera Communicator, which extends from the
Sensor Communicator class as in every other sensor family,
is the class where the processing of messages that came from
the server starts. It handles generic messages or preprocesses
them before the messages arrive at the Message Handler.
When a message is received from the server, it is added to
the message buffer of every active Camera Communicator in
that adapter. Camera Communicators takes this message and
decide if this message is meant for their sensor. To do this,
they use the sensor identifiers in the messages. If the
identifier is the same as the Message Handler they have, the

message gets processed as will be explained in the
subsequent paragraph, otherwise it is discarded.

The processing of the messages starts at the Camera
Communicator level. Some messages are not specific to
different sensor integrations and can be handled at the
Camera Communicator level. Alternatively, some messages
require a preprocessing step such as transforming some
variables before they get forwarded to the Message Handler.
After the initial processing is done, the Camera
Communicator sends the message to the Message Handler.

The Message Handler is where the connection to the
sensor is established using the protocol the sensor uses,
which could be TCP, User Datagram Protocol (UDP),
WebSocket, serial port, (Representational State Transfer)
REST or any other network connection method that is stated
in its ICD. The Message Handler knows how the connection
should be established and how the incoming and outgoing
messages should be processed. It receives the incoming
message from the communicator and sends necessary
commands to the sensor. The Message Handler needs a
utility bundle to do the message conversions. When it needs
to encode/decode messages to/from the sensor, it uses the
Message bundle of that sensor that contains the message
types, formats, checksum methods and the information of
exactly how a message should be generated. After a message
is generated, the Message Handler sends it to the sensor
using the connection interface.

V. THE INTEGRATION PROBLEM

To keep up with the new and updated sensors to be
integrated, and changing customer needs regarding sensor
types and capabilities, sensor integration must be segregated
and can be developed and updated independently. After
analyzing the adapter architecture in the previous chapter, we
can focus on what makes it difficult to integrate sensors in
the current architecture.

When the adapter starts, the StartLevelEventDispatcher
thread in the OSGi framework initializes all bundles that are
marked for auto-start in the bundle configuration file. In
Figure 5, initialization of the Core bundle is shown. The
Core bundle is the one that starts the main Camera Adapter
process with its thread “ConfigurationMonitor”. In the
initialization of the Core bundle, a single Configuration
Manager instance gets created. The Configuration Manager
then opens a port to listen to incoming SecureX Server
connections. After that, it starts a thread that periodically
checks sensor configuration files to find new or updated
configurations. If there is such a file, then the Configuration
Manager creates a Camera Communicator and the Message
Handler for that sensor. In the existing architecture, in order
to create a Message Handler instance, the Configuration
Manager has to know which Message Handler needs to be
used for which sensor configuration. In the configuration
file, the identifier of the correct Message Handler is given,
and the Configuration Manager uses that identifier to
construct the Message Handler. But these Message Handler
classes are inside the Core bundle and the Configuration
Manager has a class dependency for them. This is the root
problem in the current architecture.

Figure 4. Simplified Camera Adapter model in the existing architecture.

16

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Message Handler initialization in the existing architecture.

Figure 6. Simplified Camera Adapter model in the new architecture.

A. Difficulties with the Existing Architecture

In order to carry out a new sensor integration, the
message definition bundle has to be added in the Camera
Adapter product file and its Message Handler has to be
included in the Core bundle. The Configuration Manager
class needs to know with which configuration identifier the
new Message Handler should be constructed beforehand,
hence the dependency. Because of this design, integrating or
updating the integration of a sensor requires updating the
Core bundle in the adapter. The components in the Core
bundle, such as Configuration Manager and Camera
Communicator, are used in every Message Handler and need
to be compatible with all of them too. Therefore, any change
in those components in the integration of a sensor could
affect the already integrated sensors and cause them not to
function as intended. Alarms detected by the sensor might
start not to be forwarded to the server or changing the
orientation of the sensor becomes difficult because of a
change in some movement speed calculations.

In the current design, to update an already deployed
system, a complete new build needs to be generated and
tested. But the regression testing of the previous sensor
integrations is not always easy or even possible. These
sensors could be produced in very limited numbers, and they

can only be found in the customer's facilities, working with
the previous SecureX version. The location of these facilities
might be difficult to access too and trips to these locations
are not only costly, but sometimes, also dangerous. Because
these sensors are almost always used in closed networks, the
only way to test them is by going to these facilities,
increasing the cost of testing. Also, customers would not
want testers to separate these sensors from the PSIM system
to test with the new version, creating a window of
vulnerability.

Even if the tests are somehow completed, the update
procedure has its own problems. To quickly update systems
used in remote locations with little to no network access, or
used in thousands of mobile locations without stable internet
access, the update size must be minimal. But, with the
current architecture, the whole adapter build needs to be
updated, rather than just a couple of bundles.

Also, to catch up with new and updated sensors or
security systems, 3rd party companies are employed for
integrations. But this process is done through signing a Non-
Disclosure Agreement (NDA) and sharing substantial parts
of the adapter code with them to be used to integrate the
sensors. Any one of them could expose the code at any point
and this indeed is a security vulnerability.

Because of these reasons, there is a need for an
architecture that ensures that the new integrations will not
affect the existing ones. The main problem with the current
design is, for every new integration, it has a need to update
the Core bundle. The reason for that is the Configuration
Manager class needs to know all available Message
Handlers and for what kind of sensor they need to be used
beforehand via class dependencies. In the new architecture,
this problem is targeted with the aim to reduce testing
overhead, reducing the amount of code that is shared with
3rd parties and also enables updating the deployed systems
with small amount of data.

VI. NEW ADAPTER ARCHITECTURE

To solve the problems with the existing architecture, a
new adapter architecture shown in Figure 6 is developed.
With this new architecture, all Message Handler classes
moved to their message definition bundles and an OSGi
service called IMessage Handler Provider Service that

17

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

provides a Message Handler constructor for a given
configuration identifier is developed. With that change, now
the Core bundle does not depend on the Message Handlers
or message bundles, but it depends on the Message Handler
Provider Service bundle. Message bundles also depend on
this service bundle too. This fixes the problem of the Core
bundle depending on Message Handlers and its need to be
updated to include a dependency with every new sensor
integration. These message bundles, similar with every other
OSGi bundle, can be extracted as a compiler .jar file and be
installed externally.

Figure 7 shows the new classes and their hierarchies
while Figure 8 shows the new message handler initialization
procedure. The Message Handler Provider Service Manager
implements the IMessage Handler Provider Service interface
and when it is initialized by the StartLevelEventDispatcher,
it reads a directory in which the new sensor integration
bundles are placed as .jar files. The manager installs those
new integrations and after the initialization of every new
bundle, it registers itself as an instance that implements the
IMessage Handler Provider Service interface to the OSGi
context.

While those bundles are initialized, they register
themselves with the IMessage Handler Provider Service in
the OSGi context using the configuration identifier to
indicate the sensor they should be used for. Accessing the
registered IMessage Handler Provider Service is made
possible through the Message Handler Provider Service Util
class. This access technique blocks the requester thread until
a service instance registers. The Message Handler Provider

Service Manager registers itself after it initializes every
integration file. Because Message Handlers access this
manager using the same blocking technique, they can only
register themselves after the service manager finishes its job.
This causes all Message Handlers to register almost
simultaneously.

While this process continues, the Core bundle also starts
by the StartLevelEventDispatcher thread and continues its
regular processes. But this time, the Configuration Manager
class does not know any Message Handler itself. The
dependencies for Message Handler classes are removed.
When the Configuration Manager reads a sensor
configuration, it uses its configuration identifier and asks a
Message Handler constructor from the registered IMessage
Handler Provider Service. It uses the Message Handler
Provider Service Util class to access the service, so it also
waits until an IMessage Handler Provider Service finishes
its initializations and registers itself. After that, if a Message
Handler for a given configuration identifier exists in the
application, the Configuration Manager uses its constructor
to create an instance and initialize it. The initialized Message
Handler connects to the sensor and starts its regular
processes. If a Message Handler does not exist for that
identifier, the Configuration Manager skips that
configuration for this iteration.

Figure 7. Camera Adapter Class Diagram (Simplified).

18

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VII. EXPERIMENTS AND SURVEY

Similar to any other PSIM system, SecureX does not
tolerate slow performance. It must provide a quick response
capability for its users. Therefore, the architecture change
must not cause a performance drawback. Also, to justify this
architecture change, the new system must lower the test
costs, as this was one of the promises of the new
architecture.

A. Performance Tests

 The main difference between the old and new
architectures is the initialization of the adapter. As shown in
Figure 7, the new initialization procedure is more
complicated than the old one, which is shown in the Figure
4. Comparing those two diagrams, the difference mainly
resides in how the Configuration Manager gets access to the
Message Handler constructers. In the old architecture,
Configuration Manager and all Message Handlers are in the
Core bundle. Therefore, when StartLevelEventDispatcher
initializes the Core bundle, every Message Handler class

gets initialized along with the Configuration Manager. This
enables Configuration Manager to access Message Handlers
instantly without any additional dependency.

In the new architecture, Message Handlers are initialized
in their separate bundles, and they register themselves to the
Message Handler Provider Manager. Configuration
Manager uses Message Handler Provider Manager to access
the Message Handler constructers. This additional step
causes a delay in the initialization phase of the adapter. But
after the initialization is completed, any extra delay in other
parts of the adapter is not expected. The tests confirm this
hypothesis.

With the old architecture, time it takes to start the
ConfigurationManager thread and for it to generate a
Message Handler instance is on average 30 milliseconds,
ranging between 29 and 31 milliseconds. In the new
architecture, the average time for the same part of the
initialization phase takes about 96 milliseconds, ranging
from 88 to 104 milliseconds. This increase in time is the
obvious result of not accessing the Message Handler
constructers from within the same bundle and using an OSGi

Figure 8. Message Handler initialization in the new architecture.

19

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

service to do so. Both the Message Handler’s registration to
the Message Handles Provider Service, and the service’s
own registration to the OSGi context takes time. But
Message Handler Provider Service Manager keeps the
Message Handler constructers in a map to easily access them
if the ConfigurationManager needs it again. Therefore, this
increased initialization time only happens on the first access
of the constructer of a Message Handler. If there is another
sensor of the same type in the system, the previous
constructer gets used for the initializing of its Message
Handler. But for a different type of sensor, another
constructer must be generated.

This one time per sensor type increase in Message
Handler initialization is trivial and it has little to no effect on
SecureX’s effectiveness.

After the Message Handler initializes, its operations such
as processing, sending and receiving messages do not change
between old and new architectures. On both architectures,
typical message processing took about 3 milliseconds. This
duration is the time between receiving a message from the
SecureX server and after processing it, sending a notification
to the server. So, the runtime performance of the adapter
seems to be unaffected by this architecture change.

These tests show that the new design does not come with
a significantly low performance. Increase in the initialization
time is insignificant and hard to notice in the everyday use.

B. Survey for Cost of Testing

Another claim of the new design is that the test costs for
a new sensor integration is high and the reason for this is the
new bugs of the previously tested systems. We surveyed the
testers who participated SecureX sensor integration tests to
find out if that claim is true.

We have surveyed testers using in-depth interviews to
understand the challenges in the SecureX tests. All nine
testers who took the survey have at least one year, four of
them has over three years of experience testing the SecureX
sensor integrations. All participants had tested different
cameras, radars, acoustic and seismic detectors. The used
question set can be seen in Table 1. Based on their responses,
on average, testing a camera or acoustic sensors takes about
two hours, while a radar or seismic detector takes four hours.
These test durations are not to be expected to be reduced by
the proposed architecture change. New design does not
provide a way to test one sensor faster, but it reduces the
number of sensors to be tested after each new integration.

Table 1. Survey Questions
ID Question

1 How long have you been testing software?

2 How long have you been testing SecureX?

3 What type of sensors did you test?

4 How many different cameras did you test?

5 How many different radars did you test?

6 How many different seismic detectors did
you test?

7 How many different acoustic detectors did
you test?

8 How long does it take to test a camera?

9 How long does it take to test a radar?

10 How long does it take to test a seismic
detector?

11 How long does it take to test an acoustic
detector?

12 In the last year, how many times was it
necessary to go to the test site or the location
where the system is installed to perform the
test?

13 In the last year, how many times an
intercity travel was necessary to reach to the
test site or the location where the system is
installed to perform the test?

14 How long does it take to go to the test site
or the location and where the system is
installed to perform the test?

15 In the last year, when a new sensor
integration is tested, how often was it
necessary to test other sensors of the same type
as well? Ex: After testing a newly integrated
camera, testing the other cameras in the
system.

16 In the last year, when a new sensor
integration is tested, how often a new bug from
other sensors of the same type is detected?

17 How long does it take to fix and re-test the
new bugs of the previously integrated sensors?

18 How much the development and test cost
increase if new bugs of the previously
integrated sensors were to be detected?

19 What was the worst-case scenario you
experienced about bugs in previous
integrations or increased test iterations like?

20

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Because the participants had worked on different projects
that SecureX is used, their answers to the questions shown in
Figure 9 and Figure 10 depend on those projects’ test
locations and configurations. If tests can be performed in
house, and travel is unnecessary, the only test cost is the time
spent testing the integrated sensors. When intercity travel is
needed, the transportation and sometimes accommodation
costs are added to the overall test cost.

But after testing the integrated sensor, tests for previously
integrated sensors are needed; test durations for each of these
sensors are also be considered when calculating the test cost.

Figure 11 shows that every participant stated that it was
always necessary to test the previously tested sensors of the
same type after a new sensor integration is completed. For
example, after testing a newly integrated camera, testing
other cameras in the system. Six of the testers said at least
three times this was necessary and two of them said they had
to test other sensors on more than eight occasions. Figure 12
shows the reasoning behind these additional tests. Often after

a new sensor integration is completed, these additional tests
reveal new bugs of the previously integrated sensors. Sensor
integration in the old architecture does not segregate these
integrations enough and provides an environment that is
error prune.

These bugs extend the test and development duration as
they need to be fixed and tested again. Also, the possibility
of a bug occurring in the previous integrations cause testers
to request testing those integrations whenever a new
integration gets completed. As shown in Figure 13, this extra
test and development process comes with an average cost
increase of 30% to 50%, depending on the project
configuration and location.

The participants also asked what was the worst-case
scenario that they experienced about sensor integration tests.
Testers also point out that after the development and bug
fixing processes for the bugs in the integration of sensors of
same type, it was observed that the previously acquired and
tested capabilities from other sensors were lost. This
situation creates the need to review the integrations
repeatedly and retest them after each bug fix. On one
occasion, a SecureX system was installed at a remote
location and is used by the operators when the customer
wanted a new camera to be added for their changed security
needs. The camera integration completed and tested at the
company. But because the SecureX configuration the
customer uses contains sensors not available at that moment
during the tests of the new sensor, testers had to go to the
location that SecureX system is installed. They, along with a
developer, tested other sensors that the customer uses in
order to verify that they still function as before. Testers
found a couple of bugs and the developer fixed them and

Figure 9. Distribution of the answers to Question 12.

Figure 11. Distribution of the answers to Question 16.

Figure 10. Distribution of the answers to Question 13.

Figure 12. Distribution of the answers to Question 15.

Figure 13. Distribution of the answers to Question 18.

21

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

after the re-test of the system, it is left to the operators again.
During these tests, controls of the tested sensors are taken
from the operators, and this lowers the PSIM system’s
availability.

As these tests take place in the customer's deployment,
they may give customers a bad reputation about SecureX.
Because for any bug that is found in those tests, there is a
chance that it can be seen by the customer, or the security
personnel at the location. Because it is not always possible to
complete the tests without involving anyone from the
customer’s company. Usually, tests take place in the same
room that the security personnel use and anyone would be
curious to see what the new sensor can do. Even if the found
bugs are minor or hard to reproduce in typical usage of the
system, it would not matter if the customer realizes those
bugs as well. If this situation keeps happening, reputation of
SecureX would start to decline. Also, these security
personnel or the customers themselves would mention their
own requests from the PSIM system. Without anyone from
the project management, the testers and developers are not
always expected, to discuss the details of those requests.

Participants noted that for regression tests, having to go
to remote locations where the existing systems are installed
is costly and a way to reduce those costs are needed.

VIII. CONCLUSION

The proposed adapter architecture allows us to integrate
additional sensors into the already deployed PSIM systems,
without requiring to generate another complete build of an
adapter software. Because previous integrations are not
touched, integration tests of only the newly integrated
sensors would be sufficient. When the sensor is integrated, it
will most probably be available for testing as well and going
to the field for using the sensor of a customer in order to
conduct the tests will no longer be needed.

The survey with the testers has showed the extra work
that needs to be done because of the new or reoccurring bugs
in already tested sensor integrations. With the new
architecture, these additional tests are no longer a regular
requirement that takes place every time a new sensor gets
integrated to the SecureX. Testing the sensor integrations
only at their own integration times and keeping them bug
free, even if new sensors or systems added to the project is
crucial. An additional capability to a system should not take
away or break the already existing and used capabilities. The
cost of re-testing previously tested system after every
integration is not something to be ignored. In addition to the
amount of man hour being wasted for these tests, the
financial cost also includes the logistic costs, which is
depended on the test location. Therefore, the training that
seemed to be required to work with this architectureas
Almedia E. et al. found in their work [9], require a cost that
is not worth mentioning of, when those additional test costs
are considered.

The .jar files of the integration bundles are smaller than
one MB. Thanks to these low sized components, system
updates can be completed even with unstable or slow
networks. Even if new sensor integrations have a problem
working with previously integrated sensors, simply removing

the .jar file would be enough to revert back to the previous
deployment.

Segregating sensor integration also enables easily
selecting and combining different integration bundles
according to the project's requirement, as one could expect
from a system developed with software product line
principles. When starting a new project, depending on the
sensors that are going to be used, only their integration files
can be used. There is no need for adding every sensor
integration to the project. The new design also enables
employing 3rd party companies for integrations without
sharing the bulk of the adapter code. Now, any integrator can
develop an integration bundle only with the Message
Handler, IMessage Handler Provider Service and the
Message Handler Provider Service Util classes.

The proposed architecture is also shown to have similar
performance with its predecessor with only a minimal delay
at startup. Even if this startup duration increase was much
more, if it’s not extreme, it still might not be a problem.
Generally, PSIM systems are not expected to shutdown and
startup frequently. Due to high availability requirements,
they tend to be designed as if they were expected to run
continuously. So this minor increase in the initialization time
can easily be ignored. Also, with the new architecture,
stopping the system for adding a new senosr integration or
changing an integration file is not required. New integrations
can be added or updated while the system is running. This
new capability also lowers the amount of times that the
system had to be restarted. After the system is restarted and
initialization is completed, the performance of the system
was the same as it was with the old architecture. Only thing
that the new architecture changes is the way sensor
integrations are initialized.

The new architecture provides a helpful pattern towards
transforming SecureX into a Software Product Line (SPL).
An external .jar installer service could be used not only for
sensor integrations, but also for features such as additional
GUI views or in the server, new alarm evaluation algorithms.
Because every feature is developed as an OSGi bundle, they
all could be externalized. The sensor integration problem
could be solved by developing an SDK, similar to the
products given in Section II, but our design also eliminates
the need of deploying the SecureX with a full feature set and
stripping it off with configuration files at runtime. As this
design gets implemented in other parts of SecureX, they
could all be removed from the base build and can be added
per customer demand.

The new design opens an evolutionary path for
segregating such different aspects in SecureX architecture
and is expected to be even more beneficial in the future. As
such, the architectural change is not only applicable to PSIM
systems like SecureX, but also any system that is developed
with OSGi. Because at its core, our work can be described as
a case study in how a software product line architecture can
be implemented in an OSGi based product. What we achieve
is within reach of any similar product.

We altered the existing architecture and took advantage
of the OSGi framework to improve the modularity of our
system. The modularity we achieve is a crucial requirement

22

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for an SPL architecture, as SPL products are actually a
combination of features selected from a feature set to satisfy
particular requirements. These features can be developed in
the same manner the sensor integration jar files are
developed in the new architecture. And feature selection can
be completed by using different feature jar files for different
requirements. Message Handler Provider Service Util class
and IMessage Handler Provider Service interface gives an
example on how to select and use different features as well.
Therefore, the architecture we proposed can be used in any
software product line project.

REFERENCES

[1] O. Özçelik, M. H. S. Oğuztüzün, “Software Architecture
Evolution of a Physical Security Information Management
System”. The Eighth International Conference on Advances
and Trends in Software Engineering (SOFTENG), 2022, pp.
15-20.

[2] M. L. Garcia. The design and evaluation of physical
protection systems. 2nd ed. Amsterdam: Elsevier, 2008.

[3] Genetec KiwiVision. [Online], retrieved May 2023 Available:
https://www.genetec.com/products/

[4] Milestone XProtect. [Online], retrieved May 2023 Available:
https://www.milestonesys.com/solutions/

[5] Nedap Aeos Access Control. [Online], retrieved May 2023
Available: https://www.nedapsecurity.com/solutions/

[6] Open Network Video Interface Forum (ONVIF). [Online],
retrieved May 2023 Available: https://www.onvif.org/

[7] B. Tekinerdoğan, İ. Yakın, S. Yağız, and K. Özcan, “Product
Line Architecture Design of Software-Intensive Physical
Protection Systems”. IEEE International Symposium on
Systems Engineering (ISSE), 2020, pp. 1-8, doi:
10.1109/ISSE49799.2020.9272239.

[8] “The Java Language Specification, Java SE 8 Edition” J.
Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. Apr.
2015. [Online]. retrieved May 2023 Available:
https://docs.oracle.com

[9] E. Almeida, et al. “Domain Implementation in Software
Product Lines Using OSGi”. Seventh International
Conference on Composition-Based Software Systems, 2008,
doi: 10.1109/ICCBSS.2008.19

[10] R. S. Hall, K. Pauls, S. McCulloch, and D. Savage. “OSGi in
Action - Creating Modular Applications in Java”. Manning
Publications, 2011

[11] “OSGi Service Platform, Core Specification, Release 8,” The
OSGi Alliance, April. 2018. [Online]. retrieved May 2023
Available: http://docs.osgi.org/specification/

