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Abstract—Predicting residential burglary can benefit from un-
derstanding human movement patterns within an urban area.
Typically, these movements occur along street networks. To take
the characteristics of such networks into account, one can use two
measures in the analysis: betweenness and closeness. The former
measures the popularity of a particular street segment, while
the latter measures the average shortest path length from one
node to every other node in the network. In this paper, we study
the influence of the city street network on residential burglary
by including these measures in our analysis. We show that the
measures of the street network help in predicting residential
burglary exposing that there is a relationship between conceptions
in urban design and crime.

Keywords–predictive analytics; forecasting; street network; be-
tweenness centrality; closeness centrality; residential burglary

I. INTRODUCTION

Residential burglary is a crime with high impact for
victims. Substantial academic research has accordingly been
dedicated to understanding the process of residential burglary
in order to prevent future burglaries [1]. In this attempt, several
studies have focused on the role of the urban configuration
in shaping crime patterns; this is regarded as one of the
fundamental issues in environmental criminology, e.g., [2].

According to [3], environmental criminology is based on
three premises. The first premise states that the nature of the
immediate environment directly influences criminal behavior,
thus a crime is not only reliant on criminogenic individuals,
but also on criminogenic elements in the surroundings of a
crime. The second premise states that crime is non-randomly
distributed in time and space, meaning that crime is always
concentrated around opportunities which occur on different
moments in a day or week, or different places in a given
geographical area. The third premise argues that understanding
the criminogenic factors within a targeted environment, and
capturing patterns and particular characteristics of that area,
can reduce the number of crimes within that area.

Understanding human movement patterns within an urban
area is essential for determining crime patterns [4]. These
movements occur along a street network consisting of roads
and intersections. Throughout the city street network, various
places are connected, allowing transportation from one point to
the next. Within the network, a street segment can be described
as the road, or edge, linking two intersections, or nodes. In
their study, [5] found that crime is tightly concentrated around
crime hotspots that are located at specific points within the
urban area. The urban configuration influences where these
hotspots are located, suggesting that it is possible to deal with

a large proportion of crime by focusing on relatively small
areas. They found that crime hotspots are characterized by
being stable over time, and that the hotspots are influenced by
social and contextual characteristics of a specific geographical
location. To be able to understand and prevent crime, it is
important to examine these very small geographic areas, often
as small as addresses of street segments, within the urban area.
In an analysis of crime at street segment level, [6] reveal that
crime trends at specific street segments were responsible for
the overall observed trend in the city, emphasizing the need
for understanding the development of crime at street segment
level.

In urban studies, betweenness is a measure used to de-
termine popularity or usage potential of a particular street
segment for the travel movements made by the resident or
ambient population through a street network [7], [8]. In crimi-
nology, betweenness represents the collective awareness spaces
developed by people, including offenders, during the course
of their routine activities. This metric provides a means to
represent concepts, such as offender awareness, in empirical
analysis [9]. Several studies have been conducted to uncover
the effects of betweenness on crime. [9] investigated whether
street segments that have a higher user potential measured by
the network metric betweenness, have a higher risk of burglary.
Also included in their research was the geometry of street
segments via a measure of their linearity and different social-
demographic covariates. They concluded that betweenness is
a highly significant covariate when predicting burglaries at
street segment level. In another study conducted by [10], a
mathematical model of crime was presented that took the street
network into account. The results of this study also show an
evident effect of the street network.

In this research, we examine for small urban areas (4-digit
postal codes: PC4) what the influence of the city street network
is on residential burglary by applying betweenness as well
as another centrality measure, closeness. These two centrality
measures give different indications of the accessibility of an
area and we study whether a more accessible area has a higher
risk of residential burglary compared to a less accessible area.
For comparison, we consider the same areas defined in our
previous research [11]. In this earlier study, we predicted
residential burglaries within different postal code areas for
the district of Amsterdam-West. We extend the model of our
earlier research by including the centrality measures closeness
and betweenness as explanatory variables. Furthermore, we
investigate which of the two centrality measures gives better
outcomes, closeness or betweenness.

This paper is organized as follows. Section II describes
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the dataset and the data analysis. Section III provides the
methodological framework of this research. The results of the
analysis are discussed in Section IV. In Section V, conclusions
and recommendations for further research are presented.

II. DATA

The data used for this research is collected from three
different data sources. The first dataset is provided by the
Dutch Police and ranges from the first of January 2009 to
30 April 2014. The original dataset includes all recorded
incidents of residential burglaries in the city of Amsterdam
recorded at a monthly level and grouped into grids of 125
× 125 meters resulting in 94,224 records. Next to residential
burglary, the dataset includes a wide range of covariates. These
covariates provide information on the geographic information
of the grid such as the number of Educational Institutions
(EI) in the grid. In addition to these covariates, the data
includes also spatial-temporal indicators of the following crime
types: violation, mugging, and robbery. These spatial-temporal
indicators measure the number of times a crime type happened
within a given grid cell for a given time lag. The second
dataset is obtained from the Statistics Netherlands (CBS) and
includes various demographic and socio-economic covariates
such as the average monthly income. This data is provided on
a six alphanumeric postal code level where the first two digits
indicate a region and a city, the second two digits indicate a
neighborhood and the last two letters indicate a range of house
numbers usually a street or a segment of a street. The third
dataset is an internal dataset containing different centrality
measures calculated on the street network of Amsterdam.

As this research focuses on explaining and predicting
residential burglaries at the four-digit postal code level (PC4),
the data should be aggregated at this level. Before aggregating
the data we perform some pre-processing steps. First, we
check the crime records for missing postal codes: if the postal
code is missing then all linked data from CBS and the street
network will be missing. We observed that 309 of the total
1,812 grid cells had a missing postal code (PC6). Some of
these grid cells (34) were subsequently updated manually;
other grid cells referred to industrial areas, bodies of water,
railroads, grasslands, and highways. As a double check, we
also confirmed whether there were residential burglaries in
the remaining grid cells with missing postal codes; in our
case, there were indeed none. These grid cells were further
removed from the dataset and the data were aggregated based
on PC4 conditioning on the district as some postal codes
(PC4) can cover different police districts. Discrete covariates
were aggregated by taking the sum of the covariate on all
PC6. For continuous covariates, this was done by taking the
average on all PC6. Exploring the data is done in a similar
way as discussed in [11], where an extensive data analysis
is applied to the crime data and the CBS data. To analyze
this data we extend the final set of covariates by the different
centrality measures and repeat the same step again. The dataset
was assessed for outliers and collinearity. The presence of
outliers was graphically assessed by the Cleveland dot plot
and analytically by the Local Outlier Factor (LOF) with 10
neighbors and a threshold of 1.3. Results of this analysis show
that the training data exhibits a percentage of outliers of 7.6.
The majority of these occurred in December and January. Due
to the high percentage of outliers in the training set, we decided
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Figure 1. Boxplot of the number of burglaries conditional on the postal code
indicating heterogeneity of variance in the number of burglaries within the

different postal codes.

to apply the analysis initially without outliers then apply the
analysis with the outliers.

The collinearity was assessed by the calculating the vari-
ance inflation factor values (VIF) that measures the amount by
which the variance of a parameter estimator is increased due to
collinearity with other covariates rather than being orthogonal,
e.g., [12]. A VIF threshold of 2 is used to assess collinearity
[11]. This analysis results in the following set of covariates:
the temporal covariate MONTH; the number of educational
institutions (sEI), the number of restaurants (sRET), percentage
of single-person households (aSH), the number of persons that
generate income (sNPI), the total observed mugging incidents
in the grid and its direct neighborhood in the last three months
(sMuGL3M) and finally, the average monthly income (aAMI).

Furthermore, the relationship between residential burglaries
and the categorical covariates was assessed using conditional
box plots. Results show a temporal monthly effect and a spatial
postal code effect on the burglaries. The effect of the postal
codes on the burglaries is illustrated in Figure 1 where a clear
difference in the mean and in the variance of the monthly
number of burglaries is observed between the different postal
codes.

III. METHODOLOGY

A. Centrality measures

Before discussing the centrality measures, we first need to
introduce some important concepts of graph theory. A network
represented mathematically by a graph is defined as a finite
non-empty set V of vertices connected by edges E. A graph
is usually written as G = (V,E) where V is the set of vertices
and E represents the set of edges where the number of vertices
in G is called the order and the number of its edges is called
the size. Two vertices u and v are said to be adjacent if there
is an edge that links them together. In this case, u and v are
also neighbors of each other. If two edges share one vertex
then these edges are called adjacent edges. Using this concept
of adjacency between all vertices represented in a matrix form

195

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



results in an adjacency matrix that summarizes all information
describing a network.

Another concept for understanding centrality measures is
the one of paths and shortest paths. Informally, a path is a
way of traveling along edges from vertex u to vertex v without
repeating any vertices [13]. Formally, a path P in a graph G
is a subgraph of G whose vertices form an ordered sequence,
such that every consecutive pair of vertices is connected by
an edge. A path P is called an u− v path in G if P = (u =
x0, x1, . . . , xj = v) s.t. x0x1, x1x2, . . . , xj−1xj are all edges
of P . The number of edges in a path is called its length. The
path u−v with the minimum length is called the shortest path
between u and v.

In the context of our analysis, a vertex represents an inter-
section between streets and an edge is a transport infrastructure
supporting movements between the two intersections.

Paths can be considered as the key elements in defining
centrality measures. In a transportation network, these central-
ity measures describe the flow of traffic on each particular
edge of the network identifying the most important vertices in
it. Some of these centrality measures that we will use in this
paper are the closeness (CC) centrality and the betweenness
centrality (BC).

Closeness is a very simple centrality measure to calculate.
It is a geometric measure where the importance of a vertex
depends on how many nodes exist at every distance. Closeness
centrality can be defined as the average of the shortest path
length from one node to every other node in the network and
is given by:

CC(ν) =
1∑

d(u,ν)<∞ d(u, ν)
, (1)

where d(u, ν) is the distance between u and ν. Informally,
closeness centrality measures how long it will take to spread
information from node ν to all other nodes in the network
and it is used to identify influential nodes in the network. The
closeness of an edge u − v can be calculated by taking the
average closeness values of the nodes u and v.

The betweenness centrality BC is a path-based measure
that can be used to identify highly influential nodes in the
flow through the network. Given a specific node ν, the intuition
behind betweenness is to measure the probability that a random
shortest path will pass through ν. Formally, the betweenness of
node ν, BC(ν) is the percentage of shortest paths that include
ν and can be calculated as follows:

BC(ν) =
∑

u6=w 6=ν∈V

σu,w(ν)

σu,w
, (2)

where σu,w is the total number of shortest paths between
node u and w. Moreover, σu,w(ν) is the total number of
shortest paths between node u and w that pass through ν.
The betweenness of an edge e can be regarded as the degree
to which an edge makes other connections possible and can be
calculated in the same way by replacing the node ν by an edge
e. An edge with high betweenness value forms an important
bridge within the network. Removing this edge will severely
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Figure 2. Illustration of high node (edge) betweenness and closeness.

hamper the flow of the network as it partitions the network
into two large subnetworks.

High betweenness or closeness values indicate that a vertex
or an edge can reach other vertices or edges, respectively, on
relatively short paths. An example of a network is illustrated
in Figure 2. In this example, node 3 has the highest closeness
and node 4 the highest betweenness. The edge connecting the
nodes 3 and 9 has the highest closeness within this network.
This edge has also the highest betweenness together with the
edge connecting the nodes 3 and 4.

In practice, it is almost impossible to calculate the exact
betweenness or closeness scores. To make the calculations
feasible, one can set a cut-off distance d and allow only paths
that are at distances shorter or equal to d.

B. GAMM including centrality measures

In our paper [11], we used generalized additive mixed-
effect models with different structures of the random compo-
nent and showed that the one-way nested model with postal
code as a random intercept has the optimal structure of the ran-
dom component. Further, we showed that using the population
as offset captures the most variation in the data. Moreover, the
covariates month and the average monthly income seem to
be the most important predictors for the number of burglaries
within postal codes. In this paper, the optimal model discussed
in [11] will be extended by two different centrality measures
as covariates. We assess the effect of these centrality measures
on explaining and forecasting the number of burglaries within
the postal code. This model is given by:

yi,t ∼ Poisson(µi,t),

µi,t = exp(basei,t + CMi + ai),

ai ∼ N(0, σ2
PC4),

(3)

where ai is a random intercept for the postal code and CMi

represents the closeness CCi or the betweenness BCi. The
basei,t is given by:

basei,t =1 + sEIi + sRETi + aSHi + sNPIi +

sMugL3Mi,t + f1(aAMIi) + f2(Montht).
(4)

The models were fitted using the Laplace approximate
maximum likelihood [14]. This allows comparing the models
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based on the Akaike Information Criterion (AIC). All analyses
were conducted using the gamm4 package [15].

To assess the predictive performance of the models, the
Root Mean Squared Error (RMSE) is calculated for an out-of-
sample test. If yi,t denotes the realization in postal code i and
in month t, and ŷi,t denotes the forecast in the same postal
code and in the same month, then the forecast error is given
by ei,t = yi,t − ŷi,t and the RMSE is given by:

RMSE =

√√√√ 1

NT

N∑
i=1

T∑
t=1

e2i,t. (5)

C. Space-time model including centrality measures

In our paper [11], we have shown that adding the centrality
measure as a covariate to a random intercept model has
improved the performance of the model. We also showed that
using the closeness as centrality measure with smaller thresh-
olds results in better model performance. The betweenness as
a centrality measure leads to better model performance using
larger thresholds (larger than 4 minutes). In this paper, we
will assess the effect of the centrality measures on burglary
risk when modeling the spatial and temporal effects explicitly.
Instead of using a random intercept model to account for extra
variation within the postal codes, we will model the spatial
effect taking into account the spatial autocorrelation.

The main spatial effect ξi of area i will be modeled as the
sum of a structured effect ui and an unstructured spatial effect
νi. The structured spatial effect will be modeled by the mean
of a first order intrinsic Gaussian Markov random field [16],
[17]. In this specification, the mean of ui is given by the
mean of the adjacent ui’s and the variance of ui is inversely
proportional to the number of neighbors Ni of area i. The
unstructured spatial effect is modeled using exchangeability
among the different postal codes. Moreover, the temporal trend
of burglary risk is modeled by the mean of a structured and an
unstructured component. The temporally structured component
is modeled dynamically using a random walk of order 2 and
the unstructured component is specified as zero-mean white
noise with precision τν .

yi,t ∼ Poisson(µi,t),

µi,t = exp (basei,t + CMi + ui + νi + γt + φt) ,

νi ∼ N
(

0,
1

τν

)
,

ui|{uj ; j 6= i}, τu ∼ N
( 1

Ni

n∑
j=1

aijuj ,
1

Niτu

)
,

γt|γt−1, γt−2 ∼ N(2γt−1 + γt−2, σ
2),

φt ∼ N(0, 1/τφ),

(6)

where aij is 1 if the area’s i and j are neighbors, and 0 oth-
erwise. CMi represents the closeness CCi or the betweenness
BCi. The basei,t is given by:

basei,t =1 + sEIi + sRETi + aSHi + sNPIi +

sMugL3Mi,t + f1(aAMIi) + f2(Montht).
(7)

The models are fitted using the Integrated Laplace Approx-
imation (INLA) implemented in the R package INLA [18]. The

model selection is performed using two selection criterions
based on the deviance. First, we use the deviance information
criterion (DIC), proposed by Spiegelhalter et al. [19]. The DIC
is defined as:

DIC = D(θ̄) + 2pD, (8)

where D(θ̄) is the deviance using the posterior mean of the
parameters, and pD is the effective number of parameters. As
the posterior marginal distributions of some hyperparameters
might be highly skewed, especially the precisions, INLA evalu-
ates the DIC at the posterior mode of the hyperparameters. For
the latent field, INLA uses the posterior mean [20]. We used
also the Watanabe-Akaike information criterion (WAIC) [21].
This criterion is based on the data partition and is closely
linked to the Bayesian leave-one-out cross-validation. The
WAIC is considered to be an improvement on the DIC cri-
terion [22].

To assess the predictive performance of the models, the
Root Mean Squared Error (RMSE) and the Weighted Absolute
Percentage Error (WAPE) are calculated using an out-of-
sample data set. As before, if yi,t denotes the realization in
postal code i and in month t, and ŷi,t denotes the forecast in
the same postal code and in the same month, then the forecast
error is given by ei,t = yi,t − ŷi,t. The RMSE is given by
Equation (5), and the WAPE is given by Equation (9) defined
as follows.

WAPE =

∑N
i=1

∑T
t=1 | ei,t |∑N

i=1

∑T
t=1 yi,t

. (9)

IV. RESULTS

In this section, we first present the results of the centrality
measures. Then, we will discuss the results of the two models
including these centrality measures as covariates.

A. Centrality measures

As discussed in Section III-A, in practice it is computa-
tionally very expensive to calculate the exact betweenness and
closeness scores. In general, these can be estimated by setting
up a buffer zone using a cut-off distance d and calculating
these centrality measures by considering only the paths at a
shorter length than d. Using historical data, the average speed
per street segment was calculated and five different time cut-
offs were used. Segments that are reachable within one to five
minutes are used to calculate the centrality measures. Note that
these averages make sense because the centrality measures are
calculated for the whole city and not for each area separately.

The betweenness and the closeness on the street segment
level using a cut-off of four minutes are illustrated in Fig-
ure 3 and Figure 4, respectively. The corresponding average
betweenness and closeness per area are illustrated in Figure 5
and Figure 6, respectively. Figures 3 and 4 show a wide red
road running from top to bottom. This road corresponds with
the A10, which is the ring road of Amsterdam. Figure 3 also
shows that the roads with high betweenness correspond to the
main access roads within this district. Figure 4 reveals that the
roads within the areas situated on the right-hand side of the
A10 have a higher closeness in general. This part of the city
was built mainly before the Second World War [23] and has
a higher density due to enclosed building blocks creating a
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Figure 3. Betweenness of the street segments in Amsterdam West. The
betweenness is calculated using the average speed on the street segment and

a time threshold of four minutes.

Figure 4. Closeness of the street segments in Amsterdam West. The
closeness is calculated using the average speed on the street segment and a

time threshold of four minutes.

more finely meshed network of roads when compared to the
left-hand side of the ring road. This part was built after the
Second World War and is characterized by a lower density
due to more open building blocks with an emphasis on more
green areas and better enclosure of the residential area via
main access roads. The blank areas in the district correspond
with green areas, such as parks, lakes and agricultural land.

B. GAMM including centrality measures

Adding a centrality measure to the GAMM model results
in a better prediction based on the RMSE. The RMSE of
the GAMM model without centrality measure was about
4.5519 and as can be seen from Table I, extending the model
with the betweenness or the closeness results in a generally
lower RMSE. It is noteworthy that the closeness leads to
better predictions when using lower thresholds (lower or equal
3 min); see Figures 7 and 8. If the threshold is four minutes
or higher including the betweenness in the model results in

Figure 5. Average betweenness per postal code.

Figure 6. Average closeness per postal code using a threshold of four
minutes.

better predictions. This can be explained by the average time
an offender might need to flee from the scene of the crime
on a residential street to the nearest main access road. In this
case, the closeness describes the number of different routes the
offender can take during his flight. Within 4 or 5 minutes, the
offender can be traveling on the main access road in order to
create as much distance as possible from the crime scene.

The results in the area with the postal code 1067 differ from
the other areas. Including the closeness and betweenness does
not improve the model, the error on the other hand increased.
Taking a closer look at this area revealed that this area mainly
consists of green areas with few roads. With less alternative
routes available, the closeness gives a higher error.

When looking at the other areas, it is possible to say that the

Table I. ROOT MEAN SQUARED ERROR (RMSE) VALUES FROM FITTING
THE GAMM MODEL WITH CLOSENESS AND BETWEENNESS USING

DIFFERENT THRESHOLDS.

Model 1 min 2 min 3 min 4 min 5 min
GAMM + CC 4.5297 4.5323 4.5366 5.5437 4.5478
GAMM + BC 4.5562 4.5497 4.5405 4.5279 4.5326
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Figure 7. RMSE per PC4 base on an out-of-sample for the GAMM model,
the GAMM + CC and the GAMM + BC using a threshold of 1 minute.

building density influences the effectiveness of the centrality
measures on the models. In areas with a lower density, the
centrality measures have almost no influence on the outcomes,
whereas in the urban areas with a high building density adding
the centrality measures to the model improves the outcomes
of the model.

Most studies use betweenness as a centrality measure,
however, these studies focus on social networks. Given our
results, we believe that the closeness is a better centrality
measure for modeling crime based on small geographic areas.
However, as shown there is a difference in effectiveness of this
centrality measure related to the building density of the area.

C. Space-time model including centrality measures

In this section, we will present the results from fitting the
space-time models with the betweenness and the closeness
using the different thresholds. First, we fit the models including
all covariates and compare their DIC and WAIC values.
Table II shows that the model with the closeness centrality
with a threshold of five minutes provides the lowest DIC and
WAIC values. However, the differences remain small. Looking
at the estimated posterior mean values and their 95% credible
intervals (CI), we can see that the betweenness centrality
and the average number of educational institutions are not
important as the zero lies within the 95% CI. In contrast,
the closeness centrality seems important regardless of the
threshold used, see Figure 9.

Based on the DIC and the WAIC values, the best perform-
ing model is selected. This model has a closeness measure
with a threshold of five minutes and includes all covariates,
except the average number of educational institutions and the
average number of persons generating income.

The estimated parameters of the best-obtained model on
logarithmic scale are presented in Table III. From this table,

2
4

6
8

10

PC4

R
M

S
E

10
13

10
51

10
52

10
53

10
54

10
55

10
56

10
57

10
58

10
59

10
60

10
61

10
62

10
63

10
64

10
65

10
66

10
67

10
68

10
69

GAMM + CC
GAMM + BC
GAMM
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we can see that the number of retail stores in the postal code,
the number of mugging incidents, and the average closeness
with a threshold of five minutes have a positive effect on
burglaries. The number of households with a single parent
has a negative effect on burglaries. To assess the exact effect
of these covariates on residential burglaries, we converted the
posterior distributions from the logarithmic scale to the original
scale of the data. Then we calculated the posterior mean and
the 95% credible intervals on the original scale. From Table IV,
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Table II. DIC and WAIC values of the models including all covariates.

Criterion BC1 BC2 BC3 BC4 BC5 CC1 CC2 CC3 CC4 CC5
DIC 3991.795 3991.877 3992.044 3992.049 3991.902 3991.591 3991.725 3991.507 3991.445 3991.434
WAIC 4019.198 4019.266 4019.338 4019.357 4019.263 4018.372 4018.613 4018.255 4018.217 4018.217

Table III. The posterior mean and 95% credible intervals of the fixed effects
on logarithmic scale.

Estimate Mean Std.dev 0.025 quantile 0.975 quantile
Intercept -7.486 0.019 -7.525 -7.448
sRET.std 0.086 0.028 0.030 0.142
aSH.std -0.279 0.044 -0.365 -0.190

sMugL3M.std 0.043 0.016 0.013 0.074
avgCloseness5.std 0.160 0.033 0.094 0.225

Table IV. The posterior mean and 95% credible intervals of the fixed effects
on the natural scale.

Estimate Mean Std.dev 0.025 quantile 0.975 quantile
Intercept 0.00056085 1.07431e-05 0.00053957 0.000582493
sRET.std 1.09048 0.0303216 1.03077 1.15139
aSH.std 0.757577 0.0331817 0.694364 0.825984

sMugL3M.std 1.04458 0.0161383 1.01311 1.07653
avgCloseness5.std 1.17414 0.038402 1.09919 1.25157

we can conclude that an increase in one unit in the number of
retail stores, the number of muggings and in the closeness is
associated with an increase of 9.05%, 4.46%, and 17.41%,
respectively, in the risk of burglary. Among all covariates,
the closeness has the most impact on the risk of residential
burglaries. In contrast, the average number of households with
a single parent results in a decrease in the risk of burglaries.

After taking account of the covariates, the residual relative
risk of each area (exp(ξ)) and their posterior probability of
exceeding one (Pr(ξi > 0 | y)) are represented in Figures 10

[0.947,0.98]

(0.98,1.01]

(1.01,1.05]

(1.05,1.08]

Figure 10. Posterior mean of the residual relative risk for each PC4.

and 11, respectively. As can be seen from Figure 10, the
postal code area 1057 has the highest relative risk of burglaries
compared to the whole Amsterdam West. This area also has
a higher probability of excess risk on burglaries next to
the postal codes 1063 and 1051. These results are in line
with our expectations. The postal code area 1057 is a pre-
war build neighborhood along the main excess road. These
neighborhood houses have many problems such as a higher
poverty rate [24] and a higher pollution rate [25]. According
to OIS Amsterdam (2017), the adjacent neighborhood inhabits
many crime-suspects [24].

The posterior temporal trends are illustrated in Figure 12.
This figure represents the structured and the unstructured tem-
poral components modeled dynamically by means of an RW(2)
model and an exchangeable Gaussian prior, respectively. As
can be seen from this figure, a clear seasonal pattern in
burglaries can be observed with a higher risk of burglaries
between September and February in general. As expected,
peaks are observed for December and January. The same figure
reveals that June and July are the months with the lowest
risk of burglaries. It is also noteworthy to mention that the
second year (2010) clearly has a lower risk of burglaries during
the dark months compared to the other years. The temporally
unstructured effect, exp(φt) fluctuates around one.

Finally, we assessed the predictive performance of the
models based on out-of-sample data and compared the results
to the best obtained GAMM models with the one of the space-
time model with a closeness considering a threshold of four

[0.12,0.32]

(0.32,0.53]

(0.53,0.73]

(0.73,0.93]

Figure 11. Posterior mean of the residual excess risk for each PC4.

200

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



0 5 10 15 20 25 30 35

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

Month of the year

P
os

te
rio

r 
te

m
po

ra
l t

re
nd

Figure 12. Model with closeness with a threshold of 4 minutes.

minutes. This concerns the GAMM models with the closeness
considering a threshold of 1 minute and the GAMM model
with the betweenness considering a threshold of 4 minutes.
To compare the models we used the RMSE and the WAPE
accuracy measures. First, we compared the total performance
of the models, then we compared the performance of the
models for each postal code separately. The space-time model
including the closeness centrality (ST.CC4) clearly results in
lower RMSE and WAPE errors compared the GAMM models,
see Table V. When we compare the predictive performance of
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Figure 13. RMSE per PC4 based on out-of-sample data for the ST model
including CC5, GAMM + CC1 and the GAMM + BC4.

Table V. Predictive performance of the models based on out-of-sample data.

Model RMSE WAPE (%)
ST.CC4 3.98 30.47
GAMM.CC1 5.05 36.82
GAMM.BC5 5.35 38.34

the models for each postal code, we can see that ST.CC4 per-
forms clearly better compared to the other models, especially
in PC4 1056, see Figures 13 and 14.

V. CONCLUSION AND FUTURE WORK

During this research, we have tried to determine the
influence of accessibility of the street network within small
urban areas on residential burglary by applying the centrality
measures closeness and betweenness. Given the results in the
literature, it is natural to study this problem in the context
of GAMM models. We have found that adding the centrality
measures as a variable to the GAMM model has improved the
performance of this model as can be concluded from the lower
RMSE. Furthermore, we have shown that there is a relation
between the different conceptions in urban design over time
and residential burglary. Our results show that the pre-world
War II neighborhoods suffer from more residential burglary
than the neighborhoods built after the Second World War.

Rather contrastingly, differences in the performance of the
two centrality measures were found when using the GAMM
model. Closeness as a centrality measure gives better predic-
tions when taking into consideration a threshold smaller than 4
minutes. If the threshold is 4 minutes or larger, the betweenness
gives better predictions. This contradiction disappears when
modelling the spatial and temporal effects explicitly. In that
case, the model with the closeness centrality with a threshold
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Figure 14. WAPE per PC4 based on out-of-sample data for the ST model
including CC5, GAMM + CC1 and the GAMM + BC4.
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of five minutes provides the best results, and even beats the
best GAMM model.

Our study has shown that there is a relationship between the
conceptions in urban design and crime. Neighborhoods built
under a certain conception of urban design tend to have a
higher risk of residential burglary, which can be explained by
how the public space is designed. Further research is necessary
to confirm this hypothesis.
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