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Abstract—The Transmission Control Protocol/Internet Proto-
col (TCP/IP) based firewall is a notorious non-evolvable system.
Changes to the firewall often result in unforeseen side effects,
resulting in the unavailability of network resources. The root
cause of these issues lies in the order sensitivity of the rule base
and hidden relationships between rules. It is not only essential
to define the correct rule. The rule must be placed at the right
location in the rule base. As the rule base becomes more extensive,
the problem increases. According to Normalized Systems, this is
a Combinatorial Effect. In previous research, an artifact has been
proposed to build a rule base from scratch in such a way that
the rules will be disjoint from each other. Having disjoint rules
is the necessary condition to eliminate the order sensitivity and
thus the evolvability issues. In this paper, an algorithm, based
on the Iterated Local Search metaheuristic, will be presented
that will disentangle the service component in an existing rule
base into disjoint service definitions. Such disentanglement is a
necessary condition to transform a non-disjoint rule base into a
disjoint rule base. The math behind the algorithm is presented,
a demonstration using multiple firewall exports from a real
operational environment is provided and the implications of the
artifact are discussed.

Index Terms—Firewall; Rule Base; Evolvability; Metaheuristic;
Iterated Local Search.

I. INTRODUCTION

This paper is an extended version of [1], and applies the
researches discussed in [1] to operational firewall exports
provided by Engie (an utilities multinational at which one of
the author works). This paper also provides additional insights
in the implications of using the research in an operational
environment, as discussed in the PhD dissertation of one of
the authors [2].

The TCP/IP based firewall has been and will continue
to be an essential network security component in protecting
network-connected resources from unwanted traffic. The in-
creasing size of corporate networks and connectivity needs has
resulted in firewall rule bases increasing considerably. Large
rule bases have a nasty side effect. It becomes increasingly
difficult to add the right rule at the correct location in the
firewall. Anomalies start appearing in the rule base, resulting
in the erosion of the firewall’s security policy or incorrect

functioning. Making changes to the firewall rule base becomes
more complex as the size of the system grows. An observation
shared by Forrester [3] and the firewall security industry [4]
[5]. A more detailed literature review on the topic can be found
in [6].

Normalized Systems (NS) theory [7] defines a Combinato-
rial Effect (CE) as the effect that occurs when the impact of
a change is proportional to the nature of the change and the
system’s size. According to NS theory, a system that suffers
from CE is considered unstable under change or non evolvable.
A firewall suffers from CE. The evolvability issues are the root
cause of the growing complexity of the firewall as time goes
by.

The order sensitivity plays a vital role in the evolvability
issues of the rule base. The necessary condition to remove
the order sensitivity is known, being non-overlapping or dis-
joint rules. However, firewall rule bases do not enforce that
condition, leaving the door open for misconfiguration. While
previous work investigates the causes of anomalies [8] [9],
detecting anomalies [10] [11] [12] and correcting anomalies
at the time of entering new rules in the rule base [10], to the
best of our knowledge and efforts, no work was found that
tries to construct a rule base with ex-ante proven evolvability
(= free of CE). While previous methods are reactive, this work
proposes a proactive approach.

Issues with evolvability of the firewall rule base induce
business risks. The first is the risk of technical communication
paths not being available to execute business activities prop-
erly. The second is that flaws in the rule base may result in
security issues, making the business vulnerable for malicious
hacks resulting in business activities’ impediment.

In this paper, we propose an artifact, an algorithm, that
aims at converting an existing non-evolvable rule base into
an evolvable rule base. Design Science [13] [14] is suited for
research that wants to improve things through artifacts (tools,
methods, algorithms, etc.). The Design Science Framework
(see Figure 1) defines a relevance cycle (solve a real and
relevant problem) and rigor cycle (grounded approach, usage
of existing knowledge and methodologies).
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Fig. 1. The Design Science Framework - from [13] .

The Design Science Process (see Figure 2) guides the
artifact creation process according to the relevance and rigor
cycle. What follows is structured according to the Design
Science process.

Fig. 2. The Design Science Process - from [14].

Section II introduces the basic concepts of firewalls, firewall
rule relationships, Normalized Systems, and the evolvability
issues of the firewall. In Section III, we will discuss the
requirements for an algorithm that will transform a non-
evolvable rule base, into an evolvable rule base. Section IV
will build the different components of the proposed algorithm
using the Iterated Local Search metaheuristic. In Section V,
the algorithm will be demonstrated with real operational data.
In Section VI, we evaluate and discuss our findings and we
wrap-up with a conclusion in Section VII.

II. PROBLEM DESCRIPTION

The first part of this section will explain how a firewall
works and the concept of firewall group objects. The second
part will discuss the relationships between firewall rules and
introduces the Normalized Systems theory.

Fig. 3. Firewall concepts.

A. Firewall basics

An Internet Protocol Version 4 (IP4) TCP/IP based firewall,
located in the network path between resources, can filter traffic
between the resources, based on the Layer 3 (IP address) and
Layer 4 (TCP/UDP ports) properties of those resources [15].
UDP stands for User Datagram Protocol and is, next to TCP, a
post based communication protocol at the 4th level of the Open
Systems Interconnection Model (OSI Model) [16]. Filtering
happens by making use of rules. A rule is a tuple containing
the following elements: <Source IP, Destination IP, Protocol,
Destination Port, Action>. IP stands for IP address and is a
32-bit number that uniquely identifies a networked resource on
a TCP/IP based network. The protocol can be TCP or UDP.
Port is a 16-bit number (0 - 65.535) representing the TCP or
UDP port on which a service is listening on the 4th layer of
the OSI-stack.

When a firewall sees traffic coming from a resource with IP
address =<Source IP>, going to resource =<Destination IP>,
addressing a service listening on Port = <Destination port>,
using Protocol = <Protocol>, the firewall will look for the
first rule in the rule base that matches Source IP, Destination
IP, Protocol and Destination Port, and will perform an action =
<Action>, as described in the matched rule. The action can be
“Allow” or “Deny”. See Figure 3 for a graphical representation
of the explained concepts. A firewall rule base is a collection
of order-sensitive rules. The firewall starts at the top of the
rule base until it encounters the first rule that matches the
traffic. In a firewall rule, <Source IP>, <Destination IP>,
<Destination Port> and <Protocol> can be one value or a
range of values. In the remainder of this paper, protocol and
port are grouped together in service (for example, TCP port
58 or UDP port 58 are 2 different services).

The firewalls discussed in this work are stateful, meaning
that filtering happens on inbound traffic (towards the destina-
tion), but that the same firewall does not require rules to allow
the response from the destination to the source. The firewall
keeps track of the allowed inbound traffic and by default allows
the response toward the source. In a stateless firewall this is
not the case. A more elaborate discussion about the impact of
inbound and outbound traffic on the evolvability of the firewall
can be found in [2].
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B. Firewall group objects

Rules containing IP addresses for source/destination and
port numbers, are difficult to interpret by humans. Modern
firewalls allow the usage of firewall objects, called groups,
to give a logical name to a source, a destination, or a port,
which is more human-friendly. Groups are populated with IP
addresses or ports and can be nested. The groups are used in
the definition of the rules. Using groups should improve the
manageability of the firewall. See Figure 4 for an example.

Fig. 4. Firewall concepts, including groups.

C. Firewall rule relationships

Based on [11], the relationships between rules and rule
components are defined as follows:

• Field: A field in a rule is defined as a source, destination
or service. A field is a set of values, with a minimum of
size one.
Example: The source field of a rule contains 3 IP
addresses/values - (10.10.10.1, 10.10.10.2, 10.10.10.3)

• Equal Fields: Two corresponding fields of two rules are
equal if the set of values of the fields are the same.
Example: The source field of a rule R1 and source field
in rule R2 contain the same 3 IP addresses - (10.10.10.1,
10.10.10.2, 10.10.10.3)

• Inclusive Fields: Two corresponding fields of two rules
are inclusive if the set of values of the field of the first
rule are a subset of, but not equal to, the second rule
field’s set of values.
Example: The source field of R1 contains (10.10.10.1,
10.10.10.2) and the source field of R2 contains
(10.10.10.1, 10.10.10.2, 10.10.10.3). The IPs (10.10.10.1,
10.10.10.2) are a subset of (10.10.10.1, 10.10.10.2,
10.10.10.3). The source field of R1 is inclusive with
regards to the source field of R2.

• Correlated Fields: Two corresponding fields of two rules
are correlated if there are some values, but not all, of the
field of the first rules that are equal to some values, but
not all, of the field of the second rule. The intersection
between the sets of values of the fields is not empty, but
the fields are not equal or inclusive either.

Example: The source field of R1 contains (10.10.10.1,
10.10.10.2, 10.10.10.3) and the source field of R2 con-
tains (10.10.10.2, 20.20.20.20, 30.30.30.30). The two
source fields are correlated as they intersect with the IP
10.10.10.2.

• Distinct Fields: Two corresponding fields in two rule
are distinct if they are not equal, not inclusive or not
correlated. The intersection between the sets of values of
the fields is empty.
Example: Source field (10.10.10.10) of rule R1 and
source field (10.10.10.100) of rule R2 are distinct.

• Matching Fields: Two corresponding fields in two rules
match if they are equal or inclusive.
Example: Source field of R1 = (10.10.10.1, 10.10.10.10)
and the source field of R2 = (10.10.10.1, 10.10.10.10,
10.10.10.30), are matching.

• Exactly Matching Rules: Rules R1 and R2 are exactly
matched if every field in R1 is equal to the corresponding
field in R2.
Example: Rule R1: (source = (10.10.10.10); destina-
tion = (20.20.20.20); service = (TPC 100); action =
allow) and R2: (source = (10.10.10.10); destination =
(20.20.20.20); service = (TPC 100); action = deny), are
exactly matching rules.

• Completely Disjoint Rules: Rules R1 and R2 are com-
pletely disjoint if every field in R1 and R2 is distinct.
Example: Consider rule R1: (source = (10.10.10.10);
destination = (20.20.20.20); service = (TPC 100); ac-
tion = allow) and rule R2: (source = (30.30.30.30,
30.30.30.21); destination = (40.40.40.40, 40.40.40.41);
service = (TPC 200,201); action = deny). Both rules are
completely disjoint.

• Partially Disjoint Rules or Partially Matching Rules:
Rules R1 and R2 are partially disjoint (or partially
matched) if there is at least one field in R1 and R2 that
is distinct. The other fields can be equal, inclusive or
correlated.
Example: Consider rule R1: (source = (10.10.10.10);
destination = (20.20.20.20); service = (TPC 100); action
= allow) and rule R2: (source = (10.10.10.10); des-
tination = (40.40.40.40, 40.40.40.41); service = (TPC
100,201); action = deny). R1 and R2 are partially
disjoint, as destination is a distinct field.

• Inclusively Matching Rules: Rules R1 and R2 are
inclusively matched if there is at least one field that is
inclusive, and the remaining fields are either inclusive or
equal.
Example: Consider Rule R1: (source = (10.10.10.10);
destination = (20.20.20.20); service = (TPC 100); action
= allow) and R2: (source = (10.10.10.10, 10.10.10.11);
destination = (20.20.20.20, 20.20.20.21); service = (TPC
100); action = deny). Then rule R1 inclusively matches
rule R2.

• Correlated Rules: Rules R1 and R2 are correlated there
is at least one field that is correlated, while the remaining
fields are either equal or inclusive.
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Example: Consider rule R1: source = (10.10.10.10,
10.10.10.11); destination = (20.20.20.20, 40.40.40.41 );
service = (TPC 100); action = allow) and rule R2:
(source = (10.10.10.10); destination = (40.40.40.40,
40.40.40.41); service = (TPC 100,201); action = deny).
Rules R1 and R2 are correlated.

Figure 5 represents the different relations in a graphical
manner. Exactly matching, inclusively matching and correlated
rules can result in the following firewall anomalies [10]:

• Shadowing Anomaly: A rule Rx is shadowed by another
rule Ry if Ry precedes Rx in the policy, and Ry can
match all the packets matched by Rx. The result is that
Rx is never activated.

• Correlation Anomaly: Two rules Rx and Ry can cause a
correlation anomaly if, the rules Rx and Ry are correlated
and if Rx and Ry have different filtering actions.

• Redundancy Anomaly: A redundant rule Rx performs the
same action on the same packets as another rule Ry so
that if Rx is removed the security policy will not be
affected.

A fully consistent rule base should only contain disjoint
(completely or partial) rules. In that case, the order of the
rules in the rule base is of no importance, and the anomalies
described above will not occur [8] [9] [10] . However, due
to several reasons such as unclear requirements, a faulty
change management process, lack of organization, manual
interventions, and system complexity [13], the rule base will
include correlated, exactly matching, and inclusively matching
rules, and thus resulting in evolvability issues.

Fig. 5. Possible relationships between rules (from [11]).

D. Normalized Systems concepts

Normalized Systems (NS) theory [7] [17] originates from
the field of software development. NS theory takes the con-
cept of system theoretic stability from the domain of classic
engineering to determine the necessary conditions a modular
structure of a system must adhere to in order for the system to
exhibit stability under change. Stability is defined as Bounded
Input results in Bounded Output (BIBO). Transferring this
concept to software design, one can consider bounded input
as a certain amount of functional changes to the software
and the bounded output as the number of effective software

changes. If the amount of effective software changes is not
only proportional to the amount of functional changes but also
the size of the existing software system, then NS theory states
that the system exhibits a CE and is considered unstable under
change.

NS theory proves that, in order to eliminate CE, the software
system must have a certain modular structure, were each
module respects four design rules. Those rules are:

• Separation of Concern (SoC): a module should only
address one concern or change driver.

• Separation of State (SoS): a state should separate the use
of a module by another module during its operation.

• Action Version Transparency (AVT): a module, perform-
ing an action should be changeable without impacting
modules calling this action.

• Data Version Transparency (DVT): a module performing
a certain action on a data structure, should be able to
continue doing this action, even is the data structures has
undergone change (add/remove attributes).

NS theory can be used to study evolvability in any system,
which can be seen as a modular system and derive design
criteria for the evolvability of such a system [18] [19].

III. REQUIREMENTS FOR THE SOLUTION

In [1] [2] [6] the necessary conditions for an evolvable
firewall rule base are discussed. All the rules in the rule base
must be disjoint or partially disjoint from each other. In [6]
an artifact, a method, is proposed to create disjoint rules.
Following the method will result in a firewall rule base that is
free from CE for ADD and REMOVE changes.

For a given network N, containing Cj sources and Hj
destinations, offering 217 services (protocol/port) (= the max
amount of possible UDP and TCP ports according to the
TCP/IP V4 standard), and having a firewall F between the
sources and the destinations, it can be shown (see [6]) that
fmax is the number of possible rules (including both ”allow”
and ”deny” rules) that can be defined on the firewall F (the
solution space):

fmax = 2.

(
Hj∑
a=1

(
Cj

a

))
.

(
Hj∑
a=1

(
Hj

a

))
.

 217∑
k=1

(
217

k

)
(1)

where Cj and Hj are function of N: Cj = fc(N) and Hj =
fh(N)

Out of this design space, the amount of firewall rules that
will exhibit ex-ante proven evolvability are the explicit ”allow”
rules that are disjoint, and it equal to:

fdisjoint = Hj.2
17 (2)

where Hj is the number of hosts connected to the network. Hj
= fh(N) and 217 the max amount of services available on a
host.

Applying the artifact drastically reduced the solution space.
The artifact describes the green-field situation; building a rule
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base from scratch. The luxury of a green-field is often not
present. We require a solution that can convert an existing rule
base, into a rule rule base that only contains disjoint rules. Of
course, the original filtering strategy expressed in the rule base
must stay the same. From [1] [2] [6] we know that we require
disjoint service definitions. If we can disentangle the service
definitions, and adjust the rules accordingly, we have our basic
building block for a disjoint rule base. For each disjoint service
definition, we need to create as many destination groups as
there are host offering that service (lookup in rule base),
and for each host-service combination, we require one source
group definition. All components are then present to expand a
non-evolvable rule base into a normalized evolvable rule base.
Figure 6 visualizes what we want the solution to do.

Fig. 6. Algorithm objective.

IV. ARTIFACT DESIGN

In this section we will discuss a different artifact, the brown-
field artifact, that will convert a non evolvable rule base into an
evolvable rule base, by disentangling the service definitions.
The different components that comprise the algorithm will be
discussed in dept. We begin by rationalizing the choice for
Iterated Local Search (ILS) as metaheuristic [20] [21] [22].
We will discuss the nature of the initial solution, the set of
feasible solutions, and the objective function associated with
a solution. We continue by defining the move type, move
strategy, perturbation and stop condition of the Iterated Local
Search. The final part of this section provides a high level
algorithm that represents the brown-field artifact.

A. Metaheuristic Selection

The objective is to disentangle/reshuffle the service defini-
tions into a set of new service definitions that are disjoint but
maximally large. The simplest solution is to create one service
definition per port. However, some ports belong together to
deliver a service. This filtering logic is embedded in the rule
base and service definitions. It must be preserved.

Service definitions containing ports that appear in multiple
service definitions must be split into non-overlapping service

definitions. The result should be that the degree of overlap
(or disjointness) of all service definitions decreases as more
service definitions are split.

Let us say that a user measures the degree of disjointness
of the entirety of the service definitions (pre-change and post-
change) and then observes a post-change improvement in the
degree of disjointness. It would be correct to conclude that the
change represents an improvement to the previous version.

A Local Search (LS) heuristic is a suitable method for
organizing such gradual improvement processes. To avoid
getting stuck in a local optimum (see further), the Local Search
will be upgraded to an Iterated Local Search. The Iteration
component should result in avoiding becoming stuck in a local
optimum where we can no longer perform splits and improve
the disjointness. The Iteration component should perform a
special kind of split called a ”perturbation” that will allow the
continuation of the search for improvement.

B. Initial Solution and Neighborhood

The initial solution is the rule base containing all of the
service definitions. It is the rule base with all the service defi-
nitions. The set of all service definitions is our neighborhood.
We will have to pick a service definition, confirm whether or
not it is disjoint and, if not, split it and see how this affects
the solution - that is whether or not disjointness has improved.
The solution space (SP) for the service definitions consists of
all possible combinations of ports. If the number of distinct
ports in the service groups equals P, then the SP is:

SP =

P∑
k=1

(
P
k

)
(3)

P can be max 217. We are looking to find a new solution that
is part of the solution space, in which all service definitions
are disjoint yet grouped within groups of maximum size.

C. Objective Function

To know whether or not the splitting of a service definition
results in improving the solution, we need a mechanism to
express the degree of disjointness of a service definition and
of the total rule base.

Let p represent a service port.

Let S be a set of ports, representing a service definition.
S = { p1...pnS}
where| S | = nS = number of ports in the service definition.

Let σ be the set of all service definitions Si used in
the firewall rule base.
σ = {S1...Snσ}
where| σ | = nσ= number of service definitions

Let PF(px)σ be the port frequency of port px in σ, as
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the number of times px is used in services of σ.

PF(px)σ =

nσ∑
i=1

| Si ∩ px | (4)

We define the Disjointness Index DI(Sx)σ , of a service
definition Sx, in σ as the sum of the port frequencies PF(px)σ
of the ports px of Sx, divided by the number of ports in Sx.

DI(Sx)σ =

∑nx
i=1 PF (px)σ

nx
(5)

where nx = | Sx |= number of ports in Sx.

A disjoint service is a service whereby each port p appears
in only one service definition. The DI of a disjoint service will
have a value of 1 and a value greater then 1 if the service is
not disjoint.

We define the Objective Function OFσ , in σ, as the sum
of all DI(Sx)σ and of all service definitions in σ.

OFσ =

nσ∑
i=1

DI(Si)σ (6)

with nσ the number of service definitions in the solution.

We define an Optimal Solution as a solution where OFσ
equals the number of service definitions, as this means that
all DI of all service definitions are equal to 1.

OFσ =| σ | (7)

An Optimal Solution is not necessarily a Global Optimum
as making service definitions of one port would also yield an
objective function value that is equal to the total number of
service definitions.

D. Feasible Solutions

Whatever kind of splits we will be performing, the original
filtering logic of the rule base must be maintained. When a
service is split, all rules that contain this service must to be
modified. The original service must be replaced by the result
of the split. As we want a rule to contain only one service
definition, it may be required to split the rules containing the
split result.
Example: R1 contains service Sx. Sx is split into Sx1 and Sx2.
To reflect this, we replace Sx with Sx1 and Sx2 in rule R1.
However, a rule must only contain one service. R1 needs to be
split into R1.1 and R1.2, where R1.1 is a copy of R1 but with
Sx being replaced by Sx1, and R1.2 is a copy of R1 but with
Sx being replaced by Sx2. Both rules are put in consecutive
locations in the rule base.

E. Move Type

Before we decide on the move type, we must first investigate
the impact that splitting of service definitions has on the
objective function. Based on this analysis, a selection of type
of split (move type) will be made.

1) The Impact of Splitting Service Definitions on the OF:
A service definition can:

• be a subset of existing service definitions.
• be the superset of existing service definitions.
• be partially overlapped with other service definitions.
• be a combination of the above.

Let Sca be the candidate service we will split.{
Sca = {p1...pnca}
nca = | Sca | = number of ports in the Sca

Let Sco be an arbitrary set of ports that are part of Sca, making
up the new service Sco, that is to be extracted from Sca.

Sco = {pj...pj+nco}
nco = | Sco | = number of ports in the Sco.
Sca∩Sco = {pj...pj+nco}
|Sca∩Sco|=nco

Let S’ca be the new service comprised of ports that are part of
Sca but not of Sco. S’ca is what is left of Sca, after splitting-up
or carving-out Sco{

S’ca = Sca\Sco = {p1...pj-1, pj+nco+1,...pnca}
| S’ca | = nca - nco

Let σSca
be the set of services that contains ports that are

also part of service Sca.
σSca

= {SV1...SVn}
∀SVx x=1→n |
* |Sca∩SVx|≠ ∅
* | SVx | = Vnx
* |Sca∩SVx | = qx = the amount of port overlap between Sca and SVx

See Figure 7 for a visual representation of these definitions.

When the split or carve-out of Sco from Sca is performed, the
port frequencies, the DI and the OF change, depending on
the effect of the split. We shall now investigate under which
conditions the split will improve the objective function.

Let σB be the set of services before the split and σA

be the set of services after the split. We want to know which
conditions will improve the Objective Function, or

∆OF = OFσB
− OFσA

> 0

∆OF > 0 means OF improved (=lowered).
∆OF < 0 means OF deteriorated (=increased).

Sco is a random subgroup of Sca, meaning not necessarily
part of σB . Subsequent to a split Sca becomes S’ca. Both S’ca
and Sco are part of σA.

There are three possible cases:
• S’ca and Sco also exist in σB . The split results in two ex-

isting services. We merge them into the existing services
— the split results in a reduction of the total number of
services with 1.
| σA | - | σB | = -1
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Fig. 7. Split example

• S’ca or Sco exists in σB . The split results in a new service
and an existing service. The existing service merges and
the split results in an equal number of services.
| σA | - | σB | = 0

• S’ca and Sco do not exist in σB . The split results in two
new services and the split results in an increase of the
total number of services with 1.
| σA | - | σB | = +1

We shall now investigate what kind of change in Objective
Function value we can expect, based on the three following
cases.

Case 1: | σB | - | σA | = -1
S’ca and Sco are elements of σA and σB .
Sca only exists in σB .
Sca = {p1...pnca}
As Sca is not part of σA, the port frequencies of all ports of
Sca decreased by 1 in σA.

∀p ∈ Sca | (PF(p)σA
= PF(p)σB

− 1 (8)

See Figure 8 for a graphical representation.

As the port frequencies of all ports that are part of
Sca decrease, the DI of all groups that contain one or more
port of Sca are also impacted. These are all SVi service groups.

When calculating ∆OF, only the impacted service groups
must be taken into account.

∆OF = OFσB
− OFσA

=⇒ ∆OF = [DI(Sca)σB
+ DI(S’ca)σB

+ DI(Sco)σB
+∑n

i=1 DI(SV i)σB
] − [DI(S’ca)σA

+ DI(Sco)σA
+∑n

i=1 DI(SV i)σA
]

=⇒ ∆OF = DI(Sca)σB
+ [DI(S’ca)σB

− DI(S’ca)σA
] +

[DI(Sco)σB
− DI(Sco)σA

] + [
∑n

i=1 DI(SV i)σB
−∑n

i=1 DI(SV i)σA
]

Taking (5) and (8) into account:

(a) DI(S’ca)σA
=

∑nca−nco
i=1 PF(pi)σA

nca−nco

=⇒ DI(S’ca)σA
=
∑nca−nco

i=1 PF(pi)σB
−(nca−nco)

nca−nco

=⇒ DI(S’ca)σA
= DI(S’ca)σB

− 1

=⇒ DI(S’ca)σB
− DI(S’ca)σA

= 1

(b) DI(Sco)σA
=

∑nco
i=1 PF(pi)σA

nco

=⇒ DI(Sco)σA
=
∑nco

i=1 PF(pi)σB
−(nco)

nco = DI(Sco)σB
− 1

=⇒ DI(Sco)σB
− DI(Sco)σA

= 1

(c)
∑n

i=1 DI(SV i)σB
−
∑n

i=1 DI(SV i)σA
=∑n

i=1

∑nvi
j=1 PF(pj)σB

nvi −
∑n

i=1

∑nvi
j=1 PF(pj)σA

nvi =∑n
i=1

∑nvi
j=1 PF(pj)σB

nvi −
∑n

i=1

∑nvi
j=1 PF(pj)σB

−qvi

nvi

=⇒
∑n

i=1 DI(SV i)σB
−
∑n

i=1 DI(SV i)σA
=
∑n

i=1
qvi
nvi

Putting (a), (b) and (c) into ∆OF

∆OF = DI(Sca)σB
+ 2 +

∑n
i=1

qvi
nvi

Conclusion: If | σB | - | σA | = -1, then ∆OF is
always > 0 (all terms are positive), and the Objective
Function always improves.

Case 2: | σB | - | σA | = 0
S’ca or Sco are part of σA or σB (exclusive OR).
Assume Sco already exists in σB (carve-out of an existing
group)
Sca does not exist in σA, but S’ca does exist in σA. The port
frequencies of all ports of S’ca do not change.

∀p ∈ Sca \ Sco | PF(p)σA
= PF(p)σB

(9)

Sco already exists in σB . The group cancels out in σB and the
port frequencies of all ports in Sco decrease.

∀p ∈ Sco | PF(p)σA
= PF(p)σB

− 1 (10)
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Fig. 8. Split case 1

See Figure 9 for a graphical representation.

As the port frequencies decrease, the DI of all groups
that contain one or more port of Sco are also impacted. These
are all SVi service groups.

When calculating ∆OF, only impacted service groups
must be taken into account.

∆OF = [DI(Sca)σB
+ DI(Sco)σB

+
∑n

i=1 DI(SV i)σB
] −

[DI(Sca)σA
+ DI(Sco)σA

+
∑n

i=1 DI(SV i)σA
]

=⇒ ∆OF = [DI(Sca)σB
− DI(S’ca)σA

] + [DI(Sco)σB
−

DI(Sco)σA
] + [

∑n
i=1 DI(SV i)σB

−
∑n

i=1 DI(SV i)σA
]

Taking (5) and (10) into account and using the same
type of calculations as in Case 1:

(d) DI(Sca)σB
− DI(S’ca)σA

= DI(Sca)σB
− DI(S’ca)σB

(e) DI(Sco)σB
− DI(Sco)σA

= 1

(f) DI(S’ca)σA
+ DI(Sco)σA

+
∑n

i=1 DI(SV i)σA
=
∑n

i=1
qvi
nvi

(see case 1)

Putting (d), (e) and (f) into ∆OF

Fig. 9. Split case 2

∆OF = DI(Sca)σB
− DI(S’ca)σB

+ 1 +
∑n

i=1
qvi
nvi > 0

The same result is obtained when the assumption is
made that S’ca already exits in σB

Conclusion: If | σB | - | σA | = 0, then ∆OF (due
to −DI(S’ca)σB

) can be < 0, and the Objective Function
can thus deteriorate

Case 3: | σB | - | σA | = 1
Sca splits into 2 mutually-exclusive new services (S’ca and
Sco). Neither S’ca nor Sco are part of σB .
S’ca and Sco are both part of σA.
The port frequencies PF of any p do not change. No other
services are impacted.

∀p ∈ Sca | PF(p)σA
= PF(p)σB

(11)

The only factors playing a role in the calculation of ∆OF are
DI(Sca)σB

,DI(S’ca)σA
, and DI(Sco)σA

∆OF= DI(Sca)σB
− DI(S’ca)σA

− DI(Sco)σA

∆OF= DI(Sca)σB
− DI(S’ca)σB

− DI(Sco)σB
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Conclusion: If | σB | - | σA | = 1, then ∆OF can
be < 0 (due to −DI(S’ca)σB

− DI(Sco)σB
), and the

Objective Function can thus deteriorate).

See Figure 7 for a visual representation of this case.

Only case 1, | σB | - | σA | = -1, provides full certainty of
how OF will evolve. To gain more certainly, we shall also
investigate the relationship between the DI of service Sca and
the DIs of sub services S’ca and Sco.

Relationship between DIs

(1) DI(Sca)σ =
∑nca

i=1 PF(pi)σ
nca =

∑1
i=1 PF(pi)σ+

∑j+nco
i=j+1 PF(pi)σ+

∑nca
i=j+nco+1 PF(pi)σ

nca

=⇒ nca.DI(Sca)σ −
∑j+nco

i=j+1 PF(pi)σ=∑j
i=1 PF(pi)σ +

∑nca
i=j+nco+1 PF(pi)σ

(2) DI(S’ca)σ =
∑nca

i=1 PF(pi)σ+
∑nca

i=j+nco+1 PF(pi)σ
nca−nco

(3) nco.DI(Sco)σ =
∑j+nco

i=j+1 PF(pi)σ

Putting (1), (2) and (3) together

DI(S’ca)σ =
nca.DI(Sca)−

∑j+nco
i=j+1 PF(pi)σ

nca−nco

=⇒ DI(S’ca)σ = nca
nca−nco .DI(Sca)σ − nco

nca−nco .DI(Sco)σ

=⇒ nca
nca−nco .DI(Sca)σ = DI(S’ca)σ + nco

nca−nco .DI(Sco)σ

=⇒ DI(Sca)σ = nca−nco
nca .DI(S’ca)σ + nco

nca .DI(Sco)σ

Let α = nco
nca be the split-factor, where 0 ≤ α ≤ 1

Then

DI(Sca)σ = (1− α).DI(S’ca)σ + α.DI(Sco)σ (12)

This formula expresses DI(Sca)σ as the linear interpolation
between DI(S’ca)σ and DI(Sco)σ , with α as the interpolation
factor. See Figure 10 for a visualization of this linear
interpolation function.

Two cases are possible:
• Case a: DI(S’ca)σ > DI(Sco)σ
• Case b: DI(Sco)σ > DI(Sca)σ

Based on the relationship between DIs, we may conclude
that:

If | σB | - | σA | = 1
then ∆OF= DI(Sca)σB

− DI(S’ca)σB
− DI(Sco)σB

< 0
as according to (12) either DI(S’ca)σB

or DI(Sco)σB
is

Fig. 10. Linear interpolation

> DI(Sca)σB
.

The Objective Function thus deteriorates when | σB | - | σA |
= 1.

If | σB | - | σA | = 0
then ∆OF = DI(Sca)σB

− DI(S’ca)σB
+ 1 +

∑n
i=1

qvi
nvi can

be < 0
if ∆OF < 0 then DI(Sca)σB

< DI(S’ca)σB
must be ¡ 0

Taking (12) into account, we can rewrite ∆OF as:

(1− α).DI(S’ca) + α.DI(Sco)− DI(S’ca) + 1 +
∑n

i=1
qvi
nvi

=⇒ −α.(DI(S’ca)− DI(Sco) + 1 +
∑n

i=1
qvi
nvi > 0

=⇒ ∆OF > 0 if α <
1+

∑n
i=1

qvi
nvi

DI(S’ca)−DI(Sco)

Thus, a smaller α gives a higher probability of an OF
improvement.

2) Split Selection: From the preceding, we conclude that
carving-out subgroups has a high likelihood to result in an
improvement of the Objective Function. We will even go
a step further and define our move type as the carving-out
of all subgroups of a service definition. We call our split
operator the full-carve-out move. Example: A service defi-
nition S={1,2,3,4,5,6,7}. There also exists service definitions
S1={1,2} and S2={5,7}. Carving out S1 and S2 from S gives,

9

International Journal on Advances in Security, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/security/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



S1= {1,2}, S2={5,7} and S’={3,4,6}.
This move type, however, is unable to handle partial over-

lapping service definitions. It is expected, therefore, that when
all carve-outs are done, there will be a number of overlaps
remaining that require a different type of operation.

F. Move Strategy

All services with a DI greater than one are candidates for
splitting. It seems logical to begin by splitting the service with
the largest DI. If that service cannot be split (no subgroups),
then the second-largest DI is taken, etc. If a group can be
split, the impact of the split is calculated. When OF improves
(=descends), the move is accepted and executed. If not, the
next service in the sorted service DI list is chosen. The move-
strategy is a variant of the First Improvement strategy of the
ILS meta heuristic; a variant as we first order the service DI
list and take the top element from the list.

G. Perturbation

The carve-out of subgroups cannot remove all forms for
non-disjointness. Correlated (partially overlapping) service
definitions cannot be split this way. This creates a requirement
for a new split operator when no additional carve-outs are
possible. The operator will determine if a service definition
overlaps with another service definition. If it does, the inter-
section is split-off. By splitting off this intersection, a new
services definition will be created. Splitting off an intersection
will result in | σB | - | σA | = 1. In the previous section
we observed that the Objective Function will deteriorate.
This is a transitory situation, due to the fact that the newly-
formed service definitions may be subgroups of the existing
service definitions. We consciously allow the OF temporary
deterioration so that a better optimum may be found in the
next Local Search iteration. We consider this kind of split as
the perturbation.

H. Stop Conditions

Once all possible carve-outs and perturbations are complete,
then there are no more inclusively matching and correlated
rules. All port frequencies are equal to one, all service group
DI’s are equal to one, and OF will equal the number of service
definitions. The solution cannot be additionally improved.

Figure 11 shows how we expect the Objective Function
to evolve over time, via consecutive local searches (doing
full-carve-out moves) and perturbations (doing intersection-
carve-out-moves), until the end condition is reached (i.e., full
services are disjoint).

I. Algorithm Overview

The algorithm has been implemented in JAVA. The different
components of the solution are implemented as JAVA classes.
We attempted to stay as true as possible to NS principles by
defining data classes, which only contain data and convenience
methods to get and set the data, and task classes used to
perform actions and calculations on the data objects. A high
level overview of algorithm can be found in Algorithm 1. More

Fig. 11. Expected evolution of the Objective Function

algorithm details and implementation details can be found in
[2].

V. ARTIFACT DEMONSTRATION

The artifact outlined in the previous section will be applied
to operational firewall rule bases provided by Engie. In [1] a
manually created test rule base (containing a lot of exceptions
to properly test the algorithm encoding) was used to validate
the concept and the implementation. We now apply the artifact
to operational data to see the real impact it has on a rule
base. Before an export from a firewall can be used as input
for the algorithm, some pre-processing is required. We start
this section by explaining these operations. We continue by
discussing the components we added to the algorithm that
allow the adjustments to the rule base and thus measure the
impact of service disjointness on the size of the rule base.
The different demonstration sets will be elucidated before they
become subject to the algorithm. We conclude with a summary
of the algorithm’s results and a description of some in-depth
behavioral characteristics of the algorithm.

A. Firewall Export Pre-Processing

Engie provided firewall rule base exports that are im-
plemented on Palo Alto firewalls (a leading manufacturer
and provider of firewalls). Those exports required some pre-
processing before the brown-field artifact can be used. The
pre-processing steps include:

• Remove non-relevant information from the exported CSV
files. This is the only manual step.

• Prepare data structures that allow historization (tracking
of all changes to the rule base and services during
algorithm execution) of the rule base and services.

• Replace firewall group objects that aggregate other group
objects and adjust the rules accordingly.

• Adjust the rule base such that each rule only contains one
service group.

• Version the rules and services (for historization).
• Remove non-unique services.

B. Adjusting the Rules

Each time a sub-service gets carved-out or an intersection
between two services gets split off, adjustments to the rules
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base are required. All the rules containing the original service
must be adjusted to reflect the result of the split. The rules
must also be split on the basis that rules must adhere to our
SoC design criteria. Adjustments to the rule base occur at two
instances of the algorithm: when a successful sub services
carve-out is performed and when a successful overlapping
services carve-out is performed.

C. Demonstration Data Sets

Engie provided exports from 15 Palo Alto firewalls in use
within Belgium- and Paris-based data centers. The data centers
contain multiple firewalls with different filtering strategies. We
requested firewall exports that would represent the different
types of filtering strategies. Additional contextual information
for each firewall can be found below.

• AIMv2: Firewall used to filter in- and outbound traffic of
Internet-exposed resources.

• AdminBE: Firewall used to filter traffic between data
center client hosting zones and a shared management
zone containing services as backup, and monitoring and
system management tools. The firewall is located in the
Belgium-based data center.

• AdminFR: Idem as AdminBE but for a firewall located
in the Paris-based data center.

• AWSDCN: Firewall that acts as a filter between the Engie
backbone network and the AWS Direct Connect (dedi-
cated connection to AWS cloud data center in Dublin).

• HOSTING-BE-EBL: Firewall protecting the client host-
ing zone for Electrabel (a business unit of the Engie
Group) in the Belgium-based data center.

• HOSTING-BE-ORES: Firewall protecting the client host-
ing zone for ORES (a former part of Electrabel, no longer
part of the Engie Group), in the Belgium-based data
center.

• HOSTING-BE-RAS: Firewall protecting Remote Access
Resources, in the Belgium-based data center.

• HOSTING-BE-SHARED: Firewall protecting resources
that are shared between various business units of the
Engie Group, in the Belgium-based data center.

• HOSTING-BE-TRACTEBEL: Firewall protecting the
client hosting zone for
TRACTEBEL (a business unit of the Engie Group), in
the Belgium-based data center.

• HOSTING-FR-COFELY: Firewall protecting the client
hosting zone for COFELY (a business unit of the Engie
Group), in the Paris-based data center.

• HOSTING-FR-GRDF: Firewall protecting the client host-
ing zone for GRFD (a former business unit of the GDF,
no longer part of the Engie Group), in the Paris-based
data center.

• HOSTING-FR-RAS: Firewall protecting Remote Access
Resources, in the Paris-based data center.

• HOSTING-FR-SHARED: Firewall protecting resources
that are shared between various business units of the
Engie Group, in the Paris-based data center.

Algorithm 1: ILS for service list normalization
load initial solution (= rule base);
create neighborhood list (= list of services and their DI);
fully disjoint = FALSE;
end of neighborhood = FALSE;
objective function improvement = FALSE;
calculate current objective function (sum of all service DI of

neighborhood);
while NOT full disjoint AND NOT end of neighborhood do

sort neighborhood list (highest DI at top of list);
neighborhood pointer = 1 (top of list);
objective function improvement = FALSE;
while NOT improvement objective function AND NOT

fully disjoint AND NOT end of neighborhood do
service to split = service to which

neighborhood pointing is referring;
perform full-carve-out move on service to split;
calculate new objective function;
objective function improvement =

(new objective function <
current objective function?);

if objective function improvement = TRUE then
reset neighborhood based on full-carve-out

move;
reflect full-carve-out move in rule base;
current objective function =

new objective function
fully disjoint = (are all service DI of the

neighborhood = 1);
else

neighborhood pointer ++
end
end of neighborhood = (neighborhood pointer

pointing to last element in neighborhood list?);
end
if end of neighborhood then

look for overlapping services in the neighborhood
if overlapping services exists then

perform intersection-carve-out move;
reset neighborhood based on

intersection-carve-out move;
reflect intersection-carve-out move in rule base;
calculate new objective function;
current objective function =

new objective function
fully disjoint = (are all service DI of the

neighborhood = 1);
end of neighborhood = FALSE;

else
end of eighborhood = TRUE;

end
end

end
if fully disjoint then

PRINT “Probably the Global Optimum has been found”;
else

PRINT “Local Optimum found”;
end
PRINT RESULT = neighborhood;
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• IAF: Firewall protecting access between the resources
of the user network and data center, via Identify Aware
filtering rules.

• IoT-BE: Firewall protecting IoT related resources in the
Belgium-based data center.

The demonstration data set also contains an artificially-
created rule base entitled Demoset which was used to test the
algorithm. Demoset contains as many anomalies as possible
to test special conditions that could occur but that are difficult
to filter out of the given exports.

D. Demonstration Results
In the following subsections, we review the demonstration

environment, the summary table of the demonstrations, and the
relationship between the Objective Function and the number
of rules in the rule base. We continue with a discussion of the
impact of the algorithm on the number of service definitions,
and have a closer look at the evolution of the Objective
Function during the algorithm’s execution. We conclude with
an example of how rule and service definition changes are
tracked during algorithm execution.

1) Demonstration Environment: The algorithm is written in
JAVA using JAVA SDK 1.8.181, developed in the NetBeans
IDE V8.2. The demonstration ran on an MS Surface Pro (5th
Gen) Model 1796 i5 - Quad Core @ 2.6 GHz with 8 GB of
memory, running Windows 10.

2) Demonstration Overview: The algorithm results for the
different rule bases can be found in Table I which contains
the following information:

• Initial Number of Rules (NoR): number of rules as read
from the firewall export files.

• Initial Number of Services (NoS): number of services as
read from the firewall export files.

• Initial Number of Service Groups (NoSR): number of
service groups as read from the firewall export files.

• Pre-Processing Number of Rules (NoR): number of rules
after pre-processing.

• Pre-Processing Number of Unique Services (NoUS):
number of unique services after pre-processing.

• Pre-Processing OF: the value of the Objective Function,
after pre-processing and thus at start of the algorithm.

• Final Number of Rules (NoR): the number of rules after
applying the algorithm.

• Final Number of Services (NoS): the number of service
definitions after applying the algorithm.

• Final OF: the value of the Objective Function after
applying the algorithm.

The algorithm performance indicators can be found in Table II.
• Algorithm execution time: time required to disentangle

the services and adjust the rules.
• Total execution time: time required to perform the data

loading, pre-processing, disentanglement, to print the end
result and log, and for the result to be displayed on the
screen.

• Level 1 Iterator: number of times the outer loop of the
algorithm has run.

• Level 2 Iterator: number of times the inner loop of the
algorithm has run.

TABLE I
OVERVIEW DEMONSTRATION RESULTS

Rule Base Initial After Pre-Processing Final
NoR NoS NoSG NoR NoUS OF NoR NoS OF

AIMV2 207 250 6 498 226 577.9 1,263 288 288
AdminBe 461 597 41 1,443 547 3,214.1 8,994 547 547
AdminFR 655 717 46 2,584 699 4,469.3 29,377 668 668
AWSDCN 13 13 1 13 13 14.9 22 13 13
Demoset 21 24 8 104 21 44.9 249 34 34
HOSTING-BE-EBL 350 304 10 759 259 877.6 3,841 256 256
HOSTING-BE-ORES 462 336 13 1,306 274 1,205.6 4,936 267 267
HOSTING-BE-RAS 20 16 0 28 16 17.5 29 16 16
HOSTING-BE-SHARED 107 120 7 223 10 7 188.7 360 106 106
HOSTING-BE-TRACTEBEL 10 5 1 10 5 5 10 5 5
HOSTING-FR-COFELY 10 9 1 16 9 9 16 9 9
HOSTING-FR-GRDF 118 46 4 213 42 50 223 40 40
HOSTING-FR-RAS 21 16 1 29 16 17,5 30 16 16
HOSTING-FR-SHARED 198 139 6 359 126 250.2 509 127 127
IAF 32 10 0 34 10 10 34 10 10
IOT-BE 23 28 0 38 25 36.5 47 24 24

TABLE II
PERFORMANCE OF THE ALGORITHM

Rule Base Execution Information
ILS (ms) Total (ms) L1 L2

AIMV2 187,227 396,000 25 1,507
AdminBe 520,944 824,000 135 13,609
AdminFR 820,847 1,242,000 154 23,165
AWSDCN 811 18,000 2 3
Demoset 1,358 120,000 22 430
HOSTING-BE-EBL 76,039 265,000 34 2,016
HOSTING-BE-ORES 193,436 632,000 59 2,587
HOSTING-BE-RAS 99 1,000 2 3
HOSTING-BE-SHARED 35,139 202,000 12 427
HOSTING-BE-TRACTEBEL 63 1,000 2 2
HOSTING-FR-COFELY 54 1,000 2 2
HOSTING-FR-GRDF 122 1,000 3 6
HOSTING-FR-RAS 96 1,000 2 36
HOSTING-FR-SHARED 78,503 210,000 19 929
IAF 68 1,000 2 2
IOT-BE 28,731 130.000 3 19

TABLE III
%OF IMPROVEMENT VS INITIAL NUMBER OF RULES (NOR)

Rule Base Initial NoR %OF Improvement
HOSTING-BE-TRACTEBEL 10 0%
HOSTING-FR-COFELY 10 0%
AWSDCN 13 10%
HOSTING-BE-RAS 20 9%
Demoset 21 24%
HOSTING-FR-RAS 21 9%
IOT-BE 23 34%
IAF 32 0%
HOSTING-BE-SHARED 107 44%
HOSTING-FR-GRDF 118 20%
HOSTING-BE-SHARED 198 49%
AIMv2 207 61%
HOSTING-BE-EBL 350 71%
AdminBE 461 83%
HOSTING-BE-ORES 462 78%
AdminFR 655 85%

3) Objective Function and the Number of Rules: In Ta-
ble III and Figure 12, we represent the relationship between
the % of OF improvement and the number of initial rules in
the rule base (NoR).
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Three out of the sixteen firewalls contain fully disjoint
service definitions: HOSTING-BE-TRACTEBEL, HOSTING-
FR-COFELY and IAF. Those are also the firewalls with the
fewest rules and service definitions. The algorithm detects the
full disjointness and leaves the service definitions and rule
base as is.

Six out of the sixteen firewalls are fairly close to having
disjoint service definitions: AWSDCN, Demoset, HOSTING-
BE-RAS, HOSTING-FR-GRDF and IOT-BE. Those firewalls
have a number of rules and services definitions that are below
100 (HOSTING-FR-GRDF having a number of rules a bit
above 100). The total improvement of the OF is limited to
about 25 %.

The remaining eight firewalls contain many more rules and
service definitions and the value of the difference between
the initial and final value of the OF is at least 50 %, with
a maximum of 85 %. These numbers confirm that, without
proper rule design criteria, the probability of getting a non-
evolvable rule base drastically increases with the size of the
rule base. The trend between the size of the rule base and the
percentage of OF improvement (a good indicator for the status
of the initial evolvability ), should be an asymptotic function
trending toward 100 %. A logarithmic regression provides a
good fit.

Fig. 12. %OF Improvement vs number of rules in the rule base

In Table IV and Figure 13, we represent the relationship be-
tween the % OF improvement and the % of extra rules (growth
rule base) due to the service disentanglement algorithm.

4) Impact of the Algorithm on the Number of Service Defini-
tions: Upon examination of the number of service definitions
at the end of the algorithm, we note that splitting the service
definitions does not have a large impact on the total number
of services. See Figure 14 for an overview. There is even
a tendency toward the total number of service definitions
decreasing slightly. It seems to be that the algorithm rearranges
the ports into more suitable groups, without having the number
of service definitions proliferate.

5) Evolution of the Objective Function During Algorithm
Execution: To visualize what occurs during the algorithm
execution, three indicators are tracked: the OF, the outer
loop iterations, and the inner loop iterations. The ”Level 1

TABLE IV
% OF IMPROVEMENT VS %GROWTH RULE BASE

Rule Base %OF Improvement %Growth Rule Base
HOSTING-BE-RAS 9% 4%
HOSTING-FR-RAS 9% 3%
AWSDCN 10% 69%
HOSTING-FR-GRDF 20% 5%
Demoset 24% 139%
IOT-BE 34% 24%
HOSTING-BE-SHARED 44% 61%
HOSTING-FR-SHARED 49% 42%
AIMv2 61% 154%
HOSTING-BE-EBL 71% 406%
HOSTING-BE-ORES 78% 278%
AdminBE 83% 523%
AdminFR 85% 1037%

Fig. 13. % extra rules vs %∆OF

Fig. 14. Impact of the algorithm on number of services.

Indicator” is the number of times that the outer DO loop of the
algorithm has run. The indicator measures the number of times
a perturbation or successful carve-out is done. The ”Level 2
Indicator” (L1I) is the number of times the inner DO loop of
the algorithm runs within a given number of level 1 iterations.
Each time the ”Level 1 Iterator” increments, the ”Level 2
Iterator” (L2I) is reset. We plot the evolution of these three
indicators against the cumulative number of level 2 iterations
for two of the firewalls with a number of rules below 100,
in Figure 15 and Figure 16. In Figure 17 and Figure 18 we
show the evolution of the three indicators for two firewalls
containing in excess of 100 rules.
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Fig. 15. OF, L1 and L2 for the Demoset firewall.

Fig. 16. OF, L1 and L2 for the HOSTING-FR-GRDF firewall.

Fig. 17. OF, L1 and L2 for the AdminBE firewall.

6) Tracking of Rule and Service Definition Changes: The
algorithm tracks all changes that are made to the rules. As an
example, the log excerpt below shows the evolution of rule
6 from the Demoset, as provided by the algorithm at end of
execution.

• During pre-processing, the Service Group ”SERVICE25”,
is replaced by its members ”SERVICE17” and ”SER-
VICE19”. The rule now has 6.1 as identifier.

• During pre-processing, the rule is split into two rules,
6.1.1 and 6.1.2 since rule 6.1 was contained in two service
definitions.

• Duinrg pre-processing, rules 6.1.1 and 6.1.1.2 get the

Fig. 18. OF, L1 and L2 for AdminFR firewall.

versioned service definitions. At this point, rule 6 is
replaced by 6.1.1.1 and 6.1.2.1.

• During the ILS, the service ”SERVICE17 V0” gets split
into ”Service 17 V0.2” and the existing service ”SER-
VICE19 V0”, and the rule 6.1.1.1 splits into 6.1.1.1.1
and 6.1.1.1.2.

6;R6;SERVICE25,
*6.1;R6.1;SERVICE17,SERVICE19,
**6.1.1;R6.1.1;SERVICE17,
***6.1.1.1;R6.1.1.1;SERVICE17 V0,
****6.1.1.1.1;R6.1.1.1.1;SERVICE19 V0,
****6.1.1.1.2;R6.1.1.1.2;SERVICE17 V0.2,
**6.1.2;R6.1.2;SERVICE19,
***6.1.2.1;R6.1.2.1;SERVICE19 V0,

In summary, rule 6 was replaced by rules 6.1.1.1.1, 6.1.1.1.2
and 6.1.2.1.

The evolution of the services is tracked in a similar manner.
In the log excerpt below, the evolution of ”SERVICE17” and
”SERVICES19” is shown (versioning, splitting).

SERVICE17;UDP;40-41
*SERVICE17 V0;UDP;40-41
**SERVICE19 V0;UDP;40
**SERVICE17 V0.2;UDP;41

SERVICE19;UDP;40
*SERVICE19 V0;UDP;40

VI. EVALUATION AND DISCUSSION

This section starts with evaluating the functioning of the
artifact followed by the analysis of the worst case number
of operations required to complete the algorithm and the
comparison with the artifact performance. We continue with
pondering on the question whether the artifact has found the
most optimal solution, and by analysing the impact of the
algorithm on size of the rule base and firewall scaling. We
continue with discussing the entropy present in a rule base
and how the algorithm measures this entropy. We finish by
positioning the artifact in a firewall management tool.

A. Algorithm functioning

Based on the demonstration, we can conclude that an
algorithm based on an ILS meta-heuristic disentangles service
definitions and is able to adjust the rule base accordingly. The
algorithm is an essential building block in a solution that can
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convert an existing firewall rule base into a rule base that is
fully compliant with the green-field artifact.

It is an essential building block but not the sufficient build-
ing black. It is possible that fully-overlapping rules emerge
during the algorithm execution.
Example:
Take a rule R1 that has C1 as source, H1 as destination, and
S1 as service.
Now take a rule R2 that has C1 as source H1 as destination,
and S2 as source.
Let’s consider that S1 and S2 overlap. The overlapping service
is S3
Applying the algorithm would give:
– R1: C1 H1 S’1
– R2: C1 H1 S3
– R3: C1 H1 S’2
– R4: C1 H1 S3
As can be seen, R2 and R3 become identical rules which still
need to be filtered out.

The demonstration has provided insight into how the Ob-
jective Function evolves during algorithm execution, as well
as into the relationships between the number of initial rules
in the rule base and the corresponding value of the objective
function, and the number of rules at the end of the algorithm
execution and the change in Objective Function.

B. Big O of the Artifact

The Big O of an algorithm expresses the algorithm’s
complexity, calculated based on the worst-case scenario in
terms of the number of operations required in function of the
size of the problem to be solved. This formula reflects the
worst-case effort required to complete the algorithm execution.
The algorithm contains two nested loops that both can iterate
over the full neighborhood, meaning the algorithm will be
quadratic with respect to the size of the neighborhood. The
number of operations performed in the innermost loop, such
as Service DI list Creator, Service split Evaluator are also
proportional to the size of the neighborhood.

We may thus conclude that the Big O of the complete
algorithm is cubic - O = n3, where n is the size of the
neighborhood (= size of the solution = the number of service
definitions).

C. Performance of the Artifact

Algorithm execution time is measured as the time it takes to
disentangle the services after pre-processing. Figure 19 shows
the relationship between the initial size of the neighborhood
(number of unique services) and algorithm execution time.
The exponent of the power function is a bit above two. This
is consistent with the Big O, where we expected a worst-case
exponent of three.

Measures could be taken to ensure better algorithmic per-
formance. The innermost loop iterates over all services until it
locates one that contains subgroups. All services that already
have a DI of 1 should not be further investigated. As the
neighborhood is sorted from high to low DI at the start of the

TABLE V
ARTIFACT PERFORMANCE

Rule Base Number of Unique Algorithm Execution
Services (NoUS) Time (ms)

HOSTING-BE-TRACTEBEL 5 63
HOSTING-FR-COFELY 9 54
IAF 10 68
AWSDCN 13 811
HOSTING-BE-RAS 16 99
HOSTING-FR-RAS 16 96
Demoset 21 1,358
IOT-BE 25 28,731
HOSTING-FR-GRDF 42 122
HOSTING-BE-SHARED 107 35,139
HOSTING-FR-SHARED 126 78,503
AIMv2 226 187,227
HOSTING-BE-EBL 259 76,039
HOSTING-BE-ORES 274 193,436
AdminBE 547 520,944
AdminFR 699 820,847

Fig. 19. Artifact performance

inner loop, the inner loop could stop as of the first service
where a DI of 1 is encountered. According to meta-heuristics,
this value represents a form of algorithmic memory, indicating
parts of the neighborhood that can no longer improve and
should thus not be investigated.

D. Global Optimum

Does the heuristics-based algorithm establish the Global
Optimum? It is quite difficult to formally prove that heuristic
algorithms always provide the most optimal solution. After all,
the full solution space of all possible groups combining all
possible ports is exponential (see combinatorics) and quickly
becomes impossible to fully search.

We do think that, given the initial solution, we have
succeeded in converging on the most optimal solution. Sub-
optimal solutions always will have either subgroup and/or
overlapping groups. The algorithm filters out all subgroups
in the inner loop and, if no additional subgroups are found, it
searches for overlaps, after which it again scans for subgroups.
As both inner and outer loop iterations search the entire
neighborhood, all possible subgroups and overlaps are located
and eliminated. While we are not presently able to provide
formal proof, we nonetheless believe that, from a given initial
solution, the set of services that are disjoint and maximum in
size is found.
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Fig. 20. Scaling of firewalls with an evolvable rule base

E. Implication of the Artifact on Firewall Rule Base Size and
Scaling

In all application of NS on design of systems, the result is
a more fine grained structure [7] [17] [18]. Applying NS on a
firewall, and thus making it more evolvable, is no exception.
From the previous section we can clearly see that the amount
of extra rules can increase considerably. This brings forward
the question of firewall performance - how quickly will the
firewall find the rule to apply to the traffic.

In an evolvable rule base, all the rules are disjoint from
one another and each network package can only hit one rule.
This rule can be located in the beginning or near the end of
the rule base. As there is only one rule that can be hit, the
rule base may be split into multiple parts and distributed in
parallel across different firewalls.

Let F be a firewall rule base containing only disjoint rules
created according to the green-field artifact. As visualized in
Figure 20, F can be split into fw sub rule bases, which are
spread over fw parallel firewalls. Each of the fw rule bases
conclude with the “Default Deny” rule.

A network package will attempt to traverse each firewall,
but only one of the firewalls has a rule it can hit.

F =
∑f=fw

f=1 Ff

Let ϕf(Ff,Pa) be the firewall filtering function that takes rule
base Ff and package Pa as input.

• ϕf(Ff,Pa) = 0 if the package is blocked - there is no rule
R in Ff such that the package is allowed

• ϕf(Ff,Pa) = 1 if the package is allowed - there is a rule
R in Ff such that the package is allowed

Let ΦP
fw be the parallel firewall filtering function. Then:

ΦP
fw(PA)=

∑f=fw
f=1 ϕf(Ff,Pa)

Where:

• Φp
fw(Pa) = 0, if Pa is blocked by all of the fw firewalls.

• Φp
fw(Pa) = 1 if Pa is allowed by one of the fw firewalls.

• ∃!Ff ∈ F for f = 1 → fw =⇒ | R ∈ Fj

A rule base that exclusively contains disjoint rules can scale
horizontally (i.e., employ parallel firewalls). Firewalls with a
non-evolvable rule base can only scale vertically (i.e., employ
a larger firewall). Scaling, however, does not come without
significant cost. Modern firewalls allow virtualization, but each
virtual instance comes at a cost as well.

In addition to the horizontal scaling possibilities of an
evolvable rule base, the performance of an evolvable rule base
can be boosted by moving the most frequently used rules to
the top. Check Point, a firewall vendor, suggests locating the
rules that are most frequently hit (and applied) at the top of
the firewall table. In a rule base that is order-sensitive, this is a
real issue. In a rule base that is not order-sensitive, one could
monitor the firewall to determine which rules are hit most
and then prioritize those rules without having to worry about
the potential impact to other rules. Doing this dynamically
would be even more powerful as the firewall would be able to
reorganize its rules according to variable daily traffic.

F. Measuring the entropy of a filewall rulebase

We will now examine the question ”What is the impact
of the service group disjointness level of a rule base on
the size of the aforementioned rule base after application
of the brown-field artifact?”. We shall define the Services
Disjointness Index (SDI) as the ratio between the value of
the objective function OF and the number of services S.

SDI = OF
S

SDI is 1 in a rule base exclusively containing disjoint
services and greater then 1 if the rule base contains non-
disjoint services. We would like to know whether or not we
may determine the increase in number of rules as a result of
the application of the brown-field artifact, based on the initial
value of SDI.

The SDI is a fairly accurate measure for the statistical
entropy of a rule base. The macro-state is the number of
services in a rule base, the micro-states being the number of
possible services within a rule base. An evolvable and perfectly
stable rule base would have a ratio of micro-states to macro-
state equalling 1. There are multiple configurations of services
that deliver a statistical entropy of 1. We are aware of at least
two: one port per service, and the one we discovered with
the brown-field algorithm by disentangling the services. The
SDI is, however, an imperfect representation of the statistical
entropy of the rule base. Indeed, we have demonstrated that
the brown-field algorithm may result in shadowing rules. An
additional operationalization to measure this would be required
in order to fully express the statistical entropy of a rule base.
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TABLE VI
RNIR VS SDI

Rule Base SDI RNIR
HOSTING-BE-TRACTEBEL 1 0
HOSTING-FR-COFELy 1 0
IAF 1 0
HOSTING-BE-RAS 1.0938 0.0357
HOSTING-FR-RAS 1.0938 0.035
AWSDCN 1.1069 0.6923
HOSTING-FR-GRDF 1.1905 0.0469
IOT-BE 1.4600 0.2368
HOSTING-BE-SHARED 1.7632 0.6143
HOSTING-FR-SHARED 1.9853 0.4178
Demoset 2.1377 1.3942
AIMv2 2.5573 1.5361
HOSTING-BE-EBL 3.3882 4.0606
HOSTING-BE-ORES 4.3999 2.7795
AdminBE 5.8759 5.2328
AdminFR 6.3938 10.3688

In our experiment, the independent variable is SDI and the
dependent variable is the relative increase in the number of
rules due to application of the treatment (i.e., application of
the brown-field artifact). The relative increase in the number
of rules (RINR) is calculated as the difference between the
number of rules (NR) after and before application of the
artifact, divided by the number of rules before application of
the artifact.

RINR =
NRafter−NRbefore

NRbefore

The result can be found in Table VI and Figure 21. The
correlation between the independent and dependent variable
is 0.9257.

Fig. 21. RINR vs SDI

G. The Firewall Rule Base Analyser and Normalizer System

As the firewall provides considerable design freedom which
could potentially lead to evolvability issues, firewall manage-
ment should be undertaken outside of the firewall, ideally

using a specialized tool that incorporates the artifacts discussed
in this dissertation. We characterize this tool as a Firewall Rule
Analyser and Normalizer System or FRANS (see Figure 22).
Such a tool would ideally have the following features:

• Enforces the usage of the green-field artifact.
• Analyzes an existing rule base — measures disjointedness

levels — with the brown-field artifact.
• Converts an existing rule base into an evolvable rule base

using the brown-field artifact.
• Will centrally manage all definitions: services, sources,

destinations, rules.
• Provides full traceability on all changes performed on the

definitions.
• Makes firewalls scale horizontally.
• Changes the rule order dynamically to increase perfor-

mance.
All firewall rule management activities are done in the tool
as opposed to via firewall management consoles. As modern
firewalls publish their management functionalities via APIs,
the tool can use these APIs to change rules and objects.

The creation of the fine-grained rule base by humans is an
issue. The green-field artifact defines criteria for groups and
rules that need to be followed strictly. The creation of a catalog
of all possible services is required. For standard services and
tools, lists of assigned ports/protocols and international stan-
dardization organizations related to the Internet (e.g., iana.org)
exist and may be reused.

FRANS should expand the firewall rules in the fine-grained
format, in accordance with the naming conventions. Checks
must also be performed against the group definitions and con-
tent in accordance with the green-field artifact and via a user-
friendly interface. With this configuration, the tool could then
push the rules towards the firewall, which would effectively
separate the management from the implementation of rules.
Such tools exist on the market. Examples include Algosec,
Tufin, Firemon. However, none of those tools consciously
restrict the design space for the purpose of enforcing the
creation of an evolvable rule base.

While defining a rule for each service may be considered
cumbersome, it is possible to create roles such as ”monitoring
and management” (i.e., establishing which is a grouping of
smaller, disjoint services) in order to mitigate this. In this ex-
ample, the firewall administrator could create a rule specifying
this ”monitoring and management” role to express that the
server needs to allow access to all monitoring and management
services. The tool would ideally expand these roles into the
individual rules for each disjoint service. Examples:

• ”Monitoring and Management” = SSH + SFTP + FTP +
SMTP + TELNET

• Host = x
• Rule : C Hx SMaM; Hx S MaM; S MaM; allow
• Will be expanded to :

– C Hx S SSH; Hx S SSH; S SSH; allow
– C Hx S SFTP; Hx S SFTP; S SFTP; allow
– C Hx S FTP; Hx S FTP; S FTP; allow
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– C Hx S SMTP; Hx S SMTP; S SMTP; allow
– C Hx S TELNET; Hx S TELNET; S TELNET;

allow

Fig. 22. Firewall management tool

The brown-field artifact should be included in the tool to
read and analyze an existing rule base. The Disjoint Index of
all groups and the total value of the Objective Function can
be calculated. These are important indicators for the level of
evolvability and the impact the firewall normalization process
will have on the size of the rules base. Highly non-evolvable
rule bases may require additional firewall infrastructure to
allow horizontal scaling. The tool could create new firewall
instances on a virtual infrastructure or spin up new cloud based
firewalls on a cloud platform.

FRANS should convert existing rule bases into evolvable
rule bases and deploy those on the firewall infrastructure. As
FRANS should be a central firewall management platform, it
could compare at all times the defined policy in the tool to
the active policy on the firewall. This would allow detection
of rule adjustments made directly on the firewall and even
make firewall rule bases immutable. In FRANS, additional
information reflecting why rules are deployed and links with
application management tools could be made in order to allow
centralized and easily understandable security documentation.

VII. CONCLUSION

In this section, we will summarize important conclusions.
We start with pointing out that the artifact allows the measur-
ing of the evolvability of the firewall. We continue by stating
that the artifact leads to a fine-grained rule base and by stating
that such fine-grained rule bases allow true horizontal scaling.
We finish be pointing out some limitations, lack of comparison
with related literature and proposing future work.

A. Measuring the Evolvability of a Firewall

We were able to operationalize one aspect of the evolv-
ability of a firewall, namely the need for disjoint services.
Independent from the meaning and functions of the various
service ports within the rule base, the SDI is an important
indicator for the evolvability of the firewall. If SDI is greater

than 1, the door is left open to the creation of non-evolvable
rules. The SDI represents the statistical entropy of the service
configurations in a rule base and is a good proxy for the
statistical entropy of the rule base.

To measure all aspects of evolvability and statistical entropy
in accordance with the green-field artifact, a second index
concerning the destinations would need to be developed.

B. Impact of the Brown-Field Artifact on the Size of the Rule
Base

As SoC has been meticulously applied, the choice of a fine-
grained rule base is unsurprising. The relationship between
the level of service disjointness and extra rules has been
investigated. Additional runs of the algorithm with firewalls
from different companies would provide further insight into
the complexity of this relationship (and establish whether it is
linear, polynomial or exponential).

C. Firewall Scaling

The artifacts produce a fine-grained rule base. A large num-
ber of rules in a rule base will have a detrimental impact on
performance. But creating an evolvable rule base also provides
the answer to this problem, given that only an evolvable rule
base will scale truly horizontally.

D. Artifact Limitations

The artifact tracks all changes in the service definitions by
means of continuously changing the name of the services via
a versioning mechanism. Although the end result is disjoint
services according to the green-field artifact, the naming of
those services is not compliant with the naming convention put
forward in the green-field artifact. A mechanism to generate
meaningful names is currently lacking. According to the green-
field artifact, we should add a rules in the rule base for each
host-service combination. The current version of the brown-
field artifact only disentangles the services. Although this leads
to disjoint rules, it can still lead to CE [2]. It is quite straight
forward to add this step as it just a matter of splitting rules
to make sure they only contain one destination and not an
aggregation of destinations. The brown-field artifact can result
in identical rules and so can the above mentioned splits in
destinations. The algorithm does not filter those out. An extra
pass through the rule base is required to eliminate those.

E. Related Literature

A more detailed literature study related to this work can
be found in [2]. We would however like to stress that, to
the best of our knowledge, no other work has been found
that addresses the evolvability issues of the firewall. Over
the past 40 years, sufficient research has been done boosting
performance of the firewall and on problems with firewall
management. We have not found work that does an analysis
based on a grounded theory of evolvability such as NS. The
concept of true horizontal scaling of firewall has also not been
observed in literature. The closest we found is work that put
an amount of firewalls in parallel but all firewalls contain the
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same rule base [23]. This will indeed boost performance as
each firewall has less traffic to handle but each firewall still
has the same rule base size. In our solution, the size of the rule
base can be reduced by spreading it over multiple firewalls.

F. Future Work

This work is an important yet incomplete step toward the
evolvable TCP/IP firewall. The green-field artifact needs to
be converted into software that will take a high-level security
requirement as input, ”expand” it into the required fine-grained
rules, and push the rules to a firewall. The artifact discussed in
the paper (the brown-field artifact) needs to be extended to re-
organize the destinations and sources in accordance with the
green-field artifact, and requires a solution to naming services
such that they are in line with the green-field artifact.

While the requisite groundwork has been established, the
remainder needs to be built. We thus regard this not as future
research, but rather as future work.

This work has limited itself to the TCP/IP based firewall,
which provides a basic security layer like decent locks on the
doors and windows of a house. Other security devices, such
as application level firewalls, operate at other layers of the
OSI stack, above TCP/IP. Filtering rules are installed there
as well and if again the filtering rules overlap or contradict,
evolvability issues may appear. It is also native to only rely
on application level firewalls and no longer on TCP/IP based
firewalls, as it is like removing locks from doors and windows
and only react on camera surveillance - by the some something
shows up on camera, the damage can already be done. Multi
level security applies in both the physical and virtual world.
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