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Abstract—Smart Services enrich many aspects of our daily lives,
such as in the Ambient Assisted Living (AAL) domain, where the
well-being of patients is automatically monitored, and patients
have more autonomy as a result. A key enabler for such services
is the Internet of Things (IoT). Using IoT-enabled devices, large
amounts of (partly private) data are continuously captured,
which can be then gathered and analyzed by Smart Services.
Although these services bring many conveniences, they therefore
also pose a serious threat to privacy. In order to provide the
highest quality of service, they need access to as many data as
possible and even reveal more private information due to in-depth
data analyses. To ensure privacy, however, data minimization is
required. Users are thus forced to balance between service quality
and privacy. Current IoT privacy approaches do not reflect
this discrepancy properly. Furthermore, as users are often not
experienced in the proper handling of privacy mechanisms, this
leads to an overly restrictive behavior. Instead of charging users
with privacy control, we introduce VAULT, a novel approach
towards a privacy-aware management of sensitive data. Since
in the IoT time series data have a special position, VAULT is
particularly tailored to this kind of data. It attempts to achieve
the best possible tradeoff between service quality and privacy
for each user. To this end, VAULT manages the data and enables
a demand-based and privacy-aware provision of the data, by
applying appropriate privacy filters which fulfill not only the
quality requirements of the Smart Services but also the privacy
requirements of users. In doing so, VAULT pursues a Privacy by
Design approach.

Keywords—time series data; privacy filters; aggregation; inter-
polation; smoothing; information emphasis; noise; data quality;
authentication; permission model; data management.

I. INTRODUCTION

This paper extends the work of Stach [1]. In this extended
version, we discuss for the first time how data are managed
in VAULT and how to determine which privacy filters are
appropriate for which Smart Service. In addition, we provide
more technical and implementation details on the privacy filters.

The ever-increasing popularity of the Internet of Things
(IoT) is both, a blessing and a curse. On the one hand, sensors
built into everyday objects enable to monitor entities (e. g., a
machine or a person) permanently and very precisely. Since the
gathered data are always tagged with a time stamp, the data of
different sources can be combined to obtain a comprehensive
chronological profile of the monitored entity. Subsequent
analyses can provide even more profound knowledge about the
entity [2]. The IoT is therefore an enabler for Smart Services
from a wide variety of domains, including Smart Homes [3],
Smart Cars [4], and Smart Health [5]. Such services are a
great benefit for the users as they facilitate their daily life [6].

On the other hand, these great capabilities of such services
pose a great danger at the same time. In particular, if the
monitored entity is a natural person, his or her privacy is at
risk. Users are often not even aware of the coherences between
gathered data and derivable insights. However, Smart Services
not only have access to the data of a single user but to the data
of a vast number of users. This even enables them to learn
from the behavior of these users and to predict future behavior
patterns of different users [7].

For this reason, the General Data Protection Regulation of
the EU (GDPR, see [8]) tries to provide guidance to meet the
interests of both, service providers (in terms of data quality)
and users (in terms of privacy requirements) [9]. Nevertheless,
the user is faced with the difficult task of balancing service
quality and privacy. The more data a user shares with a service,
the better is its service quality, as it is thereby able to perform
more precise analyses and thus establish a more profound
knowledge base. Its users, however, are fully exposed in the
process. Whereas, if a user conceals all data that could reveal
private information, his or her privacy is protected effectively—
yet, the service is practically useless as a result [10].
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Today’s privacy approaches for the IoT contribute little to
solve this dilemma, as they suffer from three critical flaws:

a) Users are often overwhelmed by these approaches, as
the coherences between gathered data and derivable
knowledge are not comprehensible. That is, if the user
grants a service access to two seemingly harmless data
sources, the combination of these two sources might
provide new insights [11], [12].

b) These privacy approaches completely ignore service
quality. They focus solely on concealing certain, possibly
private data, and as a result the service quality is often
considerably, yet unnecessarily impaired [13].

c) These privacy approaches are only applicable to certain
application scenarios and analysis methods. As a result,
users need a variety of different privacy solutions to make
all of their Smart Services privacy-aware [14].

To this end, we make the following five contributions:
(1) We introduce a privacy approach towards high-utility

time series data, called VAULT . VAULT is a concept
for the protection of personal data, which achieves a
good compromise between service quality and privacy and
optimizes both of these aspects. Furthermore, specifying
privacy requirements is still very simple for the user.

(2) We present five different privacy techniques that are
applied in VAULT. These techniques are tailored to
the analysis methods applied to time series data as
Smart Services mainly handle such data. Furthermore,
we describe how the privacy filters in VAULT which
implement these privacy techniques can be realized.

(3) We outline how the data management is realized in
VAULT. In addition to privacy-aware data handling, a
great focus is also on an efficient data provisioning.

(4) We describe how the quality and privacy requirements
are specified in VAULT and present an IoT-compliant
way of identifying Smart Services. These are prerequisites
for tailored data provisioning, which not only enables an
appropriate level of service but also respects the privacy
of users.

(5) We describe an implementation of VAULT based on
InfluxDB [15]. Yet, VAULT is completely independent
from its data source, i. e., InfluxDB can be replaced by
any data source providing time series data.

The remainder of this paper is structured as follows: In
Section II, we introduce a sample use case from the Ambient
Assisted Living (AAL) domain. Using this example, we identify
requirements a privacy system has to meet in order to be
effective for Smart Services. Section III illustrates how privacy
mechanisms operate in principle in IoT environments and why
this approach poses a problem for data quality. Then, Section IV
discusses selected and representative related work regarding
whether they meet the identified requirements. We introduce
our concept for VAULT and the applied privacy techniques
in Section V. An implementation of this concept is given in

Section VI. In Section VII, we assess VAULT according to our
identified requirements and carry out a performance analysis.
Finally, Section VIII concludes this paper and gives a brief
outlook on some future work.

II. RUNNING EXAMPLE

An application field, in which the IoT facilitates the users’
daily routines by having access to highly sensitive data, is
the healthcare domain. Sensors enable patients to monitor
themselves permanently, while their physicians and other
parties involved obtain the processed data tailored to their
requirements.

In the health context, there is an IoT application that
serves the well-being of the users in every stage of life and
every conceivable situation. These applications enable users
to achieve a permanent self-measurement [17]. Since these
applications often involve gamification aspects, users of all ages
are motivated to collect a variety of personal information on an
ongoing basis, thereby creating and maintaining a very accurate
health profile. This is called the Quantified Self movement [18].

However, the possibilities of such applications go far beyond
pure self-measurement and a Quantified Self. For instance,
the sensors in today’s commercially available smartphones
are accurate enough to process the recorded data for medical
analysis [19]. In addition, a variety of special medical metering
devices can be connected to a smartphone, e. g., via Bluetooth.
In this way, the applications have access to these health data
as well [20].

Although the health data are collected using smartphones,
the actual processing of the data often involves an online
health platform. Such platforms have three advantages: Firstly,
they have almost unlimited resources, so that comprehensive
analyses are also feasible. Secondly, data of multiple users are
available in such platforms, so that statistical analyses can also
be carried out. Finally, these platforms also enable to share data
with third parties, for instance with doctors and caregivers [21],
[22].

Figure 1 illustrates the technical structure of such an IoT
health Smart Service. In accordance with Stach et al. [16], the
components of such a service can be divided into four layers.
More about the technical characteristics of these components
can be found in Section III.

It is obvious that such a health Smart Service is highly
beneficial for both patients and physicians. Patients are able to
carry out necessary medical examinations on their own and only
need to see their physicians in emergencies. This significantly
reduces the workload of the physicians and allows them to
focus on emergency cases [23]. However, there are many other
parties that are interested in such data. For instance, insurance
companies wish to use these data to tailor insurance premiums
more dynamically [24]. In addition, these data could provide
scientists (e. g., city planners) with the information they need
to create healthier living environments [25].

However, not all of these parties need full access to all health
data. Especially since such data are highly sensitive, access
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Figure 1. Layered Architecture of an IoT Health Smart Service (cf. [16]).

should be restricted according to the quality requirements of
the Smart Services [26].

Application Scenario

In the following, we illustrate this using an AAL use case:
Due to an aging population, the World Health Organization

has introduced the paradigm of active ageing to enable
elderly people to remain involved in social life [27]. A key
aspect in this respect is that they are not pulled from their
familiar surroundings (e. g., by accommodating them in a care
facility) and that there is no loss of autonomy. AAL achieves
this via sensors acting as permanently present but invisible
caregivers [28].

An AAL platform offers wide-ranging monitoring services.
The health data relevant for such platforms can be effortlessly
captured even by technical laymen using conventional sensors.
Besides the obvious data acquisition options, such as the use
of a GPS sensor, which can be found in every smartphone,
for localization, the geomagnetic field sensor can also be used
for this purpose as well—that way, even indoor localization
is feasible [29]. Additionally, the activity of a user can be
determined via a gyroscope and an accelerometer [30].

The consumed bread units (a measurement particularly
relevant for diabetics) can be determined with a camera and
subsequent image recognition [31]. Even a person’s mood can
be monitored with a standard microphone based on his or
her voice pitch [32], while wearables (e. g., Smart Bands) are
able to determine the stress level caused by environmental
influences [33]. In addition, special metering devices such as
continuous glucose monitoring systems enable a continuous
recording and provisioning of blood glucose levels [34]. An
example of such a continuous blood glucose monitoring over

a period of approximately six months is shown in Figure 2.
We use this real-world time series data later to demonstrate
the functionality of VAULT.

All these individual measurements can then be combined
into a health record object by joining them on their time stamp
(see Figure 3). Such a health record can be supplemented with
static data, such as annotations to the measurement data or
information about contact persons.

Physicians can retrieve these data and are then able to
adjust the medication remotely. For some of these health
parameters, they require the chronological progression with
high accuracy (e. g., blood glucose), while for others an
approximate progression is sufficient and single values are
negligible (e. g., weight). It is also possible to check remotely,
whether the required medication has been taken. Yet, this
information is not required to be transferred permanently.
It is sufficient to inform physicians if the medicine is not
taken several times in a row. Fall detection is realized via
wearables. This enables to alert a caregiver immediately if a
senior has fallen and needs help. For this purpose, the data from

2018-01-31T0054 2018-08-08T2345

Glucose Level

Figure 2. Data from a Continuous Diabetes Monitoring Device.
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Figure 3. Data Model of an Annotated Electronic Health Record.

the gyroscope, the accelerometer, and the position sensor are
analyzed. In addition, the location where the fall occurred has
to be determined, e. g., if the “fall” occurred in bed, it may have
been a false alarm and the senior just went to sleep. Although
location data has to be analyzed for this purpose, the caregiver
must not be allowed to access this data. However, relatives with
guardianship should be informed of the senior’s whereabouts
(e. g., if s/he is suffering from dementia and wander around
confused and disoriented) [35].

Requirements Specification

This example illustrates that Smart Services gather a va-
riety of private data. The GDPR must thus be observed in
such use cases [36]. For instance, it requires data minimiza-
tion [Art. 5(1)(c)]. Caregivers only have to be informed when
a senior has fallen, whereas permanent access to his or her
location is not required for them. Yet, relatives need access to
this data if they are the senior’s guardian. This is regulated by
the purpose limitation [Art. 5(1)(b)]. Service providers have
to ensure the accuracy of the processed data [Art. 5(1)(d)].
To make this feasible, privacy measures must not arbitrarily
manipulate sensor data. Especially when particularly sensitive
data, such as health data, is involved, the data subject must give
explicit consent to their processing [Art. 9(2)(a)]. A solution
with respect to these legal obligations is given in Article 25:
Technical measures are postulated to ensure privacy compliance,
i. e., Smart Services monitor and regulate themselves by default
(Privacy by Design). To be effective, such a technical privacy
solution has to meet the following five requirements:
R1 Individual Privacy Enhancement. Each user has differ-

ent privacy requirements. While some people have no
concerns about sharing their location data, others consider
this kind of data as highly sensitive. Thus, every user has
to be able to decide individually what information s/he
wants to reveal, i. e., make available to a service.

R2 Utility Preservation. However, not only privacy require-
ments need to be considered. Users also have to decide

which services they want to use and what data the
respective service requires in order to operate. Only if the
service receives these data in a sufficient accuracy and
quantity, the user receives the expected service quality.

R3 Privacy and Data Quality Harmonization. Privacy and
service quality, however, are by no means independent
objectives. Enhancing privacy significantly impairs service
quality and vice versa. A privacy system therefore has to
consider both aspects equally to achieve Pareto optimality.

R4 Privacy Method Adaption. To make this possible, a
privacy system has to be able to adapt its privacy methods
to the service quality requested by a user. That is, the
privacy system has to select a method which matches a
service’s specific data quality and quantity requirements.

R5 Dynamic Policy Application. The application of the
privacy requirements has to be dynamic, i. e., before a
service gets access to data, its properties must be checked
(e. g., a relative only gets access to a senior’s location if
s/he is his or her guardian at the time of the request).

III. STATE OF THE ART

After having identified the requirements towards a technical
privacy solution for Smart Services, we now present the four
layers of an IoT Health Smart Service (see Figure 1) from a
technical point of view. In particular, we aim to specify for
each layer, which technical privacy measures can be taken in
that respective layer.

Sensor Layer

The sensor layer encompasses all components that can collect
data and thus can act as a data source for an IoT Health
Smart Service. These are generally very low-level sensors that
only serve a specific purpose, e. g., capture blood glucose
levels. Their computing power is therefore severely limited
and no additional resources such as additional memory or data
storages are available to them. As a consequence, no operations
that exceed their basic functionality can be executed on these
components. This applies especially to third-party applications.

Examples of components that are part of the sensor layer
are cameras, microphones, or GPS receivers. However, special
medical devices such as continuous blood glucose monitoring
systems also belong to this layer.

From a privacy point of view, due to hardware limitations
and a lack of capabilities to install privacy protection software
on them, users of such devices have no possibilities to control
their data unless such a function is explicitly offered by the
component. Unfortunately, this is not the case for most of
these components. The only privacy control mechanisms on
this layer are therefore special privacy-aware connectors that
are able to prevent leakage of private data [37], [38].

Nevertheless, the threat level on the Sensor Layer is compara-
tively low, since on the one hand only a very limited amount of
information is captured by each individual component, and on
the other hand the data only affects a single data subject, which
is typically the owner of the component as well. Moreover, the
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lack of capabilities to install third-party applications prevents
the installation of malware.

Edge Layer

Since the components in the Sensor Layer do not have the
required resources, they have to forward the collected data to
a device with more computing power for data preprocessing
and initial analyses. Thereby it is irrelevant whether they are
physically connected to the more powerful device, i. e., whether
the sensor is permanently installed in the device, or whether
there is a wireless connection. For instance, Bluetooth can be
used for that purpose.

Such hub devices are allocated to the Edge Layer. Besides
their significantly higher computing power, they are charac-
terized by the fact that they can store larger amounts of data
permanently. They also possess connectivity to the Internet and
can therefore connect to a health platform (hence the name
Edge Layer, as they are on the edge to the Cloud).

In principle, any kind of end-consumer product can be
considered as such a hub device. This includes smartphones,
laptops, or personal computers.

From a privacy point of view, it is both a blessing and a curse
that third-party applications can be installed on these devices
almost without any restrictions. On the one hand, this enables
users to set up privacy control mechanisms that provide a fine-
grained permission management in order to ensure that only a
bare minimum of data is shared with other applications [39],
[40]. On the other hand, however, that is an entry point for
malware. Furthermore, their connection to the Internet enables
such malware to forward sensitive data to an arbitrary endpoint.

For this reason, the threat level on the Edge Layer is very
high. However, this type of device is also characterized by
their strong connection to a single user. As a result, data on
these devices usually also refer to this single data subject, i. e.,
the data owner is in control over his or her data as long as
they do not leave the Edge Layer.

Big Data Layer

Since the computing power and storage capacity of the
devices in the Edge Layer are not sufficient for performing
comprehensive long-term analyses, they transfer the collected
data to remote servers to this end. These servers are part of
the Big Data Layer. In the Big Data Layer Cloud-based health
platforms are hosted, such as Microsoft HealthVault or Google
Health [41]. In these platforms a personal health record is
maintained for each user which is regularly updated. Besides
the simple administration of health data, these platforms also
provide continuous data analytics. Since the data of several
users are available to these platforms, they can also apply
profound data mining, machine learning, and complex event
processing techniques to recognize recurring patterns in the data
by cross-linking data from different users. That way, further
knowledge can be gained.

From a privacy point of view, the threat level is highest for
the Big Data Layer. Not only do these Cloud-based health
platforms hold a large amount of data from different users, but

they also have the capacity to store the data indefinitely. In
addition, a user no longer has any physical control over the
data once they have been transferred to the platform. Moreover,
in a Cloud-based solution, a user does not know where his or
her data are processed and stored.

Users have therefore to trust in the reliability of the platform
provider. By means of service level agreements and other
contract documents, they can protect themselves from a legal
perspective. To establish trust in their platforms and prove
their fair data usage, platform providers can additionally apply
technical privacy control mechanisms [26], [42]. However,
these mechanisms have to sustain the data quality so that the
functionality of the platform is not impaired.

Application Layer

The insights gained in the Big Data Layer are prepared for
presentations tailored to different stakeholders. This includes,
for instance, notifications when a certain pattern occurs in
real-time data (e. g., a sugar shock is imminent), aggregated
reports, or a filtered view on the data. These recipients include
physicians, caregivers, or family members of the data subjects,
among others.

The devices on which the visualization of the prepared data
are rendered belong to the Application Layer. Just like in that
Edge Layer, any kind of end-consumer product can be used
in the Application Layer, including smartphones, laptops, and
personal computers. In contrast to the devices in the Edge Layer,
these devices typically are not owned by the data subject.

Therefore, no technical privacy control mechanisms can
be applied in this layer since the data subject is not directly
connected to these devices. This makes it all the more important
that the data subject is able to specify in the Big Data Layer
to which third parties the data may be shared with.

Lessons Learned

Table I summarizes the key characteristics of each layer.
It considers whether third-party applications can be executed
(Apps), how much control the user has over the usage of his
or her data (Control), how many data can be accessed (Data),
how much computing power is available (Power), how many

Table I. Key Characteristics of the Layers of an IoT Health
Smart Service (The filling degree of the circles indicates the
influence of a certain characteristic on the respective layer.).

Sensor Edge Big Data Application
Layer Layer Layer Layer

Apps 7 3 3 3

Control

Data

Power

Storage

Threat

User � � ¯ ¯
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data can be stored persistently (Storage), how hazardous the
processing can be concerning privacy (Threat), and whether
the data of a single or multiple users are processed (User).

As can easily be concluded from the table, a technical privacy
control mechanism for IoT Health Smart Services should be
applied in the Big Data Layer.

On the one hand, this is where all the data available to
a Smart Service is gathered. If a privacy control mechanism
would be applied at an earlier stage, it would be either far
too restrictive, e. g., because privacy filters are applied several
times, or it would not be comprehensive enough as not all data
sources are known at this point. Only in the Big Data Layer
all privacy requirements on the part of the users and all quality
requirements on the part of the Smart Services are identified.

On the other hand, the Big Data Layer represents the last
line of defense before data are passed on to the Application
Layer and thus to third parties that are not necessarily known
to the data subjects and are therefore completely beyond their
control.

IV. RELATED WORK

In the following, we review current privacy approaches for
the IoT and assess them with regard to our running example.

Access Control

The most basic approach to ensure privacy is access control.
In role-based access control, each involved party is assigned
to a specific role (e. g., physician). A party can be assigned
to several roles at the same time. Access rights to certain
data sources are granted to these roles instead of individual
users. Although this approach sounds promising at first as
there are few roles (compared to the number of parties), and
thus the number of access rights which have to be specified is
reduced, it is not flexible enough for the IoT due to its fixed pre-
defined roles [43]. Assigning access rights to certain attributes
is significantly more dynamic. Attribute-based access control
validates any kind of attribute at runtime (e. g., attributes that
describe the party requesting data access or that party’s current
context). Data access is only granted if these attributes meet
the data subject’s authorization requirements [44]. This way,
it is possible to model that relatives only have access to a
senior’s location data if they currently have the guardianship.

Nevertheless, pure access control approaches are far too
restrictive and thus severely limit service quality. The user
can only make a binary decision—either s/he grants or denies
access to a data source. A fine adjustment, however, is not
possible (e. g., reduce accuracy of the data or add mock data).

Attribute-based Privacy

To address this problem, a filter can be integrated into a data
source. So, particular attributes of the data provided by that
source can be filtered out, if they reveal private information.
This enables users to specify, e. g., that their medical metering
device still provides access to their blood glucose level, but not
the blood oxygen level. Each filter can optionally be linked to a
spatiotemporal context to specify when it should be active [45].

Such a filter can also be tailored to the respective data source.
Instead of fully filtering out certain attributes, they can be
replaced by mocked but realistic data, in terms of, e. g., value
range and distribution [46].

A fundamental problem of these approaches is that they do
not take chronological aspects inherent in this kind of data
into account. Often, isolated data values do not pose a privacy
threat. Only a sequence of single values results in a privacy-
relevant pattern (e. g., a sequence of singular gyroscope and
acceleration data results in an activity pattern). Yet, users have
to filter all data of the concerning attribute in these approaches
to ensure that such patterns are concealed. As a result, services
depending on this type of data become non-functional.

Pattern-based Privacy

The intent of pattern-based privacy approaches is to conceal
complex private information from a Smart Service without
unnecessarily restricting its service quality. For this purpose,
Complex Event Processing (CEP) is used. In CEP, no individual
sensor values are considered, but higher-order events repre-
sented by a sequence of values within a given time window [47].
For instance, the event “senior leaves home” is a sequence of
location data representing a motion vector heading away from
the house. That way, users specify private patterns that must
not be revealed and public patterns that are critical in terms of
service quality. CEP is able to recognize these patterns and then
private patterns are concealed by chronologically reordering
some of the sensor values. A utility metric identifies the best
permutation in terms of maximizing both, privacy and service
quality [48].

Pattern-based privacy approaches are therefore particularly
effective for maximizing service quality. They can also conceal
patterns of any complexity consisting of sequences of individual
values. However, such an approach is ineffective with respect to
the principle of data minimization. By reordering, all individual
values are still sent to the Smart Service. As it is known what
kind of information is required by the service (via the public
patterns), data could be pre-processed accordingly (e. g., by
aggregating or tampering it) without affecting its service quality.
For instance, to detect the pattern “senior leaves home”, a
Boolean statement whether this event occurred is sufficient—
the whereabouts prior to this event are not required. Yet, this
is not considered by pattern-based privacy approaches.

Statistical Privacy

Differential privacy is applicable to the IoT, e. g., in the
context of Smart Grids [49]. There, data remains on each user’s
Smart Meter, while energy suppliers only receive aggregated
data. It is ensured that no information about an individual user
can be derived from the statistical analysis of this data.

Such an approach not only provides a zero-knowledge
privacy guarantee for individual users, but also ensures that
the accuracy of the data not compromised unnecessarily [50].
Differential privacy can be achieved for both, database sys-
tems [51] as well as data stream systems [52].
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Figure 4. Concept of and Workflow for Data Access via VAULT.

Yet, this kind of anonymization is only useful when informa-
tion about a large group of users is required. It is not applicable
to a use case like AAL, as in such a scenario sensor data must
be evaluated for each user individually.

V. VAULT CONCEPT

Our review of related work shows that none of these
approaches is by itself effective in ensuring both, privacy,
and service quality. So, we combine and extend these concepts
to provide a privacy concept that is tailored to IoT time series
data, called VAULT. According to the findings of Section III,
VAULT is positioned in the Big Data Layer.

Figure 4 shows its core concepts and workflow, which are
detailed in the following:

Step 1 A service description is mandatory that identifies
the service, e. g., the service name, its execution environment,
or the service owner. This description is used to authenticate
to VAULT. Like attribute-based access control, permissions
in VAULT are not linked to a specific service, but to a set of
its attributes. For instance, different permissions may apply to
the same service depending on the country where it is hosted.
More information on that authentication and access control can
be found in Section VI-A.

Step 2 To ensure service quality, a service also has to
define its quality requirements. These include, e. g., which
data a service requires and with what accuracy these data are
required. Thus, the quality requirements correspond to the basic
idea of the public pattern.

Step 3 In addition, a data subject specify which permissions
are assigned to a certain service. To this end, s/he provides
a high-level description of his or her privacy requirements in
natural language. Similar to the privacy patterns, s/he only
has to describe which knowledge must not be disclosed. A
model in VAULT indicates from which data this knowledge
can be derived. Based on this model, machine learning can
automatically derive permissions from these privacy require-
ments. More information on that permission management can
be found in Section VI-B.

Step 4 As VAULT provides different privacy techniques
depending on the respective service (i. e., in accordance with
its quality and privacy requirements), the time series data has

Breakfast Lunch Dinner

Glucose Level

Figure 5. Continuous Diabetes Monitoring Data over the Course of a Day.

to be initially prepared accordingly. More information on how
the data are managed in this regard is given in Section VI-D.

It has to be mentioned that Step 1 to Step 4 are
independent tasks and can be carried out in any given order.

Step 5 If a service requests data access, VAULT first checks
its service description (i. e., attributes of the service) and which
permissions (i. e., privacy requirements) are linked to it. They
are then consolidated with its quality requirements.

Step 6 Based on these two requirement specifications,
an appropriate VAULT privacy technique is selected. More
information on the privacy filters applied in VAULT can be is
given in Section VI-C.

Step 7 Subsequently, the request is executed, and the results
are sent back to the service.

VAULT relies on existing techniques, which are already used
for processing and analyzing time series data, to ensure privacy.
As a result, the impact on service quality should be negligible.
We discuss the following five such privacy techniques. For
this purpose, we use the previously introduced example of
continuous diabetes monitoring data. The data set shown in
Figure 5 is used to illustrate the respective technique.

Projection, Selection, and Aggregation

The most basic privacy technique used in VAULT is
the application of relational algebra operators. A projection
constrains the number of attributes whereas a selection filters
out certain tuples of a data source entirely. The impact of these
two operators on the result set of a database query is illustrated
in Figure 6.

As the data sources we consider in VAULT provide time
series data, a selection operator is therefore synonymous with
specifying a specific time frame. An aggregation can be used
to consolidate the analyzed data (e. g., via set operators such
as AVG or SUM). Smart Services use these operators anyway
to select the data that is relevant to them and thus reduce the
huge amount of available data. VAULT is therefore able to
restrict the available data according to the quality requirements
of a service via theses operators in order to ensure privacy. For
instance, a service gets only access to certain sensor values,
certain days, or summarized data.

Listing 1 shows how an SQL query has to be rewritten for
this purpose: If a user enters the query shown in Listing 1a,
s/he will receive all data stored in the Table “health_record”.
A projection ensures in the query shown in Listing 1b that the
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(c) Selection.

Figure 6. Impact of a Projection and a Selection on a Database Query.

user only receives the glucose data stored in the “health_record”
Table. The selection in the query shown in Listing 1c causes
that only data captured over the course of the last week are
returned. Finally, due to the aggregation in the query shown
in Listing 1d, only daily average glucose levels are returned.

Data Interpolation

When dealing with sensor data, one has to reckon that
sensors occasionally deliver no or incorrect values due to
technical problems. To ensure that the data are still processed
correctly, strategies must be implemented to deal with these
missing and incorrect readings. For this purpose, these incorrect
readings have to be substituted with artificial, yet realistic data.
On the one hand, interpolation techniques can be used to
smooth the temporal progression of the values, assuming that
the sensor signal describes a continuous function [53]. On the
other hand, it is possible to use machine learning to make
predictions regarding the progression of the values. Missing
values or outliers (in terms of values exceeding or falling below
a threshold) can then be substituted with these predictions [54].

We use these data cleansing techniques in VAULT to ensure
privacy. In certain situations, outliers have a particularly high
information value and are therefore considered as particularly
sensitive data. Figure 7 shows the time course of a blood
glucose level. It can be observed that the level rises particularly
high during lunch, which could be a sign that the data subject
has eaten dessert. Since this represents an outlier, i. e., an event
that occurs only rarely, such a data point holds a particularly
high information value. For instance, if a care provider in an
AAL program only needs to monitor whether the person is
having a meal regularly, the information about the additional
dessert can be concealed without causing any problems. To
this end, VAULT first uses outlier detection to identify data
points with high information value, deletes them, and then fills
the resulting gap via spline interpolation (red line).

1 SELECT *
2 FROM "health_record"

(a) Query over all Data.

1 SELECT "glucose"
2 FROM "health_record"

(b) Application of a Projection.

1 SELECT *
2 FROM "health_record"
3 WHERE time > now()-7d

(c) Application of a Selection.

1 SELECT AVG("glucose")
2 FROM "health_record"
3 GROUP BY "day"

(d) Application of an Aggregation.

Listing 1. Examples of how Queries can be Restricted.

Interpolated Data
Raw Data High Information Value

Breakfast Lunch Dinner

Figure 7. Application of a Spline Interpolation to Time Series Data.

Data Smoothing

While data interpolation is well-suited for eliminating a
few isolated outliers, sensor data can also be noisy as a
total. Analyzing noisy data is often difficult and leads to poor
results. So, the noise component is removed from the data
by means of filters. Especially if the examined data contains
some periodicity, which is often the case with AAL data due
to regular daily routines, Fourier transforms are well-suited for
noise reduction. This creates a band filter effect, i. e., certain
interference frequencies can be attenuated [55]. Figure 8 shows
the effect of a Discrete Cosine Transform on a noisy signal
(blue line). The output is a smoothed signal (red line).

However, this data cleansing method can also be used to
protect private data. The transform removes details from the
time series data and less information is shared with requesting
services. Nevertheless, the actual data progression is still
available to them with great accuracy. As shown in the figure,
smoothing gives a better overview of the blood glucose curve
for the six months without revealing any details about particular
readings.

Information Emphasis

Using wavelet transform, noise can even be filtered out
to such an extent that only data with a high information
value remains in the signal (e. g., peaks or turning points).
For this purpose, the data progression is compared with a basic
function, the so-called wavelet. This window function defines
the weighting of each signal value in subsequent analyses. The
Continuous Wavelet Transform constantly varies the parameters
of this mother wavelet to obtain a band of daughter wavelets.
This facilitates a particularly selective filtering and compression
of the data [55].

Raw Data
Discrete Cosine Transform

2018-01-31T0054 2018-08-08T2345

Figure 8. Application of a Fourier Transform to Time Series Data.
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Figure 9. Time-Frequency Representation of Noisy Time Series Data.

In Figure 9, the noisy sensor signal (upper half of the figure)
is converted into a time-frequency representation (lower half of
the figure) using the Mexican Hat Wavelet as mother wavelet.
Relevant data segments are exposed in this representation
(light and dark zones). For instance, if the signal represents
blood glucose levels1, these zones indicate hypoglycemia
or hyperglycemia, respectively. The information about the
occurrence of these events is sufficient to generate appropri-
ate recommendations concerning medication and treatment
schedule. The exact glucose values need not be disclosed to a
caregiver for this purpose. This increases privacy as no details
in the data are available to third parties.

Adding Noise

A completely opposite privacy approach is adding noise to
a signal on purpose. In Figure 10, Gaussian noise is added to
formerly noise-free sensor data (blue line). That is, the noise in
the resulting data is Gaussian-distributed (red line). So, actual
values are concealed in a set of corrupted values. Although
the general data progression is still noticeable, details and
characteristics of the data are hidden by the noise.

For instance, behavior patterns (e. g., “person is having a
meal”) are thus still recognizable despite the noise, whereas
characteristics on what a person has had for lunch are
concealed. For instance, food products have a fingerprint (i. e.,
a combination of unique characteristics) that can be used to
identify them. One way to identify food products which a
person has eaten is by monitoring blood sugar levels [56]. By
adding noise to the data, this is no longer possible.

While that initially sounds like a deterioration in data quality,
it can even have a positive effect on certain data analyses.
For instance, noise can cause chaotic dynamics within data.
Therefore, if deterministic chaos is to be expected in a data set
(e. g., data on the course of a disease), but it is not noticeable
as too little data are available, adding noise can be useful in
this regard to improve analysis results [57].

1For the sake of simplicity, the depicted course of blood glucose levels is
uniform and regular. However, this is only due to presentation reasons. The
assertions and findings presented in this paper also apply to other, irregular
courses.

Noisy Data
Raw Data

Breakfast Lunch Dinner

Figure 10. Adding Gaussian Noise to Time Series Data.

VI. VAULT IMPLEMENTATION

In general, there are three implementation strategies for
the realization of the VAULT concept, namely query pre-
processing, data pre-processing, and result post-processing.
Figure 11 shows how these strategies are applied.

Query Pre-Processing: Query pre-processing rewrites
queries before execution and adds further constraints to
eliminate private information from the result set. This is well-
suited for simple privacy techniques such as projection or
selection.

By using the Python module PyPika [58], queries can be
easily rewritten. Listing 2a shows how restrictions, in terms
of projections and selections, can be progressively added to a
broad incoming query (see Listing 1a). The resulting rewritten
query is shown in Listing 2b. Further restrictions, such as
aggregations, are also possible with PyPika.

Yet, such query adaptations become complex for more
advanced privacy techniques. Then, errors are likely to occur

Query Data
Consumer

Query
Rewriting Database (Materialized)

ViewObfuscation Filtering

Query Pre-Processing Data Pre-Processing Result Post-Processing

Figure 11. Implementation Strategies for the Privacy Techniques in VAULT.

1 from pypika import Query, Table, Interval
2 from pypika import functions as fn
3

4 """ initial query over all data """
5 hr = Table('health_record')
6 q = Query.from_(hr)
7

8 """ adding a projection """
9 q = q.select('glucose')

10

11 """ adding a selection """
12 q = q.where(hr.time + Interval(days=7) >

fn.Now())↪→

13 query = q.get_sql()

(a) Query Rewriting via PyPika.

1 SELECT "glucose"
2 FROM "health_record"
3 WHERE "time"+INTERVAL '7 DAY'>NOW()

(b) Result of the Query Rewriting.

Listing 2. Exemplary Query Rewriting Process in VAULT.

96

International Journal on Advances in Security, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/security/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



when automatically rewriting queries. These errors compromise
privacy as well as service quality.

Result Post-Processing: Result post-processing enables a
thorough control of a query’s result set. That way, it can be
filtered before forwarding it to the data consumer.

However, a query can add hidden information to its result set.
For instance, if the weight of a person must not be revealed, a
data consumer could query all data entries where the weight is
x kg (without including the weight itself in the result set). Then,
s/he repeats the query and increases x successively. Thus, s/he
knows the weight for each entry implicitly, although it never
explicitly appeared in the result set. Result post-processing is
not able to detect and prevent this.

Data Pre-Processing: Due to the shortcomings of those
strategies, we use data pre-processing in VAULT. This strategy
pre-processes all data by removing or obscuring private data.
Queries are not executed on the original data, but on this
purged data. However, this data pre-processing increases the
runtime. Yet, as Smart Services often use recurring queries,
which are known due to their service descriptions, the runtime
can be improved by using materialized views to persist the
pre-processed data in advance.

Figure 13 shows how we realized the VAULT concept
following the data pre-processing strategy. VAULT introduces
a database abstraction layer to strictly isolate services from
data sources. From a service’s perspective, it therefore seems
that it directly interacts with a data source and it is not aware
of the privacy techniques applied to the data [59], [60].

Before using a service for the first time, the service provider
has to define the quality requirements of the service and the
user must specify his or her privacy requirements. As this needs
to be done only once (unless requirements change), these steps
are not shown in Figure 13.

For this specification, a knowledge model is used. An extract
of such a knowledge model is shown in Figure 12. This
visualization is based on Stach and Steimle [61].

The knowledge model is based on the principle that data,
information, and knowledge are interrelated [62]. Similar to the
DIKW Pyramid (data–information–knowledge–wisdom), our
model condenses the raw data of data sources steadily until
they become profound knowledge patterns.

Initially, all types of raw data that are available to a Smart
Service are specified at the Data Layer. As it is irrelevant
from which source these data originate, the data sources are
not modeled. For instance, an accelerometer can be integrated
in both, a Smartphone and a Smart Band. However, since the
information content of these two data sources (and thus the
potential privacy threat) is identical, we do not differentiate
between them in order to keep the knowledge model as concise
and comprehensible as possible. Moreover, at this layer, it
is not relevant whether a Smart Service actually uses these
data—it only matters which data are available. As a result,
the knowledge model becomes slightly more extensive than
necessary. That way, however, the model remains compatible
with future Smart Services that might use these data.

Available
Privacy Filters

Adding NoiseInformation
Emphasization

Type of Data

Interpretation

Derivable Pattern

Privacy Filter

Knowledge Link

Applicable Privacy

Data

Information

Glucose
Monitor

HealthActivity Location

Gyroscope Accelero-
meter GPS

Knowledge
Diagnosis
Pattern

Caregiver
Pattern

Figure 12. The VAULT Knowledge Model for a Health Record (excerpt).

Based on the Data Layer, the Information Layer describes
how the available types of data can be interpreted. For instance,
GPS data (i. e., latitude, longitude, etc.) can be interpreted as
the location of a user. Yet, this is not necessarily a 1 : 1 mapping.
Certain interpretations are only feasible by combining several
types of data. For instance, the activity of a user can only be
recognized when both, gyroscope data and accelerometer data,
are available. A single type of data can also reveal different
kinds of information. For instance, the accelerometer data can
also indicate the speed of the user—the “speed” pattern is not
modeled in Figure 12 for the sake of simplicity.

At the Knowledge Layer, the Smart Services are considered,
i. e., which knowledge patterns can be derived when the
underlying data are shared with a service. For instance, a
diagnosis pattern describes how specific health data change
when a user’s activity and location are taken into account.

Furthermore, the VAULT knowledge model specifies all
available privacy filters, which can be applied to the data
sources without concealing a certain knowledge pattern. On
the one hand, this takes into account whether the respective
filter matches the data type of the source (e. g., a filter for
numeric values cannot be applied to free text data) and, on the
other hand, whether the data quality after applying the filter
is still sufficient to meet the requirements of the services in
question.

This enables users to specify a high-level description of their
privacy requirements (at the Knowledge Layer) and VAULT is
able to identify the appropriate privacy filters and apply them
to all associated raw data [63].

Step a A registered service authenticates to VAULT with
its attributes. To prevent a service from getting too many
permissions by falsifying its attributes, Gritti, Önen, and
Molva [64] introduce a process for verifying these attributes.
This approach takes into account that the privacy of the service
has to be ensured as well, as the attributes might contain
private information about the service provider. This approach
is therefore a valuable supplement to the authentication process
of a data provisioning platform, such as VAULT [65]. More
information on this step is given in Section VI-A.

Step b If a service is authorized to use VAULT, its queries
are temporarily stored in a query buffer.

97

International Journal on Advances in Security, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/security/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Service Type

Execution
Environment

Attributes

V
A
U
L
T

Service… a

i

Access Policy

c

Utility Metric

d

Privacy Scripts

e

Privacy-
Purged Data

i

Time Series
Database

h

Filter Noise

…

f

Obfuscator
g

Query Buffer

b

h

Figure 13. Implementation of and Query Processing in VAULT.

Step c VAULT checks in the access policy which quality
requirements this service has, and which permissions are
granted to its attributes.

Step d Then, a utility metric is used to search for privacy
techniques that maximize both, privacy and service quality.
Basically, it compares how much information relevant to the
service is concealed and how much private data are disclosed
when a particular privacy technique is applied. Additionally,
the user can determine via a weight, whether his or her focus is
more on privacy or service quality [26], [48]. More information
on Step c and d is given in Section VI-B.

Step e We implemented each of the privacy techniques
presented in Section V as Python scripts. These scripts are
made available to VAULT in an archive. Further scripts and
thus privacy techniques can be added to the archive to extend
the functionality of VAULT. The utility metric selects the most
suitable scripts and forwards them to the Obfuscator. More
information on this step is given in Section VI-C.

Step f The Obfuscator merges the scripts and adjusts them
according to the service.

Step g It then applies the resulting script to the affected
time series data.

Step h In our prototype, we use InfluxDB. However, due
to the database abstraction any other time series database can
be used as well. The privacy-purged data are made available in
materialized views and the queries stored in the query buffer
are executed on them. More information on this step is given
in Section VI-D.

Step i Finally, the database abstraction layer—which, in
analogy to the result post-processing strategy, performs a final
audit—returns the results to the service.

Without any loss of generality, a time series database is
used in VAULT. Yet, VAULT can also be applied to a stream
processing system for time series data, such as Kapacitor [66].
It is also possible to operate a database and a stream processing
system in parallel and combine their results [67].

In the following, we provide additional details on four
selected implementation aspects, namely authentication and
access control (see Section VI-A), permission management

Sensor

IoT
Platform

Attribute Authority

Gateway

Fully Trusted Zone Honest-but-Curious Zone

1

1

1

2 3

4

5

Figure 14. Privacy-Aware Attribute-Based Signature [71].

(see Section VI-B), privacy filters (see Section VI-C), and data
management (see Section VI-D).

A. Authentication and Access Control

Gritti, Molva, and Önen [68] introduce a method to identify
entities in communication networks by means of their charac-
teristic attributes (e. g., its IP address). This method is based on
asymmetric encryption, in which an entity uses a private key
to sign its messages. All other participants in the network can
then verify the authenticity of the messages using the public
key of that entity.

Although this procedure is already rather lightweight, the
verification of the messages (i. e., the decryption of the
messages with the public key) still causes costs in terms of
computing effort and thus a higher power consumption. This
can be a problem especially in a resource-limited environment
such as the IoT—in particular for battery-powered IoT devices.
It is therefore advisable to outsource a large part of the
computing-intensive tasks to a Cloud infrastructure [69].

However, this reveals a lot of private information about the
entities in the network towards the Cloud infrastructure, since
the public keys are also based on their characteristic attributes.
Therefore, privacy must also be considered and preserved in
this authentication process [70].

In VAULT, we can make use of the layered architecture of
IoT health Smart Services (see Figure 1) for this purpose. In
particular, we can rely on the fact that the devices that serve
as a gateway to the Big Data Layer generally have sufficient
computing power and can therefore handle the computing-
intensive tasks effortlessly.

Figure 14 shows how we can apply the approach of Gritti,
Önen, and Molva [70] in that kind of IoT environment:

Step 1 Initially, each entity, i. e., in our context each Smart
Device, requires a public and private key. For this purpose,
a trusted authority is required. This could be a federal data
protection authority for example. This authority verifies the
attributes of the entity, generates corresponding key pairs, and
distributes the keys to all participants in the network—of course,
the private key is only sent to the respective entity itself.

Here we distinguish between full keys (depicted in black)
and delegated keys (depicted in white). If τ is the set of all
identifying attributes of an entity, then only a full key reflects
all attributes in τ . Just like private keys, full keys are sent
only to the entity itself as they contain a lot of information
about the entity in question. In contrast, delegated keys contain
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only a subset of the attributes τ ′ ( τ and can therefore also
be shared with the other participants in the network.

Step 2 Now, entities can sign their messages with their
private key. This not only verifies the authenticity of the
messages, but also enables all other participants to immediately
notice when the message has been tampered with.

Step 3 However, this approach not only ensures the
authenticity of messages. The gateway has an authentication
policy ρ . This policy ρ defines which attributes and attribute
values are mandatory for an entity in order to participate in
the network. That is, the gateway checks, whether τ satisfy ρ .
Only if this is the case, the signature is valid and therefore the
message can be considered as having integrity, i. e., it can be
approved for forwarding to the network.

Step 4 Prior to forwarding the message, however, the
gateway has to make the signature of the message privacy-
aware, i. e., it has to filter out all attributes τ \ τ ′. To this end,
the gateway uses its delegated key.

Step 5 Obviously, this reduced signature no longer satisfies
the authentication policy ρ . Therefore, an additional authenti-
cation policy ρ ′ is required that corresponds to τ ′. Using this
reduced authentication policy ρ ′ any participant of the network
can verify that the gateway has approved the message, i. e., they
are still able to verify the authenticity of a message without
gaining access to the full set of the sender’s attributes τ .

For more information on this process, please refer to
literature [64], [68]–[71].

In VAULT, we apply this approach to identify Smart
Services. A Smart Service must sign each of its queries
with its identifying attributes. The access control can then
check the signature and use the authentication policy to verify
which attribute values the service currently has. Such attribute
values can include among others the type of service or its
execution environment. That way, attribute-based access control
is enabled. In a dynamic IoT scenario, as addressed in VAULT,
an attribute-based access control is particularly suitable [72].

In the following, we take a closer look at how the permission
management in VAULT is organized, which is based on this
attribute-based access control.

B. Permission Management

In VAULT, we apply a context-based permission model. Such
a model is especially appropriate for use in an IoT scenario.
On the one hand, the inclusion of context data allows to specify
permission rules in a far more flexible manner. On the other
hand, IoT devices capture a lot of context information anyway.
This information can therefore be used for the purpose of
assigning permissions at no additional cost [73].

Figure 15 shows the permission model used in VAULT. As
shown in the figure, a VAULT policy rule consists of four key
components: the data that are to be accessed, the entity that
requests access to them (i. e., the Smart Service in question),
the context under which the access is to take place, and the
privacy constraints that apply to this access (i. e., which privacy
filters have to be applied to the data).

Policy Rule
Quality PrivacySmart

Service

Context

Constraint

Data

Inquiring
Entity

Attribute1

Attributen

…

Privacy
Filter1

Privacy
Filtern

…

Figure 15. Permission Model Applied in VAULT.

The data component represents an abstraction of the VAULT
knowledge model (see Figure 12). That is, a user can specify
his or her privacy requirements at any layer of the knowledge
model (data, information, or knowledge). Due to the knowledge
links modeled in the knowledge model, VAULT is able to
derive policy rules at a data level. In other words, the privacy
requirements are mapped to the affected data sources.

The information required for the Smart Service component
is gathered by VAULT during authentication. Since a Smart
Service has to sign all data requests with its characteristic
attributes, the originator of each request can be uniquely
identified.

In addition, the current attribute values of an inquiring entity
are also checked during authentication. These values give an
indication about the context in which a data request is made.
Using this context, a user can specify, for instance, the purpose
for which a request has to be granted. The GDPR explicitly
states in Article 9(2) that the processing of highly sensitive
data such as health data is only permissible if the data subject
has given his or her explicit consent. The specified purposes
must also be specified in this regard.

With these three components binary permissions—access
is either granted or denied—could be specified. However, in
the VAULT permission model fine-grained permissions are
envisaged. To this end, the constraint component specifies
which privacy filters should be applied to the data before they
are shared with the Smart Service. More information on how
such a privacy filter operates can be found in Section VI-C.

VAULT adopts a Privacy by Default approach as proposed
by the GDPR in Article 25. In the context of VAULT, this
means that data can only be accessed if a user has specified a
respective policy rule.

Besides the privacy requirements of the users, the VAULT
permission model also considers the quality requirements of
the Smart Services. On the one hand, the knowledge model
excludes inappropriate privacy filters, i. e., filters that either
do not match the data types in question or that impair the
data quality to such an extent that they become useless for the
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Figure 16. Confusion Matrix for the Utility Metric Applied in VAULT.

corresponding Smart Service. On the other hand, the permission
model applies a utility metric to select the filter that provides
an optimal balance between privacy and quality.

For this metric, a confusion matrix is used. Figure 16
shows such a confusion matrix. To put it simply, the matrix
compares how accurately a Smart Service operates on the data
manipulated by the VAULT privacy filters as opposed to the
original data. In other words, it determines how often a Smart
Service operates identically on both data sets (true positives T P
and true negatives T N), how often it fails to detect a pattern
in the manipulated data (false negatives FN), and how often
it incorrectly detects a pattern in the manipulated data (false
positives FP).

These measures can then be used to calculate metrics similar
to those found in the field of machine learning. For instance,
accuracy describes the closeness of the measurements to a
specific value:

ACC =
T P+T N

T P+T N +FP+FN
Another useful metric is the F1 score, which calculates the

weighted harmonic mean of precision and recall:

F1 =
2∗T P

2∗T P+FP+FN
Moreover, penalty weights can be assigned to these measures,

for instance if a false negative is considered worse in a certain
use case than a false positive [26], [48]. In our AAL scenario,
e. g., it is not as critical if a caregiver is falsely informed an
accidental fall of a helpless person as when s/he is not notified
about an actual fall.

Using these metrics, VAULT is able to select an appropriate
privacy filter. One of these filters is discussed in detail hereafter.

C. Privacy Filters

In the field of privacy preserving techniques, adding noise to
data is of special importance. On the one hand, this procedure
is very straightforward in terms of computational effort and
complexity, and on the other hand, it still conceals data reliably.
It also constitutes the foundation for many other techniques,
such as differential privacy [50]–[52]. Hence, out of the five
techniques presented in Section V, we focus on noise-based
privacy filters for VAULT in the following.

Listing 3 shows the Python code for the most basic noise-
based privacy filter possible. In it, Gaussian noise is added to

a data series. Gaussian noise generates noise that has a normal
distribution, i. e., corresponds to the following probability
density function:

r(x) =
1

σ ∗
√

2∗π
∗ e−

1
2 ∗(

x−µ

σ
)2

µ is the mean of the distribution, while σ is its standard
deviation (respectively, σ2 is its variance).

With the default parameters µ = 0.075 and σ = 0.35, we
created the noisy data shown in Figure 10 with this privacy
filter. At first sight, it seems that this prevents any detail from
being revealed from these noisy data. However, since these
data are time series data, techniques from the field of signal
processing can be applied to them [74].

One of these techniques is the Discrete Wavelet Transform.
Figure 18a illustrates this technique. In the field of signal
processing wavelet transforms are used for the compression
of signals. A signal (or in our case time series data) of length
n is split into two coefficient series each of length n/2 using
high-pass filters and low-pass filters. Similar to the Continuous
Wavelet Transform a mother wavelet is used to this end.

With each split, the high-pass filter provides detailed co-
efficients for the respective frequency band, while the low-
pass filter provides approximating coefficients, which are
further split in subsequent steps. Thereby, a Discrete Wavelet
Transform splits the signal into dlog2(n)e frequency bands2.

The result of a Discrete Wavelet Transform for the raw data
and the noisy data from the example given in Figure 10 is
presented in Figure 17a and Figure 17b. For this transform,
the Haar Wavelet was applied as a mother wavelet.

It can be seen that the raw data and the noisy data differ
only in the two uppermost frequency bands (L1 and L2). The
remaining frequency bands are almost completely unaffected
by the noise. In addition, the underlying course on frequency
band L2 can still be identified quite distinctly.

Therefore, a noise filter can be applied to these two frequency
bands L1 and L2 of the noisy data to come very close to the
frequency bands of the raw data. Using the Inverse Wavelet
Transform, as shown in Figure 18b, the frequency bands can
then be merged back into a single signal. To this end, the
detailed coefficients and the approximating coefficients are
iteratively joined.

The Savitzky-Golay filter is a digital filter which is often
used in the field of time series data for smoothing the data

2In each iteration, the number of coefficients is bisected, whereby a complete
Discrete Wavelet Transform results in dlog2(n)e discrete frequency bands.

1 import numpy as np
2

3 def add_noise(data : np.array, mu : float = 0.075,
sigma : float = 0.35):↪→

4 noise = np.random.normal(mu, sigma, len(data))
5 return data + noise

Listing 3. Simple Noise-Based VAULT Privacy Filter.
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(b) Frequency Bands of the Noisy Data.

Figure 17. Application of a Discrete Wavelet Transform to the Data Series Shown in Figure 10.

series. This filter is not only very effective, but also highly
efficient for the denoising of time series data [75].

In Algorithm 1, a method is shown how to use Discrete
Wavelet Transform and the Savitzky-Golay filter to remove
artificially generated noise. For this purpose, a time series
is first decomposed into frequency bands, then the Savitzky-
Golay filter is applied to the uppermost dlog2(n)/4e frequency
bands, and finally the time series is reconstructed using Inverse
Wavelet Transform.

Figure 19 shows the resulting time series when Algorithm 1
is applied to the noisy data given in Figure 10. As is evident
when comparing the two data series, the noise can be almost
completely removed, i. e., an almost lossless reconstruction of
the original data is possible.

Since this renders the privacy filter given in Listing 3
virtually useless, an improved method is applied in VAULT.
This improved noise technique is based on the SNIL Algorithm.
SNIL stands for “spread noise to intermediate levels of wavelet
coefficients”. This algorithm generates resilient noise in time
series data without impairing the data quality more than simply
adding Gaussian noise to the data [76], [77].

Algorithm 2 shows how the SNIL Algorithm operates. First,
the original data series is decomposed into frequency bands
using Discrete Wavelet Transform. Then, Gaussian noise is

Signal[x] ↓2

↓2

Approx[x]

Details[x] Details[x]

Approx[x]

↓2

↓2

(a) Discrete Wavelet Transform.

↑2 Approx[x]

Details[x]

↑2

Details[x]

Approx[x] Signal[x]

(b) Inverse Wavelet Transform.

Figure 18. Illustration of the Wavelet Transform Process.

added to all frequency bands between an initial level ls and
an end level le. Finally, all frequency bands are merged again
using Inverse Wavelet Transform. The resulting data series
is then made available to the respective Smart Services by
VAULT.

Our experiments have shown that ls = blog2(n)/4c and le =
dlog2(n)/2e+1 leads to the best possible result. However, this
can be freely adjusted if in other use cases this parameterization
either offers too little privacy protection or if the data quality
deteriorates too much.

Figure 20 shows the frequency bands of the time series
from our running example after applying the SNIL Algorithm.
Gaussian noise is added to the frequency bands L2 to L5. The
resulting noisy time series is shown in Figure 21. As it can be
seen, the utility of the data is preserved—with regard to the
course of the blood glucose curve—despite the resilient noise.

Listing 4 shows how the SNIL-based privacy filter is
implemented in VAULT. In it, we increase the parameter σ ,
i. e., the standard deviation, per frequency level. The wavelet
transform is performed by the PyWavelets module [78], [79].

In a similar way, VAULT implements further profound noise-
based privacy filters as well as filters for the other privacy
techniques presented in Section V. The application of these
privacy filters, however, results in many different privacy-aware
variants of each time series. How all these data are managed
by VAULT is described hereafter.

Algorithm 1: Savitzky-Golay-Based Denoising.
input : noisy time series data data
output : denoised time series

1 f req← decomposition of data into frequency bands;
2 for i← 1 to dlen( f req)/4e do
3 apply Savitzky-Golay filter to frequency level i;
4 end
5 clean← merge of filtered frequency bands;
6 return clean;
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Figure 19. Reconstructed Time Series Using Algorithm 1.

D. Data Management

Due to the increasing digitization in all areas of life enabled
by the IoT, data management systems and data analytics
systems are facing entirely new challenges when dealing with
big data. Big data are characterized by four Vs: volume, variety,
velocity, and veracity. A data management system that is
designed to provide Smart Services with a data foundation for
decision-making has therefore not only to be able to handle
very large volumes of heterogeneous data that are generated
constantly (and should be available to services in near real-
time), but it has also to ensure that the data quality of the
provided data is as good as possible. Since traditional data

Algorithm 2: Creating SNIL-Based Noise.
input : time series data data; start frequency level ls;

end frequency level le
output : time series with filter-resistant noise

1 f req← decomposition of data into frequency bands;
2 for i← ls to le do
3 foreach coefficient c in f req[i] do
4 add Gaussian noise to c;
5 end
6 end
7 noisy← merge of partially noisy frequency bands;
8 return noisy;

L1

L2

L3

L4

L5

L6

L7

L8

Figure 20. Impact of the SNIL Algorithm on a Time Series.

Raw Data
Noisy Data

Figure 21. Adding SNIL-Based Noise to Time Series Data.

management architectures, such as Data Warehouses, cannot
cope with these new big data challenges, Data Lakes introduce
a completely new approach [80].

As Data Lakes are initially only a general concept that
requires a concrete implementation, many different perceptions
of this concept exist. Basically, the concept behind a data lake
is that it stores all acquired data, even if there is currently no
use for it. In addition, the stored data should be pre-processed
(e. g., by data wrangling) in order to increase its quality and
to be able to process queries more efficiently. Therefore, it
can be considered as a general consensus that a Data Lake
has to be flexible in order to support any kind of use case
and has to be able to provide original raw data in addition to
pre-processed data—that way, the obligation to produce proof
can be fulfilled [81].

There is also no agreement on the internal structure of such a
data lake. However, the zone models have now become widely

1 import pywt
2

3 """ selecting the Haar mother wavelet and """
4 """ determine the number of frequency levels """
5 w = pywt.Wavelet('haar')
6 maxlev = pywt.dwt_max_level(len(data), w.dec_len)
7

8 """ coefficients of each frequency level """
9 fl = []

10

11 """ stepwise decomposition of the data """
12 for i in range(maxlev):
13 (cA, cD) = pywt.dwt(cA, w, 'periodic')
14 fl.append(cD)
15

16 """ adding noise to the frequency levels """
17 for i in range(maxlev // 4 - 1, maxlev // 2 + 1):
18 s = i * 0.35
19 noise = np.random.normal(0, s, len(fl[i]))
20 fl[i] = fl[i] + noise
21

22 """ inverse wavelet transform and adjustment"""
23 noisy_data = cA
24 for i in range(maxlev):
25 if (len(noisy_data) < len(fl[maxlev-1-i])):
26 fl[maxlev - 1 - i] =

fl[maxlev-1-i][:len(noisy_data)]↪→

27 if (len(noisy_data) > len(fl[maxlev-1-i])):
28 noisy_data =

noisy_data[:len(fl[maxlev-1-i])]↪→

29 noisy_data = pywt.idwt(noisy_data,
fl[maxlev-1-i], w, 'periodic')↪→

Listing 4. SNIL-Based VAULT Privacy Filter.
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Figure 22. A Multi-Zone Data Lake Architecture for the Data Management in VAULT.

accepted. In these models there are several zones defined that
contain the data stored in the data lake. Each zone is described
by the respective degree of how the data in it is pre-processed,
e. g., “raw”, “cleansed”, or “aggregated”. Applications such
as Smart Services can thereby select the most suitable data
processing level for their purposes via the zones. While most
of these zones are rather generic and thus open for any kind
of application, special processing techniques can also be used,
which are only relevant for a few selected use cases [82].

In VAULT, similar problems have to be solved. On the one
hand, the IoT context requires the handling of big data and the
associated four Vs in terms of data management. On the other
hand, the gathered data has to be pre-processed in accordance
with the privacy requirements and made available on-demand
in accordance with the quality requirements.

To this end, we introduce a multi-zone data lake architecture
for VAULT. In this architecture data sources (e. g., IoT devices)
are isolated from data sinks (e. g., Smart Services). The data
management concept behind our architecture is based on the
zone model for data lakes by Sharma [83].

This architecture is shown in Figure 22. Grey zones are
processing zones—i. e., data are only passed through and
preprocessed for the subsequent zones—while white zones
are storage zones—i. e., data are stored there permanently and
are made available for further processing.

Incoming data from any kind of data source such as
relational data stores, sensors, and social media arrive in the
Transient Landing Zone. Here, data are temporarily buffered
and enriched with metadata. For instance, it can be annotated
from which sensor the data was captured or in which units the
measurements are presented. An initial data purging can also
be performed in this zone.

If, e. g., one of the IoT devices transmits unusually high
values while all other devices monitoring the same parameters
have not registered any abnormal values, this zone tags these
values as suspicious3. Furthermore, the data can also be split
up in this zone. For instance, if the payload of an IoT device
is composed of several measurements, it is useful to treat them
as individual measurements in the subsequent zones.

3A premature removal of such values is not intended as it cannot be
guaranteed that the detected anomaly is not a correct measurement.

The enriched data are then transferred to the Raw Data
Zone. The raw data are stored there unmodified4 as originally
received from the sources. The Raw Data Zone is the single
source of truth for all subsequent zones. Smart Services have
no direct access to data in this zone. Only internal accesses
are permitted.

In order to provide data access to Smart Services, data
have to be propagated to one of the horizontal Use Case
Zones5. In our AAL application scenario (see Section II), for
instance, the Medical Use Case Zone would contain all available
captured data almost unmodified. Smart Services of physicians
are thereby able to make diagnoses correctly. In the Insurance
Use Case Zone, all information would be available so that
an insurance company could check, for instance, whether a
person is performing health-promoting measures (e. g., sports
exercises) and thus qualifies for a bonus program (i. e., a lower
insurance premium). However, details on health data are not
available here. Finally, the Monitoring Use Case Zone contains
all data required by a care provider for remote monitoring
(e. g., alerting in case of a fall). However, these data are highly
distorted so that no unnecessary details are disclosed.

These zones are appropriately populated by the Privacy Zone.
In the Privacy Zone, one or more privacy filters can be applied
to the data (see Section VI-C) according to the specifications
in the knowledge model (see Figure 12).

Smart Services cannot access data directly, but only via the
Data Delivery Zone. This zone operates as an access control
layer. On the one hand, the verification of the signatures (i. e.,
the identification of the Smart Services, see Section VI-A) is
done in this zone. On the other hand, VAULT’s permission
model is used to select the Use Case Zone to which the
respective Smart Service should have access (see Section VI-B).

Due to this architecture it is possible to efficiently manage
the big data handled by VAULT and to provide the Smart
Services with the data they need while still taking privacy and
quality requirements into account. Moreover, all data protection

4“Unmodified” refers to the data quality and the data format. The previous
enrichment with metadata as well as the splitting into individual measurements
is of course retained.

5Vertical zones affect all data, while horizontal zones affect only a subset
of the data.
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concepts of VAULT integrate seamlessly into this architecture,
which further strengthens our Privacy by Default philosophy.

VII. EVALUATION

Having presented VAULT’s concept and implementation, we
now evaluate its effectiveness and efficiency. To this end, we
first discuss whether it meets the requirements towards a privacy
system for Smart Services (see Section II) in Section VII-A.
Then, we carry out a performance analysis for three selected
privacy filters in Section VII-B.

A. Assessment

In VAULT, each user is able to specify his or her individual
privacy requirements. Since this is done in natural language and
the mapping to actual data sources can be realized automatically,
the configuration is also user-friendly. That way, users are
enabled to specify their privacy requirements very precisely
and VAULT fulfills these requirements as good as possible (R1).

VAULT also preserves the utility of a service when it is
compatible with the privacy requirements. This is made possible
by the specification of the service’s quality requirements. This
ensures that the service receives usable data in terms of quantity
and quality. That is not the case with approaches working only
with data suppression or mock data, which have a sustainably
negative impact on these two parameters (R2).

The utility metric applied in VAULT balances privacy and
quality requirements against each other and determines the
best configuration. It aims to maximize both, the amount
of concealed private data as well as the amount of revealed
information, which is relevant to the service. As it might not
be possible to maximize both of these values at the same time,
at least Pareto optimality is achieved. The user can also weight,
which of these objectives should be preferred by VAULT (R3).

To this end, VAULT provides five different privacy techniques
that are tailored to IoT time series data. Each of these
techniques deals with different privacy aspects. Furthermore,
these techniques can be extended and combined so that a
suitable technique can be found for every use case (R4).

In VAULT, permissions (and thus the applied privacy
techniques) are not assigned to a service, but to a specific
combination of its attributes. This enables a considerably more
dynamic permission assignment (R5).

Table II. Characteristics of the Data Set Used for the Evaluation.

Metric Value

Number of Data Records 8,192,000
Data Volume 73.9 MB
Distinct Data Records 137
Mean 127.7
Standard Deviation 22.9
Minimum 101.0
Lower Percentile 111.0
Median 119.0
Upper Percentile 138.0
Maximum 256.0

Thus, VAULT fulfills all requirements towards a privacy
system for time series data as processed by Smart Services.

B. Performance Analysis

To evaluate the efficiency of VAULT’s privacy filters, we
have generated an artificial blood glucose data set. This data
set consists of more than 8 million individual blood glucose
readings. This results in a data volume of over 70 MB. Table II
summarizes the relevant metrics for the data set.

For the performance analysis, we measured how long three
privacy filters, namely a cubic-spline-based filter, a Savitzky-
Golay-based filter, and a SNIL-based filter (as representatives
of data interpolation, data smoothing, and adding noise—
see Section V) need to process the data. These filters are
chosen as they cause the highest computational effort. They are
implemented using Python 3.9.0, NumPy 1.19.0, pandas 1.1.4,
SciPy 1.5.4, and PyWavelets 1.1.1.

For the measurements, we initially generated 15 subsets
of our original data set, by progressively halving the number
of contained data records—i. e., we ended up with 15 data
sets containing between 500 and 8,192,000 data records. We
processed each of these data sets 10 times with each of the
three privacy filters, measured the required computing time,
and calculated the arithmetic mean to mitigate outliers. These
measurements were executed on a standard desktop computer
(Intel Core i7-8700 processor, 16 GB of main memory). The
results are shown in Figure 23.

Generally, the overhead caused by our filters is very low. An
increase in computing time can only be observed for 512,000
data records and above, i. e., a data volume of at least 4.61 MB.
If the number of data records is lower, only a negligible basic
workload is observable. Only the cubic-spline-based filter has
a slightly higher basic workload since the private data points
that have to be concealed must first be identified6.

For larger data sets, i. e., data sets that include more data
records, the increased computing time is noticeable. For all
three filters, however, this performance overhead increases
linearly to the number of data records that have to be processed7.
The measured computing times are shown in Table III. These
numbers imply that all three filters have a runtime of O(n).

This overhead can also be regarded as runtime overhead
for VAULT as a whole (in comparison to a data provision
without privacy features) since the privacy filters represent its

6In our performance analysis, we classified 1 % of the data points as private.
7Note that in Figure 23, we use a logarithmic scale for the x-axis.

Table III. Performance Analysis Results Overview.

Cubic Spline Savitzky-Golay SNIL

Mean Basic Workload 142.7 ms 3.6 ms 2.0 ms
512,000 Records 190.8 ms 22.9 ms 12.9 ms

1,024,000 Records 248.4 ms 47.9 ms 23.4 ms
2,048,000 Records 349.0 ms 102.1 ms 41.8 ms
4,096,000 Records 544.2 ms 223.5 ms 83.1 ms
8,192,000 Records 949.5 ms 558.2 ms 158.4 ms
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(b) Runtime Overhead Caused by a Savitzky-Golay-Based Filter.
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(c) Runtime Overhead Caused by a SNIL-Based Filter.

Figure 23. Computing Time Analysis of the Privacy Filters in VAULT.

most complex component in terms of computational effort.
So, VAULT is efficient—even for large data sets, filtering at
runtime is feasible. Materialized views (and the consequent
higher storage requirements) are only needed for a vast amount
of data or particularly complex privacy filters.

VIII. CONCLUSION AND FUTURE WORK

The tremendous progress that IoT-enabled devices have made
in recent years in terms of computing power, transmission speed,
and sensor technology provides the technical foundation for a
wide range of IoT applications. Such Smart Services affect all
aspects of our daily lives (e. g., Smart Homes, Smart Cars, and

Smart Health). In order to enjoy the benefits of these services,
however, users have to disclose a lot of data, some of which
revealing highly sensitive information. However, current privacy
approaches are not adapted to the specific characteristics of
time series data as processed by Smart Services, making them
unnecessarily restrictive. As a result, users have to disclose too
much private information in order to prevent that the service
quality deteriorates too much.

In this paper, we therefore introduce VAULT, a new privacy
concept for time series data. In VAULT, IoT data are managed
and provided to Smart Services on demand. In this process,
VAULT not only considers the privacy requirements of the
users but also the quality requirements of the services in order
to achieve a high level of data utility. To ensure this, VAULT
introduces four important building blocks: A. An IoT-enabled
authentication mechanism ensures that Smart Services can be
identified via their characteristic attributes. In addition, this
mechanism can also verify their current attribute values, e. g.,
in which country they are currently hosted. This allows VAULT
to apply an attribute-based access control for its managed data.
This facilitates fine-grained access rules. B. These rules are
defined in VAULT’s permission model. The model not only
takes into account which Smart Service wants to access the
data, but also the current context of that service. Furthermore,
additional restrictions can be specified whether and how the
data has to be distorted prior to being shared. The permission
management in VAULT uses a utility metric that evaluates
how much the data quality suffers from the use of a certain
privacy technique. C. VAULT introduced five different concepts
for such privacy techniques, which are tailored to the special
characteristics of time series data. Each of these concepts is able
to conceal a different kind of private information in the data.
For instance, projection, selection, and information emphasis
are suitable for data reduction, whereas data interpolation and
data smoothing can be used as noise filters or for outlier
suppression. Thus, VAULT can find a good ratio between
privacy and service quality. Different implementations of these
techniques are deployed in VAULT in the form of Python
scripts, called privacy filters. D. These three building blocks
are combined in a multi-zone architecture for the management
of big data. This architecture not only enables an efficient data
management but is also the prerequisite for the provisioning of
high-utility time series data to Smart Services. These features
render VAULT a Privacy by Design data management and
provisioning solution for the IoT as required by GDPR.

As part of future work, we aim to further evaluate the
performance of VAULT in terms of data throughput. As the
performance of such a system highly depends on the data
being processed, a conclusive evaluation has to be based on
real-world data. This is not feasible for medical data due to the
high restrictions such data involve. So, the evaluation will be
based on data from the food chemistry domain [84]. A possible
application scenario could be the provisioning of end-to-end
data about the food production chain (e. g., allergens a food
product had contact with during production) [85]. Yet, the
evaluation results based on artificial data are very promising.
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Another aim is to improve the performance of VAULT.
Our research in the field of data lakes has revealed that a
sophisticated metadata management facilitated information
retrieval [86]. In this way, we can increase the overall
performance of VAULT as well.

The quality of VAULT can also be improved. For instance,
better purging filters can be used in the Transient Landing
Zone. Litou et al. [87], [88] introduce a method to detect
misinformation. By applying this method, VAULT could tag
such data as incorrect at an early stage, which improves the
veracity of the data stock.

The trust in the data provided by VAULT can be further
enhanced. Due to the applied authentication mechanism, the
authenticity of the data and their provenance can be verified.
Yet, attackers could manipulate these data after they have
been stored in VAULT. By integrating immutable and tamper-
resistant blockchain technologies in the Raw Data Zone, an
end-to-end data authentication can be achieved [89]. To ensure
efficient access to these data, novel access structures for such
data storages are required [90].
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