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Abstract—The integration of external services, such as work-
flow management systems, with High-Performance Computing
(HPC) systems and cloud resources requires flexible interaction
methods that go beyond the classical remote interactive shell
session. In a previous work, we proposed the architecture and
prototypical implementation of an Application Programming
Interface (API) which exposes a Representational State Transfer
(REST) interface that clients can use to manage their HPC
environment, transfer data, as well as submit and track batch
jobs. In this article, we expand on this foundation by including a
full Function as a Service (FaaS) interface which allows it to be
a drop-in replacement for functions with high resource demands.
In order to enable automated processes without any manual
interaction while maintaining the highest security standards, a
fine-grained role-based authorization and authentication system
which facilitates the initial setup and increases the user’s control
over the jobs that services intend to submit on their behalf
is presented. The developed HPCSerA service provides secure
means across multiple sites and systems and can be utilized
for one-off code execution and repetitive automated tasks, while
adhering to the highest security standards.

Keywords—HPC; RESTful API; OAuth; authorization; FaaS.

I. INTRODUCTION

This work is an extension of [1] by the inclusion of
the Function as a Service (FaaS) idiom, which becomes
increasingly popular due to several advantages, including the
cost effectiveness, fault tolerance, and ease of use. However,
there are usually strict limitations on the execution time of
a function, resource requirements and the size of input and
output data [2]. Driven by the large success of data- and
compute-intensive methods, there is an increasing demand
for computing power in various scientific domains which
are outside of these limits. Historically, HPC systems were
used to satisfy those requirements in a cost-effective manner.
Meanwhile it is similarly attractive to use a RESTful interface

to easily deploy preconfigured functions and use those in an
automated setup. This has led to the creation of different
services which for instance expose a RESTful API with which
users can remotely interact with an HPC system. There are
numerous different use cases for such a requirement. One
motivating example can be the ability to manage complex and
compute-intensive workflows with a graphical user interface
to improve usability for inexperienced users [3].

While, on one hand, there are these efforts to ease and open
up the use of HPC systems, there is, on the other hand, a
constant threat by hackers or intruders. Since users typically
interact with the host operating system of an HPC system di-
rectly, local vulnerabilities can be immediately exploited. Two
of the most favored attacks by outsiders are brute-force attacks
against a password system [4] and probe-based login attacks
[5]. These attacks, of course, become obsolete if attackers can
find easier access to user credentials. Therefore, it is of utmost
importance to keep access, and access credentials, to HPC
systems safe.

In this context, services easing the use of and the access to
HPC systems should be treated with caution. For example,
if access via Secure Shell (SSH) [6] to an HPC system
is only possible using SSH keys due to security concerns,
these measures are rendered ineffective if users re-establish
a password-based authentication mechanism by deploying a
RESTful service on the HPC system that is exposed on the
internet. Observing these developments, it becomes obvious
that there is a requirement to offer a RESTful service to
manage data and processes on HPC systems remotely which is
comfortable enough in its usage to discourage spontaneously
concocted and insecure solutions built by inexperienced users
with the main objective of “getting it to work”, but which
adheres to the highest security standards.
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In order to prevent those security risks by users, HPC sys-
tems are increasingly secured, including a two-factor authen-
tication (2FA) for SSH connections [7], which is a problem
for automated workflows since they need to run without any
manual interaction. In this paper we present HPCSerA, a REST
API which is compatible to the FaaS idiom, therefore allowing
clients to use it for large, data and compute-intensive functions
similar to OpenFaaS [8]. In order to enable this functionality, a
detailed security analysis was done and a secure authorization
method was developed to enable automated data processing
without any manual intervention, while maintaining a similar
security standard compared to a SSH access secured by 2FA.
The key contributions of this article are:

1) discussion of the FaaS usage model and its capabilities
on HPC systems using HPCSerA;

2) analysis of possible attack scenarios based on a RESTful
service running on an HPC system;

3) presentation of a user-friendly and secure authorization
method inspired by OAuth;

4) discussion of the usability, including the resolution of
complicated dependencies.

The remainder of this paper is structured as follows: In
Section II, the related work is presented, including state-of-
the-art mechanisms to solve this issue. This is followed by
a presentation of the fundamental idea of HPCSerA and its
three basic components in Section III. Based on this, the
FaaS functionality is discussed in Section IV. In Section V,
existing security issues preventing a wide-spread application
of HPCSerA are being discussed and an improved architecture
with a security-based scope definition is presented. In the
following Section VI, our implementation is presented. At the
end, a diverse set of use cases are presented in Section VII,
as well as a concluding discussion, which is provided in
Section VIII.

II. RELATED WORK

There is without question a general trend towards remote
access for HPC systems, for instance in order to use web
portals instead of terminals [9]. These applications actually
have a long-standing history with the first example of a web
page remotely accessing an HPC system via a graphical user
interface dating back to 1998 [10].

Newer approaches are the NEWT platform [11], which
offers a RESTFul API in front of an HPC system and is
designed to be extensible: It uses a pluggable authentication
model, where different mechanisms like Open-Authorization
(OAuth), Lightweight Directory Access Protocol (LDAP) or
Shibboleth can be used. After authentication via the /auth
endpoint, a user gets a cookie which is then used for further
access. With this mechanism NEWT forwards the security
responsibility to external services and does not guarantee a
secure deployment on its own. This has the disadvantage that
NEWT is not intrinsically safe, therefore providers of an HPC-
system need to trust the provider of a NEWT service that it
is configured in a secure manner. Additionally, no security

taxonomy is provided, which is key when balancing security
concerns and usability.

Similarly, FirecREST [12] aims to provide a REST API
interface for HPC systems. Here, the Identity and Access Man-
agement is outsourced as well, in this case to Keycloak, which
offers different security measures. In order to grant access to
the actual HPC resources after successful authentication and
authorization, an SSH certificate is created and stored at a
the FirecREST microservice. Although this is a sophisticated
mechanism, there seem to be a few drawbacks. First of all,
the sshd server must be accordingly configured to support
this workflow, secondly it remains unclear how reliable status
updates about the jobs can be continuously queried when using
short-lived certificates, and lastly these certificates needs to be
stored at a remote location, which might conflict with the terms
of service of the data center of the user. A similar approach is
used by HEAppE [13] where the communication is between
the API server and the HPC system is done via SSH. To do
so, for each project an SSH key is managed by the API server.
Users are not supposed to connect to the system via SSH at all.
However, in order to upload data via secure copy users obtain
a temporary SSH key. To manage the exposure of a possible
data breach of the API server, the developers recommend to
use one instance of HEAppE per HPC account.

Additionally, HPC systems are often configured to allow
logins from a trusted network only, which means that the
FirecREST microservice can not serve multiple HPC systems
at a time.

While the Slurm Workload Manager provides a REST inter-
face that exposes the cluster state and in particular allows the
submission of batch jobs, the responsible daemon is explicitly
designed to not be internet-facing [14] and instead is intended
for integration with a trusted client. Its ability to generate
JSON Web Token (JWT) tokens for authentication provides
an interesting alternative route for interaction with our ar-
chitecture, provided both services are hosted in conjunction.
Clients that shall execute Slurm jobs authenticate the trusted
Slurm controller via the MUNGE service [15] that relies on
a shared secret between client and server. If either of these
is compromised, then it is assumed that the whole cluster is
insecure. Slurm can be deployed across multiple systems and
administrative sites and there are various options for Slurm to
support a meta-scheduling scenario or federation. However, if
the Slurm controller is compromised, it can dispatch arbitrary
jobs to any of the connected compute systems. In addition,
decoupling the API implementation from the choice of the
job scheduler, as we propose, allows interoperation of multiple
sites, possibly using different schedulers.

An alternative execution model popular with public cloud
systems is Function as a Service (FaaS). In this model, a
platform for the execution of functions is provided, i.e., code
can be submitted by the user and execution of the function with
parameters is triggered via an exposed endpoint. A runtime
system executes the function in an isolated container and
automatically scales up the number of containers according
to the response time and number of incoming requests. Cus-
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tomers are billed for the execution time of the function. The
core assumption is that the function is a sensible unit of
work, e.g., running for 100ms, running on a single core,
side-effect free, and thus only suitable for embarrassingly
parallel workloads. Authentication and security is of high
importance for these systems as well. For example, OpenFaaS
is a Kubernetes-based FaaS system that utilizes, e.g., OAuth
to authorize users and to generate tokens that are verified
upon function deployment or execution. While this mechanism
has similarities to our approach, FaaS is for short-running
(subsecond to several seconds) single node jobs, we provide
different, security-derived authorization processes for the dif-
ferent available operations, while mitigating user impact via
push notifications and solve the issue for long-running HPC
systems including parallel jobs.

III. GENERAL ARCHITECTURE

HPCSerA consists in total of three components which
enable the access and remote control of an HPC system via a
REST API.

These three components as well as their interactions are
depicted in Figure 1: The main component is the API server,
which at first glance looks like a simple message broker.
Clients, shown on the left side in green, can use the REST API
of the API Server to post a new HPC task. On the opposite
side, there is a cronjob running, in the following called Agent,
which periodically queries the API server for available tasks
and pulls them if available. Once pulled, the agent will execute
the task and will update the state of the task on the API server
accordingly. This simple approach has several advantages:

• If the egress firewall rules allow access to the API server,
which would be possible even for HPC systems which do
not allow general internet access, the entire setup can be
done in user space.

• The agent is independently configurable. This means that
the agent does not require a fixed interface, like a certain
resource manager, and can be customized to work with
any kind of system.

• The agent can only do, what it is configured to do.
Therefore, a user can configure what should be exposed.
The highest form of exposure would be to allow arbitrary
code ingest and execution, like sending a shell script and
executing it. A smaller level of exposure would be to just
allow the submission of preconfigured batch jobs to the
resource manager.

• A user can hook an authorization mechanism into the
agent in user space and therefore does not need to
completely trust the administrators of the API server or
HPCSerA. This mistrust allows a large exposure of the
agent in a secure manner.

In the following the three components are presented in more
detail.

A. The API Server

As a central component of the HPCSerA architecture, the
API server handles HTTP connections from the Client and

Agent (described below), maintains the internal state of all jobs
and functions and resolves dependencies between functions.
In addition it provides the necessary maintenance endpoints
to allow configuration via the Web UI. It communicates
with the database for persistence of the internal state and
verification of any authentication tokens. Since every job has
to be kept in the database until it is completed, the API
server is not stateless. All other connections are initiated by
other components, therefore the API server is the only part of
the architecture that has to allow incoming connections. It is
also the responsibility of the API server to ensure separation
between jobs of different projects, i.e., these are only visible in
response to requests which are authorized for the same project.

B. The Client

Any application or service that needs HPC as a back-
end implements the Client component, which initiates HTTP
connections to the API server in order to submit jobs, call
functions (cf. Section IV) and retrieve information on the
job state. Examples of use cases for the Client are given in
Section VII.

C. The Agent

On the HPC system the Agent component regularly connects
to the API server in order to retrieve jobs that are ready for
execution. Depending on the function being called, the batch
system might be involved and is regularly queried on the
state of each pending or running cluster job. This information
is used for further calls to the API server in order to keep
the job state up to date. In the case of function calls which
depend on each other only via the cluster jobs they need
to run a corresponding set of jobs including the dependency
information is being submitted to the batch system.

IV. ADVANCED EXECUTION MODELS

Extending on this general idea, a more formal execution
model can be defined. Generally one can observe that the
execution model of predefined tasks triggered by a REST call
is a well known concept in the cloud ecosystem known as
Function as a Service (FaaS) [16].

A. FaaS for HPC

In FaaS it is typical that a user has a preconfigured task or
function which is packaged into a container to be called with
varying inputs. These functions are available by user-defined
REST endpoints. Since in HPCSerA every user has a dedicated
namespace on the API server, this expected behaviour can be
replicated on an HPC system using the respective scheduling
mechanism for batch jobs.

The basic mechanism for this is shown in
Figure 2. It can be seen that the user can send
REST requests to the API server resembling FaaS
requests. For this, each user has their own namespace
/<username>/function/<functionname>, where
custom functions can be registered at their own discretion.
It is important to state that the function name must be
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HPC API

RESTful API

Web UI

GitLab

Flowable

Data Lake

POST Agent

Agent

Slurm

PBSPro

sbatch

qsub
GET/UPDATE

Fig. 1. Components of the architecture: external services, API server, HPC systems (in our use cases we show Slurm and PBSPro as examples, which are
used in the Scientific Compute Cluster of GWDG and HAWK at HLRS, respectively).

Client 1

Client 2

API Server

Agent

Function 1

Function 2

Function 3

/user/function/function1

/user/async-function/function2

/user/function/function3

Fig. 2. Basic schema of the FaaS methodology.

unique within the namespace of each user and is not being
further isolated by additional structures like the notion of
projects. Once a client has posted a function call to the
API server, it will be available for the agent to be pulled
with the corresponding GET request. The agent then actively
pulls these function calls and dispatches them by calling
a starter script with the same <functionname> located
in a preconfigured path, e.g., in the user’s home directory
in ∼/hpcsera/functions/<functionname>. These
functions, which are then being executed, can be anything.
It can be a Bash script which is being executed on the
frontend, it can be a script fetching data from a remote
source and staging it on the fast parallel filesystem of the
HPC system, or it can be a simple job submission to the
respective batch system, to give just a few examples. Since
only executables are being executed, there are no inherent
limits to the capabilities of these functions.

B. Long Running vs. Short Running Functions

Since HPCSerA does not enforce any boundary condition
on the user-defined functions, it is important to differentiate
between long-running and short-running functions from the
beginning. The most important difference from the user’s
perspective is that long-running functions will be usually
executed asynchronously, whereas short running-functions can
be executed synchronously as well. The reason is that in this
case a TCP connection between the client and the API server
can stay established during the entire time. Therefore, the
HTTP response will correspond to the output of the function
(cf. Section IV-G), e.g., a response code 200 would directly
mean that the function ran successfully. There might even be
some payload data attached to the response, which can be

immediately used by the client. The client process is block-
ing for the duration of the HTTP request. These functions,
however, do not only need to have a short runtime, but also
need to have limited resource requirements. In those cases, an
oversubscribed queue (commonly used to enable interactive
jobs) can be used, which can be created and managed by
typical resource managers like Slurm.

In the other case, during an asynchronous function execution
the client would get an immediate HTTP response from the
API server. Here, the return code 202 would however only
mean that the request to execute the function was successfully
accepted from the API server. This allows for the established
TCP connection between the client and the API server to
be terminated. Therefore, the client process would only be
blocking for the duration of the initial communication with the
API server, but not for the entire time the function needs for
processing. However, this leaves the client without the optional
output data of the function, which might be required. This can
be solved on the client side by providing a callback URL in the
HTTP header when the initial REST request is made. The API
server would in that case make a callback to the client once
the function has finished. This is possible since the API server
offers statefulness of the functions. Since the API server itself
is not meant to handle large data transfers, usually S3 will be
used for these cases. Therefore, it might be advantageous to
implement some event handling using S3 rather than the API
server.

About the difference between synchronous and asyn-
chronous jobs which require access to the compute nodes that
are managed by a dedicated resource manager like Slurm it
can be stated from the HPC perspective that the synchronous
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case is using srun, whereas the asynchronous function call
is using sbatch.

For HPCSerA a single function configuration is
enough to execute the same function synchronously and
asynchronously. The client can then choose the mode
of execution at runtime and just distinguishes between
those modes by using a different Endpoint, i.e., either
the /<username>/function/<functionname>
for the synchronous execution, or the
/<username>/async-function/<functionname>
for the asynchronous execution.

C. Remotely Building Complex HPC Jobs

Offering a FaaS infrastructure based on HPC which enables
long-running, data intensive and highly parallelized functions
is a useful addition for those users who are already in the FaaS
ecosystem. There is, however, also the HPC-native user group,
where people would like to be able to access and use an HPC
system as before, just with a RESTful interface. In order to
combine these two scenarios, a closer look at the typical HPC
usage is necessary. The usual workflow for users working on
HPC systems can consist of several steps:

• The environment and binaries for the computation are
prepared. This is mostly done interactively on the fron-
tend.

• Input data for IO-intensive applications is staged on a fast
parallel filesystem prior to the job submission.

• Last changes to the batch script are done and the job is
submitted to the batch system.

• After job completion the results can be inspected and
possibly backed up.

Since there are no restrictions on the capabilities of the
functions, one can recreate the workflow described above
under two conditions:

• The execution of a function can depend on conditions.
• Code ingest needs to be supported.

The first condition is derived from the requirement that a job
can only be submitted to the batch system once its environment
is built and its input data is staged. There can also occur other
examples and more complex conditions. Since HPCSerA is not
in any way supposed to replace a workflow engine it is also not
supposed to handle complex conditions on its own. Therefore,
one can only add the condition to a function that it should
start only after one or more other functions have (successfully)
finished. The logic to determine whether a function call has
been successful or not has to be within the function itself.

In order to build complete end-to-end HPC jobs with this
mechanism these function calls need to be embedded in a
suitable data structure.

In Figure 3 it is shown that all function calls are organized
within a data structure called Job. A user has to first create
a new Job, which gets a unique JobID assigned by the
API server. Afterwards, a user can call functions within the
context of a Job. These function calls then get a Function-
ID associated to them. Conditions can be assigned to these

function calls, i.e., other functions within this Job structure
have to be (successfully) finished before this function can
start. This mechanism allows to build up a typical, multi-
step HPC job as described above, by calling consecutively
the exposed FaaS REST API. Independent function calls will
be executed concurrently. In our example, this applies to both
the Prepare Binary and Stage Input Data functions which have
no dependencies. Dispatch Batch Job, on the other hand, can
only be run once both previous function calls are completed.
Finally, Postprocess Data is run once all other function are
completed.

Alternatively, one can define a single HPC job in HPCSerA
using a single YAML file. In this case all functions need
to be known when submitting the job request to the API
server. If not specified, the functions are executed in the order
they appear in the YAML file, and an implicit dependency on
the previous function is assumed. In the consecutive buildup
where independent functions are called in the context of a job,
additional function calls can be issued to the same Job-ID at
a later time.

D. Virtual Function Calls

Since all dependencies that HPCSerA is supposed to resolve
should only cover the exit status of a function, i.e., with or
without error, a mechanism is needed to map more compli-
cated conditions onto this boolean. One example for such a
more complicated condition would be that a function should
only start after some special resource, like a certain block
device, was provisioned.

To cover these cases, one can define Virtual Functions.
These functions differ from normal functions in that they
do not need to be pulled by the agent and then need to be
executed. Instead these functions are only existing on the API
server. There they expose a REST endpoint, where from an ex-
ternal source the state of the Virtual Function can be changed.
This means that some external program can make a REST call
to that endpoint to set the state of the function to (successfully)
finished. This is an alternative, similar to the call-back URLs
provided by clients when triggering an asynchronous function.
When an external REST call is used, the necessity to execute
functions which do busy waiting to check if a certain condition
is met, can be avoided. However, functions which do busy
waiting can also be used in a straightforward manner, as long
as the necessary logic is implemented to differentiate between
the waiting state since the condition is not yet satisfied and
the failed state where the condition will be never satisfied.
In the latter case the function should be terminated with the
corresponding unsuccessful state. If a proper failure condition
can not be formalized, when a condition failed and will not be
met in the future, a final wall-clock time should be specified
after which the function is terminated and the state of the
function is unsuccessful.

E. Function Configuration

There are two different ways to configure and deploy a
function. The first option is to connect to the HPC system
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Example Job

Prepare Binary Stage Input Data

Dispatch Batch Job

Postprocess Data

Fig. 3. Sketch of a Job data structure in which three different functions with corresponding Function-ID’s are organized.

via SSH and prepare the executable which is called when the
function is triggered. This executable can be a binary, or a
shell script, for instance. In case a binary should be executed
within a certain environment, one can wrap the call of the
binary within a shell script. If more complex environments
are required, the executable can be packaged togteher with
its dependencies into a container, e.g., Singularity/Apptainer
[17] can be used. Once the function is configured within such a
SSH session, it can be called afterwards by the agent, therefore
it is also immediately available for the client on the API server.

The alternative is to configure a new function via the API
server, i.e., completely within the context of HPCSerA. For
this, all necessary files can be zipped or tarred, and sent
along with the configuration request, which is available on
a dedicated REST endpoint. The agent will then accept the
archive, unpack it into a temporary directory, and will execute
a preparation executable. This preparation executable can be
as simple as to just copy the the function executable into the
function directory of the agent. More complicated examples
may include some code which needs to be compiled. For large
files, like a Singularity/Apptainer container, it is recommended
to upload those via REST to an S3 Bucket. Then just passing
a preparation executable to the agent, which fetches this large
file from the remote bucket and places it in the necessary path
on the HPC system, is enough to configure such a function.

F. Passing Arguments to Functions

Some or even most functions will require that some
arguments are passed to them when calling them. These
can be passed to the API server of HPCSerA either as
Uniform Resource Locator (URL) query parameters, or as
a JSON file. In the first approach an arbitrary list of key
value pairs can be passed with the calling REST endpoint,
e.g., /<username>/function/<functionname>?k=val.
This call would forward the key k with the value val to
the function in two possible ways: Either the agent would
export an environment variable <PREFIX>_k with the value
val (where <PREFIX> can be set by the user) before
calling the executable corresponding to the called function or
alternatively, these key value pairs can be formatted into a
single command line string which is appended to the binary

call, as it is common when executing an executable on a
Linux shell.

In case a function requires more extensive arguments, this
previous discussed method is not handy anymore. Instead, one
can use a JSON file which is send along with the REST
request to trigger the function. This JSON file is then simply
forwarded from the API server to the agent which accepts the
JSON file and stores it locally. The file path can then be passed
as an argument to the function. Neither the API server, nor the
agent will in any way process the content of the JSON file. If
a function requires this kind of complex input data, the logic
needs to be implemented by the function itself or a wrapper
script.

G. Returning Output Data to the Client

When a function call is completed, the method of returning
its results depends on the mode of execution and the volume
of the produced data:

• For synchronously executed functions (cf. Section IV-B)
the results are available by the time of completion and
can be included in the HTTP response. If applicable, the
results can be completely included in the form of a JSON
structure produced by the function, e.g., for scripts that
query the status of the system, such as custom calls of the
batch system or storage CLI tools. Binary data, such as
base64-encoded BLOBs can be included, although for the
purpose we recommend, especially in the case of a high
volume of produced data, that the JSON structure merely
contains information about the location of the output data,
for example a file system path on shared storage or the
URL of an S3 bucket.

• If the function call is asynchronous, only information
about the data structures created on the API server can
be relayed, in particular the JobID. This has to be kept
on the client side and used for later status requests.

H. Error Handling

Since the functions have a state, which is managed by the
API server, and for instance distinguish between a successful
and an unsuccessful exit, the user-defined functions are ideally
able to distinguish between those states. However, some error
in the code execution itself is not the only error which can
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occur. It could also happen that during the function execution
the process is unexpectedly killed, or the host is suddenly
turned of, for instance due to a power outage. When the agent
is able to detect those interruptions, where a function stopped
processing without sending a proper exit code, it assumes that
a crash unrelated to that particular function has happened and
will trigger the function execution again. In order to support
this behaviour a function should be idempotent, i.e., it should
be possible to execute a function multiple times with the same
input parameters and it will always produce the same output.

I. External Job Dependencies

With a slight modification in the data structure describing
a job and the included functions, our architecture can support
medium-term storage of campaign data as well: The set of
subJobTypes was originally designed to be run in order, but
a more generic solution is given by implementing a directed
acyclic graph (DAG) of dependencies. Hereby each function
can define one or more dependencies on another function,
which can either exist in HPCSerA or represent an external
event via a virtual FunctionID. The latter is marked as
done via an external source, for example when campaign
storage or a data source is ready to be used as job input
data. This workflow is typically used for research projects
and can include dependencies between compute jobs, storage
provisioning and data migration. However, the conventional
linear chain of subJobTypes is still included as the special
case where each step depends on predecessor. As shown in
the first half of Figure 4 this variant is implemented via
dependencies between functions. However, in the more general
case, as depicted in the second half, multiple functions could
depend on the same prerequisite, in this case B1. If a subset
of the function calls is implemented via batch jobs and all
other dependencies pointing outside of the set are already
fulfilled, the corresponding subgraph can be submitted in one
step, thereby delegating further resolution of the remaining
dependencies to the batch system.

V. SECURITY ARCHITECTURE

We first analyze the potential security issues from our initial
architecture and describe an approach to address them via an
updated authorization and authentication process. Finally, each
step of the revised workflow is discussed individually.

A. Problem Statement

In the original architecture, static bearer tokens were used
for user authentication. There was one bearer token per user,
which means that each client, as well as each agent, authen-
ticated towards HPCSerA with the same token, compare [18,
III. B.]. Although considered state-of-the-art, this approach has
different security flaws which prevented a public deployment.
These security problems become apparent when particularly
taking into account that an access mechanism for an HPC
system is provided. One problem is that this single bearer
token can be used to access all endpoints, which means that

it can be used to perform any possible operation. This can be
maliciously exploited in two different ways:

• If that token is not properly guarded, an attacker can use
it to post a malicious job, to gain direct access to the
HPC system.

• If an attacker has escalated their privileges, the token used
by the agent is left vulnerable. If the user has authorized
that token to get access to more than one HPC system, the
attacker has immediately gained access to another cluster.

There are two different conclusions one can deduce from these
observations: First, it is a highly vulnerable step to allow code
ingestion via a RESTful service into an HPC system and one
has to take the chance of a token loss into account, when
designing such a system. Second, the agent sometimes only
needs the permissions to read queued jobs and to update the
state of a job, e.g., from queued to running. Therefore, it is
an unnecessary risk to allow a job ingress from the token of
an agent.

B. Improved Architecture

The separation of access tokens by the user who created
them and the services (clients and HPC agents) to which
they are deployed, as described in [18], already enables
revoking trust in a setup with multiple services and multiple
backend HPC systems easily. However, during operation, there
is global access to the entire state, i.e., in-flight jobs, to all
parties involved. In order to segment trust between groups
of services and HPC backends, our revised architecture (cf.
Figure 5) resolves this issue by introducing a dedicated tag
field into the design of the database for access tokens. Based
on this information, client services and HPC agents can be
authorized individually. Moreover, each token can be assigned
one or multiple roles that restrict the combination of Hypertext
Transfer Protocol (HTTP) endpoints and verbs which can be
used for all entities that have been created using the same tag.
The token’s individual lifetime is implied by the granted role.

User control over each individual task and job that is
allowed to be run or submitted, respectively, is enforced by
introducing an intermediate authentication step that requires
user interaction via an external application. This could be run
on a mobile device or hardware token, like the ones being
used for 2FA or integrated into the web-based user interface
used for token and device management for fast iterations on
the workflow configuration. Metadata about the action to be
authorized is included in the user prompt in order to allow an
informed decision. However, the measure is restricted to this
most critical step of the process, while non-critical endpoints,
such as retrieving the state of pending jobs, can continue to
respond immediately. For submitting a new job, the necessity
of individual user confirmation is also determined by whether
new code is ingested or an already existing job is merely
triggered to run on new input data.

From the user’s perspective, setting up the workflow would
start with logging into the web interface and creating tokens
for each service to be connected to the API and configuring
them in each client and agent, respectively. In order to acquire
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Fig. 4. Jobs with implicitly defined dependencies and a custom dependency DAG.

a minimal working setup, at least one token for the client
service and one for the agent communicating to the batch
system on the HPC backend system would be required. OAuth-
compatible clients could initiate this step externally, thereby
sidestepping the need for the user to manually transfer the
token to each client configuration. As soon as each client has
acquired the credentials either way, HPC jobs can be relayed
between each service and the HPC agent.

While the OAuth 2.0 terminology [19] allows a distinc-
tion between an authorization server, which is responsible
for granting authorization and creating access tokens, and
a resource server, which represents control over the entities
exposed by the API, in our case the tasks and batch jobs to
be run, both roles are assumed by our architecture, so the
design can be as simple as possible and deployed in a single
step. However, since the endpoints for acquiring access tokens
and the original endpoints that require these access tokens are
distinct, a separation into microservices (which again need to
be authenticated against each other) would also be compatible
with the presented design.

The steps necessary for code execution are illustrated in
Figure 5. As a preliminary, we assume that the HPC agent is
set up and configured with the REST service as an endpoint.
The arrows indicate the interactions and the initiator. The
individual steps are as follows:

1) The workflow starts by a user logging into the web
interface. The Single sign-on (SSO) authentication used
for this purpose has to be trusted, since forging the
user’s identity could allow an attacker to subsequently
authorize a malicious client to ingest arbitrary jobs.

2) The user can create tokens for the the REST service in
the WebUI.

3) The tokens are stored in the Token database (DB), along
with the granted role, project tag, and token lifetime.

4) The retrieved tokens can then be used by a client,
e.g., to run some code on the HPC system or have an
automatic process in place, provided the code is already
present on the system, rendering manual authentication
unnecessary.

5) The request is forwarded to the REST Service, which
verifies the information in the Token DB. On success,
the code to execute is forwarded to the HPC agent.

6) If the client chooses to use the OAuth flow instead in

order to avoid manual token creation, the authorization
request is forwarded to the Auth app instead.

7) The user can choose to confirm or deny the authorization
request. In the former case, the generated token is stored
(cf. step 3) in the Token DB. Again, further requests can
then in general proceed via step 5 without further user
interaction.

8) Like any other client, the HPC agent uses a predefined
token or alternatively initiates the OAuth flow in order
to get access to the submitted jobs.

9) For the most critical task of executing code on the HPC
frontend or submitting batch jobs, the agent can be
configured to get consent from the user by using the
Auth app for authentication.
This request is accompanied by metadata about the
job to be executed, such as a hash of the job script,
allowing an informed decision by the user. This step
also avoids the need for trust in a shared infrastructure,
since the authentication part can be hosted by each site
individually.

10) Once the user has confirmed execution, the HPC agent
executes the code, e.g., by submitting it via the batch
system. In this case, information about the internal job
status is reported back to HPCSerA.

We assume that the HPC agent is secure as otherwise the
system and user account it runs on are compromised and,
hence, could execute arbitrary code via the batch system
anyway. The Web-based User Interface (WebUI), HPC agent,
HPCSerA Service and Client are all independent components.
For example, a compromised REST Service could try to
provide arbitrary code to the HPC agent anytime or manipulate
the user’s instructions submitted via the client. However, as the
user will be presented with the code via the authenticator app
and can verify it similarly to 2FA, the risk is minimized.

There are multiple approaches to deploy HPCSerA across
multiple clusters and administrative domains:

a) Replication: Each center could deploy the whole
HPCSerA infrastructure which we develop (cf. Figure 5)
independently, maximizing security and trust. By adjusting the
endpoint URL, a user could connect via the identical client to
either the REST service at one or another data center – this is
identical to the URL endpoints in S3. Although the user now
has two independent WebUIs for confirming code execution
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on the respective data center, the authenticator and the identity
manager behind it could be shared. An additional advantage
of this setup would be that the versions of HPCSerA deployed
at each center could differ.

b) Shared Infrastructure: The maximum shared config-
uration would be that for each HPC system a user has to
deploy a dedicated HPC agent on an accessible node but all
the other components are only deployed once. As the HPC
agents register themselves with the REST service, now the
user can decide at which center they would like to execute any
submitted code. While using a single WebUI for many centers
and cloud deployments maximizes usability, it requires the
highest level of trust in the core infrastructure: If two of these
components are compromised, arbitrary code can be executed
on a large number of systems. However, authentication for
access to the WebUI via the user’s existing account from
their HPC center can be implemented as SSO using OpenID
Connect Federation.

VI. IMPLEMENTATION

In the following, more details about the technologies chosen
for our implementation are provided. Due to the conceptual-
ized architecture in Section V, this section has a focus on the
current scope definition and the authentication/authorization
scheme employed. Generally, the OpenAPI 3.0 [20] specifica-
tion, which is a language-agnostic API-first standard used for
documenting and describing an API along with its endpoints,
operations, request- and response-definitions as well as their
security schemes and scopes for each endpoint in YAML
format, was used to define the RESTful API. This API is
backed by a FLASK-based web application written in Python.
The token database is in a SQL-compatible format, thus
SQLite can be used for development and, e.g., PostgreSQL
for the production deployment. The database schema contains
only the user (user_id) and project (project_id) that
the token belongs to as well as the individual permission-level
(token_scope).

A. Definition of Access Roles

In order to give granular permissions for accessing each of
the endpoints, OpenAPI 3.0 allows to define multiple security
schemes providing different scopes to define a token matching
to the security level of each of the endpoints. Eight different
roles have been identified, which are listed and described in
Table I.

These roles are entirely orthogonal, which means they can
be combined as necessary. If, for instance, on one HPC system
only parameterized jobs needs to be submitted, the agent can
be provided with a token which has only the permissions of
role 2 and 3, thus lacking role 5, which is required to fetch
new files. Similarly, if a token is provided to a client which is
not 100% trustworthy, one can choose to only provide a token
with the role 6, i.e., to only allow to trigger a predefined job.
Important to understand is the difference in mistrust between
the role 3, 4, and 5. The security mistrust in role 4 comes from
the admins of the HPCSerA, who want to ensure that a code

ingestion is indeed done by the legitimate user. Therefore, in
order to allow code ingestion, the possession of a token with
the corresponding permission is not enough, the user has to
confirm the code ingestion via a 2FA. The mistrust in role 3
and 5 comes, however, from the user, who wants to ensure that
only jobs s/he confirmed are being executed. This is, again,
completely orthogonal, to the enforced 2FA in role 4 and can
be optionally used by the user. This fine-grained differentiation
between the different security implications of the discussed
endpoints minimizes user interference while providing a high
level of trust.

B. Providing Tokens via Decoupled OAuth

The introduction of OAuth-compatible API endpoints has
several advantages: Access tokens can be created on demand
in a workflow initiated by a client or HPC agent, respectively.
In addition, while there is a default API client provided, a
standard-compliant API enables users to easily develop drop-
in replacements.

It is important to note here that we modified the usual OAuth
authorization code flow, where a client gets redirected to the
corresponding login page to authorize the client. This “redirect
approach” has two problems:

• The client is a weak link, where the Transport Layer
Security (TLS) encryption is terminated and therefore
becomes susceptible to attacks and manipulation.

• It does not support a headless application, like the HPC
agent, which is not able to properly forward the redirect
to the user.

Due to these shortcomings, a modified OAuth flow was
developed to enable the usage of headless apps and improve
security. This modified version decouples the user confir-
mation from the client, which means that the client is not
being redirected but that the confirmation request is being
sent out-of-band, e.g., via the WebUI or via notification on
a smartphone device.

Starting with the case that the script does not already
come equipped with a token, analogous to the usual OAuth
flow, the generation of a token is requested. Since our use
case was initially built as an instance of machine-to-machine
interaction, i.e., headless, the issue of a lack of user interface
is encountered; the usual OAuth flow - implemented in the
browser - would redirect the user to an authorization server
where the user could actively provide their username and
password to the authorization server. The authorization server
would then return a code, in the case of the authorization
code flow, in the redirect URI, which would be posted in a
backchannel, along with a client secret assigned at the time of
registering the client to attain an access token.

In order to circumvent this headless-app problem, this
work has implemented a synchronous push notification system
analogous to the Google prompt where a notification is pushed
to a user’s device awaiting a confirmation to proceed. In the
Minimum Viable Product (MVP), we have implemented this
in the SSO-secured WebUI in order to have a more integrated
interface. Eventually, the final product will see an Android
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Fig. 5. A sketch of the proposed token-based authorization flow. The following parts are shown: 1) WebUI login 2) Connection to the HPCSerA service 3)
Storage of access tokens 4) Client connecting to the API 5) Validation of access tokens 6) Authorization request 7) User interaction with the Auth app 8)
HPC agent connecting to the API 9) Authentication request for code execution 10) Interaction with the HPC batch system.

TABLE I
DEFINITION OF THE EIGHT ROLES. OPERATIONS MARKED IN RED HAVE TO BE CONSIDERED SECURITY CRITICAL FROM THE ADMIN POINT OF VIEW,

WHEREAS THE ORANGE MARKED OPERATIONS FROM A USER POINT OF VIEW.

Role Number Role Description
1 GET JobStatus Client can retrieve information about a submitted job
2 UPDATE JobStatus Used by client/agent to update the job status
3 GET Job Endpoint used by the agent to retrieve job information
4 POST Code Client to ingest new code to the HPC sytsem
5 GET Code Agent pulls new code. Might be necessary to run new job
6 POST Job Client triggers parameterized job
7 UPDATE Job Client updates already triggered job
8 DELETE Job Client deletes already triggered job

and iOS app that receives such notifications. This flow then
grants the permission to execute a security critical operation,
compare Table I.

This confirmation via push notification cannot solely rely on
time-synchronicity since it would be susceptible to an attacker
requesting tokens and/or 2FA confirmation for carrying out a
security-critical operation in the same approximate time frame.
Therefore, a sender constraint has to be implemented. This
is done in a similar way to the original authorization code
flow: The access code is signed with a client secret which
was configured with HPCSerA prior to the execution of this
workflow, and then sent to HPCSerA. HPCSerA verifies the
secret and only then sends the actual token. This secret is
implemented using public-private key pairs, where the public
key is uploaded to HPCSerA in the initial setup to register a
new client (or agent).

Alternatively, in the case that a token is supplied along with
the software or script that is submitting a job to the HPCSerA
API, the permissions are validated against a token database.
In the case that the token provided contains permissions for
accessing a sensitive endpoint, the second factor check is trig-

gered through the WebUI and the notification / confirmation
process is once again undergone. It is important to note that
this is not a hindrance since already-running jobs and non-
sensitive endpoints proceed without user-intervention.

C. Mapping of Roles to Functions

In order to provide the user with a FaaS interface which is
capable of handling automated machine-to-machine commu-
nication of headless apps the previously defined roles need
to be mapped on the FaaS endpoints. The most important
differentiation is still between the POST_Job role and the
POST_Code role. The latter is required, when a user wants
to configure a new function via the API server. Here, the user
can upload new code either directly as an archive, or via an
external storage. Therefore, the configuration of a new function
corresponds to the POST_Code role. The client making that
request needs to have this elevated access rights.

On the other hand, simply triggering the execution of
an already configured job, for instance on new input data,
corresponds to the POST_Job role. As shown in Table I, this
role is not security sensitive. Thus, it can be used by a client
without any manual interaction as long as the client has a
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token with the corresponding role. Therefore, HPCSerA can
support automated FaaS functionality towards its client.

The agent side was not considered critical for the admins,
but optionally critical for the users if they distrust the API
server, if they want to implement their own 2FA mecha-
nism here. To support the previously discussed endpoints,
the client needs to either use the GET_Job role to receive
the request to execute a function, or the GET_Code role to
pull some new code and to configure a new function. The
agent would then also require the GET_JobStatus role and
the UPDATE_JobStatus role to manage the state of the
functions, which is maintained on the API server. Via the
UPDATE_JobStatus role the output data of a function can
be send to the requesting client. The client would then also
need the UPDATE_JobStatus role in order to be allowed
to receive the output data.

D. Assigning Roles to Clients and Agents

The fine-grained distinction between those different roles,
as discussed in Section VI-C, is an important part to provide
the highest level of security while enabling a high degree of
automation. This means especially that users should only use
tokens with the minimum roles attached to them. For instance,
if a user will configure functions always manually within
a SSH session, the token of the agent should not have the
GET_Code role enabled. Users define the roles of the tokens
in the current setup within the WebUI. Here, users can either
check the needed roles, create a token, and copy it out of the
WebUI or they can, upon request from a client or agent via the
presented detached OAuth flow, choose which roles should be
associated to the token which will be created. Once a token
has been created, it can also be revoked if it is not needed
anymore or a potential breach is assumed.

VII. USE-CASES

Due to the previously stated changes in the architecture,
there are certain adaptions in the previously presented use
cases [18]. These changes will be discussed in the following
and serve as the basis for a broader user impact analysis.

A. GitLab CI/CD

Since the GitLab Runner can be configured to run arbitrary
code without including secrets in the repository, thanks to
GitLab’s project Continuous Integration and Integration De-
velopment (CI/CD) variables [21], the required tokens can be
made available to the CI/CD job so it can in turn access the
API endpoints required to transmit the current repository state
to an HPC system where the code can be tested using the HPC
software environment or even multiple compute nodes.

A new commit might of course introduce arbitrary code to
the HPC environment, therefore it is advisable to enforce the
extra authentication step (cf. Section V-B), when code from a
new commit is submitted to the HPC system. The correspond-
ing hash, available by default via the GIT_COMMIT_SHA
variable, would be a helpful piece of information to display
to the user when asking to authorize the request.

B. Workflow Engine

In the workflow use case, HPC jobs should be fully auto-
mated without user interaction. Due to multiple repetitions and
time dependencies, interactions severely limit the functionality
and practicability of the workflow. One possibility is to prepare
the workflow in such a way that only parameterized jobs are
called and thus only safe endpoints of HPCSerA are used. An-
other possibility is to use dedicated (legacy) endpoints that are
only accessible through firewall regulations and fixed network
areas. The latter can also be regulated via an additional proxy
server, such as a nginx.

There are various levels where dependencies between jobs
can be managed. The following descriptions and examples
refer to Figure 6:

1) Dependency resolution can be completely handled by
the workflow engine. In this case, workflow tasks are
submitted as individual jobs via HPCSerA. If there is a
dependency between two jobs that require a batch job
to finish, on completion of the first cluster job the agent
updates the job state on the API server from which the
workflow engine eventually obtains the new state. In our
example, this is the requirement to proceed from Task I
to the dependent Task II. Only then can the second job
be submitted to the API and if finally retrieved by the
agent and submitted to the batch system. In conclusion,
this variant is the easiest to implement but involves a
high amount of latency for resolving job dependencies.

2) For jobs that are submitted with multiple Function-
IDs, the API Server will handle dependencies by only
providing function calls to the HPC agent for which all
function calls on which they depend have been success-
fully completed. Comparing to the previous scenario,
once the agent has marked the last batch job of Job A
(A2 in our example) as completed, the function status
of A2 on the API server is updated and the next one
(function A3) can be immediately retrieved and run.
While the dependency chain has to be implemented by
building more complicated calls to the REST interface,
there is no back and forth communication with the client
contributing to the latency.

3) In view of Section IV-I the most low-latency resolution
of job dependencies occurs when multiple Function-IDs
which contain batch jobs are presented by the API server
to the Agent. In this case, the completed first batch job
(A1) directly leads to the scheduling of the second batch
job (A2) by the batch system without interference from
any HPCSerA components.

C. Data Lake

In order to provide high-performance computing capabilities
to a data lake [22], HPCSerA is used to submit jobs on behalf
of the data lake users. A user sends a so-called Job Manifest to
the data lake, where the software, the compute command, the
environment, and the input data are unambiguously specified.
By transferring the responsibility of scheduling the job from
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Fig. 6. Overview of the levels at which function dependencies can be resolved.

the user to the data lake, it has the control about it. This
allows to reliably capture the data lineage and to foster
reproducibility. The added benefit of the newly implemented
security measures in HPCSerA is that users had to trust the
data lake, and hereby the admins, with their bearer tokens
before. By introducing OAuth and enforcing 2FA for code
ingestion, this is not necessary anymore, since users now need
to confirm each submission. Since users submit jobs actively,
for instance via a Jupyter Notebook using a PythonSDK, the
requirement to confirm each submission does interrupt the
workflow too much.

VIII. CONCLUSION AND FUTURE WORK

In the paper presented here, we have examined the issue of
security in accessing HPC resources via a RESTful API. The
initial situation with a very simplified token model does not
meet the requirements. Therefore, a fine-granular token model,
coupled with interactive user consent and OAuth flows, was
proposed. With this new model, particularly critical interac-
tions, such as code transfer, can be secured. User consent is
requested in a prototype via a WebUI, which in turn uses a
central Identity Management (IDM) for authentication. This
means that no critical user-specific data needs to be managed.

Moreover, we presented an extension on the execution
models that are possible in our architecture by supporting a
Function as a Service (FaaS) idiom. Here users can define
dependencies between function calls and choose between
synchronous and asynchronous execution in analogous way to
how HPC jobs can be immediately run on an oversubscribed
queue vs batched for running with guaranteed resources.

Compared to the related work discussed in Section II, this
paper presents a RESTful API which does not require the
users to provide full SSH access to a potentially untrusted
API server, as it is required in [12], [13]. Instead, using
an agent which pulls from user space the incoming tasks
guarantees that the user alone stays in full control the entire
time. This approach is paired with a fine-granular role-based

access model, and a novel authorization flow to enable OAuth-
like authorization for headless applications. This mechanism
allows automated workflows to access an HPC system to
execute pre-configured tasks on new input data while still
enforcing a similar security level to an SSH access with 2FA
enabled.

In future work, the possibilities for obtaining user consent
will be further analyzed. The development of mobile apps is
planned, which will greatly simplify the consent workflow for
the user. This is supposed to extend the currently used consent
mechanism based on a WebUI. So far, the focus has been on
the transmission and execution of code. However, there is also
a requirement to transmit data objects that are necessary for
execution. Therefore, it is examined to what extent the current
implementation is suitable for such tasks and where possible
limits are reached in terms of data quantity and transmission
speed.

In addition, the FaaS approach lends itself well to collecting
statistics about the frequency of function calls as well as
metrics about their runtime behaviour. The most convenient
way of presenting this information to the user would be inside
the Web UI that is already required in our architecture for
project and token management.

It would be advantageous to ease the configuration process,
ideally to a degree where a user can just insert some code in the
web interface of the API server. The agent would need to be
extended to automatically work with predefined templates for
different languages. For example, if a user inserts Python code
in the interface, the agent would prepare a virtual environment
with the necessary modules and insert the Python file in
the correct place and transparently manage the corresponding
environment information.
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[1] M. H. Biniaz, S. Bingert, C. Köhler, H. Nolte, and J. Kunkel, “Secure
Authorization for RESTful HPC Access,” in INFOCOMP 2022, The
Twelfth International Conference on Advanced Communications and
Computation, C.-P. Rückemann, Ed., 2021, pp. 12–17.

[2] J. Decker, P. Kasprzak, and J. M. Kunkel, “Performance evaluation of
open-source serverless platforms for kubernetes,” Algorithms, vol. 15,
no. 7, p. 234, 2022.

[3] Z. Wang et al., “RS-YABI: A workflow system for Remote Sensing
Processing in AusCover,” in Proceedings of the 19th International
Congress on Modelling and Simulation. MODSIM 2011 - 19th
International Congress on Modelling and Simulation - Sustaining Our
Future: Understanding and Living with Uncertainty, 2011, pp. 1167–
1173.

[4] A. K. Singh and S. D. Sharma, “High Performance Computing (HPC)
Data Center for Information as a Service (IaaS) Security Checklist:
Cloud Data Governance.” Webology, vol. 16, no. 2, pp. 83–96, 2019.

[5] J.-K. Lee, S.-J. Kim, and T. Hong, “Brute-force Attacks Analysis against
SSH in HPC Multi-user Service Environment,” Indian Journal of Science
and Technology, vol. 9, no. 24, pp. 1–4, 2016.

[6] T. Ylonen, “SSH - Secure Login Connections Over the
Internet,” in Proceedings of the 6th USENIX Security Symposium
(USENIX Security 96). San Jose, CA: USENIX Association,
Jul. 1996, pp. 37–42, [accessed: 2022-03-21]. [Online]. Available:
https://www.usenix.org/conference/6th-usenix-security-symposium/
ssh-secure-login-connections-over-internet

[7] J. Buchmüller et al., “Extending an open-source federated identity
management system for enhanced hpc security.”

[8] OpenFaaS. (2022) Invocations. [accessed: 2022-12-13]. [Online].
Available: https://docs.openfaas.com/architecture/invocations/

[9] P. Calegari, M. Levrier, and P. Balczyński, “Web portals for high-
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