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Abstract—As a sign of the times, headlines today are full of 
attacks against an organization’s computing infrastructure, 
resulting in the theft of sensitive data. In response, the 
organization applies security measures (e.g., encryption) to 
secure its vulnerabilities. However, these measures are often 
only applied once, with the assumption that the organization is 
then protected and no further action is needed. Unfortunately, 
attackers continuously probe for vulnerabilities and change 
their attacks accordingly. This means that an organization must 
also continuously check for new vulnerabilities and secure them, 
to continuously and actively defend against the attacks. This 
paper derives metrics that characterize the security level of an 
organization at any point in time, based on the number of 
vulnerabilities secured and the effectiveness of the securing 
measures. The metrics are verified in terms of their soundness 
using the author’s recently published procedure for deriving 
good security metrics. The paper then shows how an 
organization can apply the metrics for continuous active 
defence. 

 
Keywords- sensitive data; vulnerability; security level; verified 
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I.     INTRODUCTION 

This work extends Yee [1] by adding explanations and 
related work, elaborating the application areas, and including 
a new section on verifying the soundness of the proposed 
metrics. 

Headlines today are full of news of attacks against 
computing infrastructure, resulting in sensitive data being 
compromised. These attacks have devastated the victim 
organizations. The losses have not only been financial (e.g., 
theft of credit card information), but perhaps more 
importantly, have damaged the organizations’ reputation. 
The first half of 2019 had 3,800 publicly disclosed breaches 
with 4.1 billion records exposed, an increase of 54% in the 
number of reported breaches when compared to the first half 
of 2018 [2]. Here are just two of those breaches [2]: 

• March 22 and 23, 2019, Capital One: The number of 
records breached was 106 million, including names, 
addresses, postal codes, phone numbers, email 
addresses, birthdates, and self-reported income. Also 
exposed in some cases were customer credit scores, 
credit limits, balances, and payment history. The breach 
affected about 100 million consumers in the United 
States and about 6 million in Canada. A hacker  accessed 

the servers of a third-party cloud services company 
contracted by Capital One. The hacker hacked the 
servers on March 22 and 23, 2019 and has since been 
arrested. According to CNN Business, Capital One 
expected losses of $100 million to $150 million related 
to the hack, for expenses incurred in notifying affected 
customers, providing free credit monitoring, legal 
defense, and fixing the vulnerability. 

• August 1, 2018 to March 30, 2019, American Medical 
Collection Agency: Here the number of records breached 
was over 20 million, including social security numbers, 
birthdates, payment card data, credit card information, 
and bank account information. American Medical 
Collection Agency collected overdue payments for 
medical labs. This long running breach exposed the 
records of the labs’ customers including the above 
sensitive data. A cybersecurity firm found the breached 
information on the dark web. American Medical 
Collection Agency filed for bankruptcy in June 2019, 
citing IT costs, possible lawsuits, and the loss of business 
from its customers. 

 
Hard hit data breach victims in 2018 [3] include toymaker 

Vtech Technologies (a cyberattack exposed the personal data 
of an estimated 6.4 million children worldwide), Under 
Armour (a cyberattack stole the personal data of 150 million 
users of its app), and major airlines such as Air Canada, 
British Airways, and Cathay Pacific (hackers made off with 
the personal data of a combined 9.8 million customers). The 
year 2017 [4] saw a total of 5,207 breaches and 7.89 billion 
information records compromised. 

In response to attacks, such as the ones described above, 
organizations determine their computer system 
vulnerabilities and secure them using security measures. 
Typical measures include firewalls, intrusion detection 
systems, two-factor authentication, encryption, and training 
for employees on identifying and resisting social engineering. 
However, once the security measures have been 
implemented, organizations tend to believe that they are safe 
and that no further actions are needed. Unfortunately, 
attackers do not give up just because the organization has 
secured its known computer vulnerabilities. Rather, the 
attackers will continuously probe the organization’s 
computer system for new vulnerabilities that they can exploit. 
This means that the organization must continuously analyze 
its computer system vulnerabilities and secure any new ones 
that it discovers. In order to do this effectively, it is useful to 
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have quantitative metrics of the security level at any 
particular point in time, based on the number of 
vulnerabilities secured and the effectiveness of the security 
measures, at that point in time. An acceptable security level 
can be set, so that if the security level falls below this 
acceptable level due to new vulnerabilities, the latter can be 
secured to bring the security level back to the acceptable 
level. This work derives such metrics and shows how to apply 
them for continuous active defence, i.e., continuous 
vulnerabilities evaluation and follow up. Further, this work 
verifies that the proposed metrics are sound, a term that will 
be defined below. 

The objectives of this work are: i) derive straightforward, 
clear metrics of the resultant protection level obtained by an 
organization at any point in time, based on the use of security 
measures to secure vulnerabilities and based on the 
effectiveness of the measures,  ii) show how these metrics can 
be calculated, iii) verify that these metrics are sound, and iv) 
show how the metrics can be applied for continuous active 
defence and discuss some application areas. We seek 
straightforward, easy to understand metrics since 
complicated, difficult to understand ones tend not to be used 
or tend to be misapplied. We base these metrics on securing 
vulnerabilities since this has been and continues to be the 
method organizations use to secure their computer 
infrastructure.  

The rest of this paper is organized as follows. Section II 
discusses sensitive data, attacks, and vulnerabilities. Section 
III derives the metrics, shows how to calculate them, and 
presents various aspects of the metrics, including some of 
their strengths, weaknesses, and limitations. Section IV 
verifies that the metrics are sound. Section V explains how to 
apply the metrics for continuous active defence and presents 
some application areas. Section VI discusses related work. 
Section VII gives conclusions and future work. 

II.     SENSITIVE DATA, ATTACKS, AND VULNERABILITIES  
Sensitive data is data that needs protection and must not 

fall into the wrong hands. It includes private or personal 
information [5], which is information about an individual, 
can identify that individual, and is owned by that individual. 
For example, an individual’s height, weight, or credit card 
number can all be used to identify the individual and are 
considered as personal information or personal sensitive data. 
Sensitive data also includes non-personal information that 
may compromise the competitiveness of the organization if 
divulged, such as trade secrets or proprietary algorithms and 
formulas. For government organizations, non-personal 
sensitive data may include information that is vital for the 
security of the country for which the government 
organization is responsible.  

DEFINITION 1: Sensitive data (SD) is information that must 
be protected from unauthorized access in order to safeguard 
the privacy of an individual, the well-being or expected 
operation of an organization, or the well-being or expected 
functioning of an entity for which the organization has 
responsibility. 

 

DEFINITION 2: An attack is any action carried out against 
an organization’s computer system that, if successful, 
compromises the system or the SD held by the system. 

An attack that compromises a computer system is 
Distributed Denial of Service (DDoS). One that compromises 
the SD held by the system is a Trojan horse attack in which 
malicious software (the Trojan) is planted inside the system 
to steal SD. Attacks can come from an organization’s 
employees, in which case the attack is an inside attack. For 
example, a disgruntled employee secretly keeps a copy of a 
SD backup and sells it on the “dark web”.  

DEFINITION 3: A vulnerability of a computer system is any 
weakness in the system that can be targeted by an attack with 
some expectation of success. A vulnerability can be secured 
to become a secured vulnerability through the application of 
a security measure.  

An example of a vulnerability is a communication 
channel that is used to convey sensitive data in the clear. This 
vulnerability can be targeted by a Man-in-the-Middle attack 
with reasonable success of stealing the sensitive data. This 
vulnerability can become a secured vulnerability by 
encrypting the sensitive data that the communication channel 
carries.  

A computer system can undergo upgrades, downgrades, 
and other modifications over time that changes its number of 
secured and unsecured vulnerabilities. It is thus necessary to 
specify a time t when referring to vulnerabilities. Clearly, the 
number of secured and unsecured vulnerabilities of a 
computer system at time t is directly related to the security 
level of the system at time t. This idea is formalized in the 
next definition. 

DEFINITION 4: A computer system’s security level (SL) at 
time t, or SL(t), is the degree of protection from attacks that 
results from having q(t) secured vulnerabilities, and p(t) 
unsecured vulnerabilities, where the system has a total of N(t) 
= p(t)+q(t) secured and unsecured vulnerabilities. SL(t) is 
uniquely represented by the pair (p(t), q(t)).  

Clearly SL(t) increases with increasing q(t) and decreases 
with increasing p(t). Figure 1 shows 3 SL(t) points on the 
(p(t), q(t)) plane for N(t)=100.  

 

 

 

 

 

 

 

Figure 1.  SL(t) points corresponding to a computer system with 
N(t)=100.  SL(3) is higher security than SL(2), which is higher 
security than SL(1). 

0  10  20  30  40 50  60 70 80 90 100 

100 
  90 
  80 
  70 
  60 
  50 
  40 
  30 
  20 
  10 
    0 

p(t) 

q(t) 

SL(3): (20, 80) 

SL(2): (50, 50) 

SL(1): (80, 20) 

higher 
SL(t) 

lower SL(t) 

154

International Journal on Advances in Security, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



In Figure 1, the higher values of q(t) correspond to higher 
security levels, and the higher values of p(t) correspond to 
lower security levels.  

Definition 4 requires p(t) to be known. Of course, it is 
next to impossible to determine all the vulnerabilities in a 
typical computer system, so the exact value of p(t) is most 
likely undeterminable. Thus, a value for p(t) can only be a 
“best effort” value, and consequently, a value for SL(t) is not 
the true value, but a “best effort” value. It is in this context 
that the values of p(t) and SL(t) are to be understood. 

III.    METRICS FOR CONTINUOUS ACTIVE DEFENCE 
While the pair (p(t), q(t)) uniquely represents SL(t), it 

cannot be used to calculate the value of SL(t), which would 
be useful in tracking the security of a system over time as its 
vulnerabilities change. In this section, we derive two metrics 
for the value of SL(t), one assuming that the measures 
securing vulnerabilities are totally reliable; the other with the 
measures only partly reliable. Both metrics are applied right 
after the vulnerabilities have been determined, and possibly 
before any of them have actually been secured. Determining 
vulnerabilities is discussed in Section III.C below. 

A. Metric with Totally Reliable Securing Measures 

We seek a metric STRM(t) (STRM is an acronym for “SL 
with Totally Reliable Measures”) for a computer system’s 
SL(t), where all securing measures are totally reliable. 
Suppose that p(t) and q(t) are as in Definition 4. Let Pt(e) 
represent the probability of event e at time t. Let “exploit” 
mean a successful attack on a vulnerability. Let “all exploits” 
mean exploits on 1 or more vulnerabilities. Let Uk(t) denote 
an unsecured vulnerability k at time t. We have 
               SL(t) = Pt(no exploits) = 1-Pt(all exploits)          (1) 
However, the only exploitable vulnerabilities are the 
unsecured vulnerabilities since the securing measures are 
totally reliable. Therefore 

               Pt(all exploits) = Sk [Pt(exploit of Uk(t))]                  
by applying the additive rule for the union of probabilities, 
assuming that 2 or more exploits do not occur 
simultaneously. Let uk(t) be a real number with 0 < uk(t) ≤ 
p(t) and Skuk(t) = p(t). Set 
                 Pt(exploit of Uk(t)) ≈ uk(t)/(p(t)+q(t))                (2) 
By substitution using (2) 
                Pt(all exploits) ≈ Sk [uk(t)/(p(t)+q(t))] 

                                        = Skuk(t)/(p(t)+q(t))  
                                        = p(t)/(p(t)+q(t))                         (3)             
The condition 0 < uk(t) ≤ p(t) is needed to ensure that there is 
some probability for an unsecured vulnerability to be 
exploited. The condition Skuk(t) = p(t) is necessary in order 
for Pt(all exploits) ≤ 1. Expression (2) gives a way of 
assigning values for Pt(exploit of Uk(t)) based on a risk 
analysis [5]. However, expression (3) ensures that such 
assignment is not needed for calculating STRM(t). In other 
words, the fact that some vulnerabilities are more likely to be 

exploited than others does not affect the value of STRM(t). 
Substituting (3) into (1) gives 
                SL(t) ≈ 1-[p(t)/(p(t)+q(t))] 
                         = q(t)/(p(t)+q(t))      if  p(t)+q(t) > 0         
                         = 1                            if  p(t)+q(t) = 0          
(Note that mathematically, we cannot divide by 0.) We obtain 
STRM(t) by assigning as follows: 
          STRM(t) = q(t)/(p(t)+q(t))     if  p(t)+q(t) > 0       (4) 

                    = 1                            if  p(t)+q(t) = 0       (5) 
We see from (4) that 0 ≤ STRM(t) ≤ 1 if p(t)+q(t) > 0 and has 
value 0 if q(t)=0 (the system has no secured vulnerabilities) 
and 1 if p(t)=0 (all of its vulnerabilities are secured). We see 
from (5) that STRM(t)=1 if p(t)+q(t)=0 (no vulnerabilities, 
which is unlikely). The values of the metric are therefore as 
expected. 

B. Metric with Partially Reliable Securing Measures 

Here, we seek a metric SPRM(t) (SPRM is an acronym 
for “SL with Partially Reliable Measures”) for a computer 
system’s SL(t) where the measures securing the 
vulnerabilities are only partially reliable.  

Let Vk(t) denote a secured vulnerability k at time t. The 
reliability rk(t) of the measure securing Vk(t) can be defined 
as the probability that the measure remains operating from 
time zero to time t, given that it was operating at time zero 
[6]. The unreliability of the measure is then 1-rk(t). We have 
the events 
     [exploit of Vk(t)] if and only if [Vk(t) selected for exploit]  
                          AND [measure securing Vk(t) unreliable] 
Since the two right-hand side events are independent, 
   Pt(exploit of Vk(t)) = Pt(Vk(t) selected for exploit) x 
                                 Pt(measure securing Vk(t) unreliable) 
Set            Pt(Vk(t) selected for exploit) ≈ 1/(p(t)+q(t))          (6)    
since attackers will have no preference to attack one secured 
vulnerability over another secured vulnerability (they should 
not even see them as vulnerabilities). Again, applying the 
additive rule for the union of probabilities, 
   Pt(all Vk(t) exploits) = Sk[Pt(Vk(t)  selected for exploit) x  

                            Pt(measure securing Vk(t)  unreliable)] 
                     = Sk [(1/(p(t)+q(t)))(1-rk(t))] 
                     = [Sk(1-rk(t)]/[p(t) + q(t)] 
                     = [q(t)-Skrk(t)]/[p(t) + q(t)]      
                     =[q(t)/(p(t)+q(t))]-Skrk(t)/(p(t) + q(t))       (7) 

Now, since both Uk(t)  and Vk(t) can be exploited,  

Pt(all exploits)=Pt(all Uk(t) exploits) + Pt(all Vk(t) exploits)   
               ≈ [p(t)/(p(t)+q(t))] + [q(t)/(p(t)+q(t))]- 
                                Skrk(t)/(p(t) + q(t)) 
                = 1 - Skrk(t)/(p(t) + q(t))                              (8) 

by substitution using (3) and (7), where (3) is Pt(all Uk(t) 
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exploits). Finally, by substitution using (1) and (8), 
          SL(t) ≈ 1 – 1 + Skrk(t)/(p(t) + q(t)) 
                   = Skrk(t)/(p(t) + q(t))    if  p(t) ≥ 0, q(t) > 0  
                   = 1                                if  p(t)+q(t) = 0  
                   = 0                                if  p(t)>0, q(t) = 0  
We obtain SPRM(t) by assigning as follows: 
  SPRM(t) = Skrk(t)/(p(t)+q(t))    if  p(t) ≥ 0, q(t) > 0     (9) 

             = 1                                if   p(t)+q(t) = 0        (10) 
                  = 0                                if   p(t)>0, q(t)=0      (11) 
 
We see from (9) that 0 < SPRM(t) < 1 for p(t) ≥ 0, q(t) > 0 
(all vulnerabilities may or may not be secured), and from (10) 
that  SPRM(t) = 1  for p(t)+q(t) = 0 (no vulnerabilities, which 
is unlikely). We see from (11) that SPRM(t) = 0  for p(t)>0, 
q(t) = 0 (no secured vulnerabilities). We also see that for rk(t) 
= 1, SPRM(t) is the same as STRM(t). The values of the 
metric are therefore as expected.  

C. Calculating the Metrics  

Calculating STRM(t) requires the values of p(t) and q(t) 
at a series of time points of interest. SPRM(t) requires the 
values of p(t), q(t), and the reliability value for each measure 
used to secure the vulnerabilities.   

To obtain the values of p(t) and q(t), an organization may 
perform a threat analysis of vulnerabilities in the 
organization’s computer system that could allow attacks to 
occur. Threat analysis or threat modeling is a method for 
systematically assessing and documenting the security risks 
associated with a system (Salter et al. [7]). Threat modeling 
involves understanding the adversary’s goals in attacking the 
system based on the system’s assets of interest. It is 
predicated on that fact that an adversary cannot attack a 
system without a way of supplying it with data or otherwise 
accessing it. In addition, an adversary will only attack a 
system if it has some assets of interest. The method of threat 
analysis given in [7] or any other method of threat analysis 
will yield the total number N(t) of vulnerabilities to attacks at 
time t. Once this number is known, the organization can select 
which vulnerabilities to secure and which security measures 
to use, based on a prioritization of the vulnerabilities and the 
amount of budget it has to spend. A way to optimally select 
which vulnerabilities to secure is described in [8]. Once 
vulnerabilities have been selected to be secured, we have q(t). 
Then p(t) = N(t) – q(t). The threat analysis may be carried out 
by a project team consisting of the system’s design manager, 
a security and privacy analyst, and a project leader acting as 
facilitator. In addition to having security expertise, the 
analyst must also be very familiar with the organization’s 
computer system. Further discussion on threat analysis is 
outside the scope of this paper. More details on threat 
modeling can be found in [8]. Vulnerabilities may be 
prioritized using the method in [5], which describes 
prioritizing privacy risks.  

The reliability values for hardware measures used to 
secure the selected vulnerabilities may be obtained from the 
hardware’s manufacturers (e.g., hardware firewall). 

Reliability values for software and algorithmic measures are 
more difficult to obtain (e.g., encryption algorithm). For 
these, it may be necessary to estimate the reliability values 
based on the rate of progress of technology. For example, one 
could estimate the reliability of an encryption algorithm 
based on estimates of the computer resources that attackers 
have at their disposal. If they have access to a super computer, 
an older encryption algorithm may not be sufficiently 
reliable. One could also opt to be pessimistic and assign low 
reliability values, which would have the net effect of boosting 
security by securing more vulnerabilities, in order to meet a 
certain SL(t) level (see Section V). Reliability values for 
security measures represent a topic for future research. 

It is important to note that at each time point where the 
metrics are calculated, the values of p(t) and q(t) are 
generated anew. Vulnerabilities secured previously with 
totally reliable measures would not appear again as 
vulnerabilities. On the other hand, vulnerabilities secured 
with only partially reliable measures should be identified 
again as vulnerabilities. Further, it is not necessary to have 
actually implemented the securing measures before 
calculating the metrics.  

D. Graphing the Metrics  

The metrics STRM(t) and SPRM(t) are both functions of 
p(t), q(t), and t. Figure 2 shows a 3-dimensional graph of 
these metrics with axes for STRM(t)/SPRM(t), p(t), and q(t). 
Time is not shown explicitly as an axis since we would need 
4 dimensions, but is instead represented as time period 
displacements of the metrics’ values.    
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shown. At t2, the metric was again evaluated, but this time the 
value was found to be much lower than at t1, and in fact, the 
value dropped below T. The reason for this was that new 
vulnerabilities were found that had not been secured. The 
organization decides to secure the additional vulnerabilities. 
At t3, another evaluation was carried out, and this time, the 
metric had improved, reaching above T. The organization 
finds some surplus money in its budget and decides to secure 
2 other vulnerabilities. An evaluation of the metric at t4 finds 
the value a little higher than at t3, due to the 2 additional 
vulnerabilities secured. It is thus seen that the security level 
of a computer system changes over time, in accordance with 
the system’s number of secured and unsecured 
vulnerabilities. 

E. Strengths, Weaknesses, and Limitations  

Some strengths of the metrics are: a) conceptually 
straightforward, and easily explainable to management, and 
b) flexible and powerful, i.e., they have many application 
areas, as described in Section V. 

Some weaknesses are: a) threat modeling to determine the 
vulnerabilities is time consuming and subjective, and b) the 
SL will involve more factors than vulnerabilities and secured 
vulnerabilities. Moreover, as mentioned above, it is next to 
impossible to find all the p(t), so the SL determined by the 
metrics can never be the true SL. For weakness a), it may be 
possible to automate or semi-automate the threat modeling. 
Related works [18] and [28] are good starting points for 
further research. For weakness b), it may be argued that the 
metrics as presented are sufficient for their envisaged 
application when other sources of error are considered (e.g., 
it is difficult to tell where an attacker will strike or how he 
will strike), and that adding more factors would only make 
the metrics unnecessarily more cumbersome and time 
consuming to evaluate with little additional benefit. It is next 
to impossible to determine the true SL anyway. 

Some mathematical limitations of the metrics follow. 
First of all, the metrics are only estimates of the security level, 
not the security level itself (and can never be the true SL due 
to unknowable p(t) as mentioned above). This was indicated 
in assigning the probabilities as approximate in expressions 
(2) and (6) above. Second, as noted in Section III.A, it makes 
no difference to the values of the metrics whether one 
unsecured vulnerability is more likely to be exploited than 
another. This means that the metrics are insensitive to one 
exploited vulnerability causing more damage than others, and 
may be due to the fact that the metrics are estimating the total 
security of the computer system, and therefore the total 
number of exploitable vulnerabilities is what’s important, not 
whether a particularly damaging vulnerability is exploited. 
Third, we applied the additive rule for the union of 
probabilities above, requiring that 2 or more exploits do not 
occur simultaneously. This condition holds in general but if 
it is violated, the metrics will be inaccurate. This may not be 
very significant, since they are only estimates. An additional 
limitation may be that a secured vulnerability may not in 
reality be secured because the attacker has a secret way of 
defeating the securing measure. However, this additional 
limitation is true of other security methods as well. 

IV.   VERIFICATION OF SOUNDNESS 
This section examines the soundness (as defined below) 

of the proposed metrics using a procedure in this author’s 
previously published paper [9]. In that paper, this author 
pointed out some flaws that can unintentionally be included 
in the definition of security metrics, leading to invalid 
conclusions. The flaws can be found in a number of existing 
security metrics that were presented in [9]. This author then 
proposed a procedure that can be used to design “good” or 
sound security metrics that would be free of the flaws. As it 
turns out, the procedure can also be used to check existing 
security metrics to verify that they are sound.  

Consider the metric number of viruses detected and 
eliminated at a firewall. The purpose of this metric is to 
assess the effectiveness of a firewall at filtering out viruses, 
which impacts the organization’s level of security. 
Unfortunately, this metric says nothing about the viruses that 
were not detected and got through. If 50 viruses were detected 
and eliminated but 100 got through, basing the firewall’s 
effectiveness solely on the 50 viruses that were detected and 
not on the 100 that got through would falsely inflate the 
firewall’s effectiveness and the level of security. Thus, this 
metric fails its purpose. Another often-used security metric is 
time spent on a security-related task, such as software 
patching or security incident investigation. The purpose of 
this metric is to gauge the level of security, assuming that 
more time spent means higher security. This metric may be 
useful for project management, to make sure that there is 
sufficient time to complete the project, but it is practically 
useless as an indicator of security. The assumption is wrong: 
more time spent does not necessarily mean better security. 
For example, the extra time may have been due to inefficient 
procedures or work processes. Thus, this metric also fails its 
purpose. To avoid problematic metrics such as the foregoing, 
this author proposed the following procedure [9] for 
designing good or sound security metrics. 

A. Steps for Designing Sound Security Metrics (SDSSM) 

1. Definition: Define the quantity to be measured, i.e. the 
candidate metric. Check that this quantity is meaningful, 
objective, and unbiased as a measure of the component or 
components of the security level of “something”, where 
that “something” could be the organization, the 
organization’s computer system, or even a software 
product. Check also that this quantity can be obtained 
with undue hardship or costs. If the quantity passes all 
these checks, proceed to Step 2. Otherwise, repeat this 
step to obtain a new quantity. Note that the quantity can 
only measure a component or components of the security 
level since the actual security level has many 
components, such as the number of unsecured 
vulnerabilities, security flaws in software, disgruntled 
employees, and so on. An example quantity is number of 
software security patches issued in a month, which is a 
component of the security level of the software. 

2. Sufficiency: Verify that the quantity is a sufficient 
measure of the component or components of the security 
level (as in necessary and sufficient conditions for 
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something to be true, see [10]). It is enough to verify 
sufficiency since there are usually many ways to measure 
a component, so necessity will not apply in most cases. 
Verify sufficiency by asking and answering the questions 
in Table I. For the quantity to be sufficient, the answers 
to questions 1, 2, and 3 must be “yes”, “yes”, and “no” 
respectively. If the quantity is found to be sufficient, 
proceed to Step 3. Otherwise, repeat from Step 1 to obtain 
a new quantity. For example, the quantity time spent on a 
security-related task is not a sufficient estimator since 
spending more time does not mean that the security level 
will be consistently higher (or lower), as discussed above. 
Thus, the answer is “no” to question 1. Since this answer 
must be “yes” for sufficiency, this quantity is not 
sufficient.  

TABLE I.    QUESTIONS FOR DETERMINING SUFFICIENCY 

No. Question 
1 If the quantity goes up, do you believe that the security level 

consistently goes up (or down)?  
2 Does the quantity have a direct impact on the security level? 
3 Are there any aspects missing from the definition of the 

quantity that are needed for it be effective as a measure of the 
component or components of the security level? 

 

3. Divisibility: Verify if the quantity is divisible into other 
constituent quantities, or is expressible mathematically in 
terms of other constituent quantities. If not, proceed to 
step 4. Otherwise, formulate a mathematical expression 
that equates the quantity to the constituent quantities, and 
proceed to Step 4. For example, the quantity number of 
software security patches issued in a month is not further 
divisible, whereas the quantity outstanding 
vulnerabilities after threat analysis each month may be 
divided into and equated to the number of non-secured 
vulnerabilities from last month plus the number of new 
vulnerabilities found during threat analysis. 

4. Progression: Verify that the quantity has the 
“progression property”, that when evaluated over a 
sufficiently large time period, from past to future, the 
quantity progresses to an acceptable target level that 
corresponds to an acceptable or maximal security level. If 
the quantity has this property, proceed to Step 5. 
Otherwise, repeat from Step 1 to obtain a new quantity. 
For example, in the case of number of software security 
patches issued in a month, suppose that this metric is 
evaluated at the first of the month for the last month. 
Suppose that the target level for the quantity is zero. Thus, 
over a sufficiently large number of months in which 
patches are issued, there are corresponding increases in 
the security level of the software toward some level. The 
security level of the software increases with each patch 
issued until at some point, there is consistently no new 
patch issued (target zero reached). At this point, the 
security level of the software is maximal (but not 
necessarily maximized since there may still be 
undiscovered security bugs). The quantity has progressed 
to its target level with corresponding maximal security. 

5. Reproducibility: Verify that the quantity is reproducible 
by third-party verifiers. This means that the latter may 
evaluate the quantity or arrive at its value using the same 
inputs or procedure and obtain the same result. If the 
quantity is reproducible, stop. The quantity is now 
considered a sound security metric. Otherwise, repeat 
from Step 1 to obtain a new quantity. For example, if the 
quantity is number of software security patches issued in 
a month, a third-party verifier would add up the software 
security patches issued for a particular month, and find 
the same number as the organization that is using the 
metric. If the quantity is outstanding vulnerabilities after 
threat analysis each month, which we know is equated to 
the number of non-secured vulnerabilities from last 
month plus the number of new vulnerabilities found 
during threat analysis, the third-party verifier would do 
the latter addition and verify that the total is the same as 
obtained by the organization using the metric. 

Procedure SDSSM can be used not only to design a sound 
security metric but also to verify if an existing security metric 
is sound. This verification is carried out by checking if the 
metric satisfies each of the steps in SDSSM except for STEP 
3, which is not a condition to be checked. STEP 3 is only used 
when designing a security metric, in order to allow the metric 
to take on a clearer form. This verification of soundness is 
captured in the following definition.  

DEFINITION 5: A security metric is sound if it satisfies 
every step in SDSSM, excluding STEP 3. 

We now apply definition 5 to verify that the metrics 
proposed in Section III are sound. These metrics are: 

 
        STRM(t) = q(t)/(p(t)+q(t))     if  p(t)+q(t) > 0       
                        = 1                            if  p(t)+q(t) = 0         

 
   SPRM(t) = Skrk(t)/(p(t)+q(t))    if  p(t) ≥ 0, q(t) > 0      

         = 1                               if   p(t)+q(t) = 0         
                 = 0                               if   p(t)>0, q(t)=0       

 
It suffices to check that these metrics satisfy the 

conditions in each step of SDSSM, as follows. 
 

STEP 1: Definition. The security of the computer system is 
directly related to the number of secured vulnerabilities in the 
system: the higher this number, the higher the security, and 
the lower this number, the lower the security. Consequently, 
since both metrics express the security level in terms of the 
proportion of secured vulnerabilities to total vulnerabilities, 
both metrics are  clearly meaningful for assessing the security 
level (note that the numerator in SPRM(t) is really the number 
of secured vulnerabilities as a fractional or real number). The 
metrics are objective since secured vulnerabilities relate 
directly to the security of the system. They are unbiased since 
their values, based on secured and unsecured vulnerabilities, 
cannot be  overstated or understated. Finally, one can 
evaluate these metrics without undue hardship or cost by 
doing a vulnerability or threat analysis, deciding which 
vulnerabilities to secure, and using the reliabilities of the 
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securing measures where available. Thus, these metrics are 
considered to have passed Step 1 and we proceed to Step 2. 

STEP 2: Sufficiency. We answer the questions in Table I. The 
first question asks if the security would consistently go up (or 
down) if the quantity (metric) goes up. Clearly if the value of 
STRM(t) goes up, the number of secured vulnerabilities must 
consistently go up since the denominator is a constant. In 
other words, the security consistently goes up. The same can 
be said of SPRM(t), since its numerator is the number of 
secured vulnerabilities as a real number. So, the answer to the 
first question is “yes” for both metrics. The second question 
asks if the quantity has a direct impact on the security level. 
The answer is again “yes” for both metrics, since the higher 
their values, the higher the security level, and the lower their 
values, the lower the security level. Finally, the third question 
asks if the quantity is missing any components or aspects that 
are needed for it to be effective. The answer here is “no” for 
both metrics, since they are ready to be used “as is” for 
effectively assessing the security level. The answers to the 
three questions conform to the answers required for 
sufficiency. We declare the metrics sufficient and proceed to 
Step 4, since STEP 3 is not needed for verifying soundness. 

STEP 4: Progression. Suppose that vulnerabilities are 
determined (through a threat analysis) and one of the metrics 
(STRM(t) if no reliability values are available, SPRM(t) 
otherwise) is re-calculated at regular time intervals, e.g., 
monthly. Suppose also that Company A’s management has 
agreed on a goal of 95% for the metric, at which level the 
computer system is considered “safe”, i.e. management is 
willing to live with the risks arising from the remaining non-
secured vulnerabilities. With this goal in mind, management 
will want to secure vulnerabilities at each opportunity until 
the metric attains 95%. This doesn’t mean that the metric will 
increase monotonically, since it is possible that a particular 
threat analysis identifies so many new vulnerabilities that the 
metric is actually lower than when it was last calculated. 
However, the metric will eventually reach 95%, given that 
management wants to secure new vulnerabilities until this 
goal is reached, which is all we mean by having the 
progression property. Since this analysis applies to both 
metrics, we can consider them as having passed Step 4 and 
proceed to Step 5. 

STEP 5: Reproducibility. Given the expression for STRM(t), 
anyone will calculate the same value for it given the same 
values for p(t) and q(t). Similarly, given the expression for 
SPRM(t), anyone will calculate the same value for it given 
the same values for the reliabilities, p(t), and q(t). Thus, the 
metrics are reproducible.  

Thus, according to Definition 5, the metrics STRM(t) and 
SPRM(t) are sound.  

To show that the application of SDSSM can find that a 
metric is not sound, consider its application to the flawed 
metric mentioned above, namely the metric number of viruses 
detected and eliminated at a firewall. Applying SDSSM to 
this metric leads to it failing STEP 1 Definition, since it is 
biased towards overstating the firewall’s effectiveness. Thus, 
according to Definition 5, this metric is not sound. Note that 

the metric time spent on a security-related task would also be 
found by SDSSM as not sound since it failed STEP 2 
Sufficiency, as indicated in the description of SDSSM above. 

V.  APPLICATION AREAS 
In this section, we present some applications for the 

metrics. In Section V.A, we discuss how they can be used for 
continuous active defence of a computer system. In Section 
V.B, we present other application areas, such as critical 
infrastructure and defence. 

A. Continuous Active Defence 

Attackers do not attack once, and finding that you are well 
protected, go away. Rather, they continuously probe your 
defences in order to find new vulnerabilities to exploit. It is 
thus necessary to continuously evaluate the computer 
system’s vulnerabilities using threat modeling, and add 
additional security by securing new vulnerabilities when 
necessary. We call this “Continuous Active Defence” or 
CAD. How do we know when it is necessary to add more 
security? This is where the metrics can be applied. 
Continuous Active Defence involves the following steps: 
1. Decide on a threshold for SL(t) below which the values 

of the metrics should not drop. 
2. Decide on the frequency with which to perform threat 

modeling, e.g., every week, every month, exceptions. 
3. Begin Continuous Active Defence by carrying out the 

threat modeling at the frequency decided above. After 
each threat modeling exercise, calculate either STRM(t) 
(if reliability data is not available) or SPRM(t) (if 
reliability data is available). If the value of the metric 
falls below T (see Figure 2), secure additional 
vulnerabilities until the value is above T. 

4. If there has been a change to the system, such as new 
equipment or new software, do an immediate threat 
analysis, calculate one of the metrics, and add security if 
necessary based on T. Then, proceed with the frequency 
for threat modeling decided above. 

The value of T and the frequency of threat modeling can 
be determined by the same threat analysis team mentioned 
above. The values would depend on the following: 
• The potential value of the sensitive data – the more 

valuable the data is to a thief, a malicious entity, or a 
competitor, the higher the threshold and frequency 
should be. 

• The damages to the organization that would result, if the 
sensitive data were compromised – of course, the higher 
the damages, the higher the threshold and frequency. 

• The current and likely future attack climate – consider 
the volume of attacks and the nature of the victims, say 
over the last 6 months; if the organization’s sector or 
industry has sustained a large number of recent attacks, 
then the threshold and frequency need to be higher. 

• Consider also potential attacks by nation states as a result 
of the political climate; attacks by individual hacktivist 
groups such as Anonymous or WikiLeaks may also 
warrant attention.  
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In general, a computer system should be as secure as 
possible. Therefore, T above 80% and a frequency of weekly 
would not be uncommon. However, whatever the threshold 
and frequency, the organization must find them acceptable 
after considering the above factors. The financial budget 
available for securing vulnerabilities also plays an important 
role here, since higher thresholds call for securing more 
vulnerabilities, which means more financial resources will be 
needed.  

B. Other CAD Application Areas 

CAD may also be applied to a specific type of 
vulnerabilities. An example of this application is dealing with 
inside attacks. If the organization is particularly susceptible 
to inside attacks, it can decide to apply CAD to vulnerabilities 
that can be exploited for inside attacks. In this case, some of 
the vulnerabilities may be weaknesses of the organization 
itself, e.g., ineffective screening of job applicants, and the 
securing measures may not be technological, e.g., having an 
ombudsman for employee concerns. A list of questions that 
can be used to identify vulnerabilities to inside attack is given 
in [8]. 

CAD may be applied to a specific subset of vulnerabilities 
that the organization deems are crucial to its mission. For 
example, a cloud service provider would deem the protection 
of clients’ data crucial to its mission. It can choose to apply 
CAD to vulnerabilities that are specific to its data storage 
capabilities, and also apply CAD to its computer system as a 
whole. 

CAD may also be applied to code level vulnerabilities. In 
this case, the frequency of application will depend on how 
often the code is changed, due to patching and the addition or 
deletion of functionality. The threat modeling would have to 
be tailored to code and would be more of a code inspection 
exercise.  

Finally, CAD may be applied to protect critical 
infrastructure and defence systems. The power grid is an 
example of critical infrastructure. The development of the 
metrics only considers vulnerabilities and reliabilities, which 
are also found in critical infrastructure and defence systems. 
However, the threat analyses would involve different types of 
threats, and the securing measures, would of course, need to 
be appropriate for the vulnerability. For example, the 
vulnerability of transformer sabotage in a power grid may 
need to be secured by the use of intrusion alarms. As another 
example, the vulnerability of a retaliatory missile site being 
preemptively destroyed may need to be secured by putting 
the missile on a mobile platform. The application of CAD to 
protect these areas is a subject of future research. 

C. Where CAD May and May Not Be Applied 

Fundamentally, CAD may be applied to organizations 
and systems that have the following elements: 

a) Possess “something” that attackers want 
b) Vulnerabilities that change over time and that attackers 

can attack to access the “something” 
c) Measures (or controls) that can be used to secure the 

vulnerabilities from attack 

An examination of the above CAD application areas will find 
these elements present in each area. Organizations or systems 
that are missing any of these elements are therefore not 
suitable for the application of CAD. An example of such a 
“system” may be an expensive bicycle. In this case, it is the 
bicycle itself that thieves (attackers) want. Its vulnerability is 
that it can be stolen if the bicycle is not suitably secured. The 
measure that can be used to secure the bicycle is a strong lock. 
However, the bicycle’s vulnerability to being stolen is not 
changing over time. This vulnerability will be the same 
always, even if the bicycle becomes less attractive to thieves 
over time. This bicycle is not a suitable system for the 
application of CAD. 

VI.   RELATED WORK 
Related work found in the literature includes attack 

surface metrics, risk and vulnerabilities assessment, 
vulnerabilities classification, threat analysis, an “other” 
category, and this author’s previous work. We discuss each 
of these categories in turn, starting with attack surface 
metrics. 

A system’s attack surface is related to a SL; it is 
proportional to the inverse of a SL since the lower the attack 
surface, the higher the SL. Manadhata and Wing [11] 
formalize the concept of a system’s attack surface and 
propose an attack surface metric for systematically measuring 
the attack surface. They claim that their metric does not 
depend on the software system’s implementation language 
and can be used on systems of all sizes. They further provide 
demonstrations of the metric and have conducted empirical 
studies to validate it. Stuckman and Purtilo [12] present a 
framework for formalizing code-level attack surface metrics 
and describe activities that can be carried out during 
application deployment to reduce the application’s attack 
surface. They also describe a tool for determining the attack 
surface of a web application, together with a method for 
evaluating an attack surface metric over a number of known 
vulnerabilities. Munaiah and Meneely [13] propose function 
and file level attack surface metrics that allow fine-grained 
risk assessment. They claim that their metrics are flexible in 
terms of granularity, perform better than comparable metrics 
in the literature, and are tunable to specific products to better 
assess risk.  

In terms of risk and vulnerabilities assessment, Islam et 
al. [14] present a risk assessment framework that starts with 
a threat analysis followed by a risk assessment to estimate the 
threat level and the impact level. This leads to an estimate of 
a security level for formulating high-level security 
requirements. The security level is qualitative, such as “low”, 
“medium”, and “high”. Vanciu et al. [15] compare an 
architectural-level approach with a code-level approach in 
terms of the effectiveness of finding security vulnerabilities. 
Wang et al. [16] discuss their work on temporal metrics for 
software vulnerabilities based on the Common Vulnerability 
Scoring System (CVSS) 2.0. They use a mathematical model 
to calculate the severity and risk of a vulnerability, which is 
time dependent as in this work. Gawron et al. [17] investigate 
the detection of vulnerabilities in computer systems and 
computer networks. They use a logical representation of 
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preconditions and post conditions of vulnerabilities, with the 
aim of providing security advisories and enhanced 
diagnostics for the system. Wu and Wang [18] present a 
dashboard for assessing enterprise level vulnerabilities that 
incorporates a multi-layer tree-based model to describe the 
vulnerability topology. Vulnerability information is gathered 
from enterprise resources for display automatically. Farnan 
and Nurse [19] describe a structured approach to assessing 
low-level infrastructure vulnerability in networks. The 
approach emphasizes a controls-based evaluation rather than 
a vulnerability-based evaluation. Instead of looking for 
vulnerabilities in infrastructure, they assume that the network 
is insecure, and determine its vulnerability based on the 
controls that have or have not been implemented. Neuhaus et 
al. [20] present an investigation into predicting vulnerable 
software components. Using a tool that mines existing 
vulnerability databases and version archives, mapping past 
vulnerabilities to current software components, they were 
able to come up with a predictor that correctly identifies about 
half of all vulnerable components, with two thirds of the 
predictions being correct. Roumani et al. [21] consider the 
modeling of vulnerabilities using time series. According to 
these researchers, time series models provide a good fit to 
vulnerability datasets and can be used for vulnerability 
prediction. They also suggest that the level of the time series 
is the best estimator for prediction. Li et al. [22] present 
VulPecker, a tool for automatically detecting whether source 
code contains a particular vulnerability. Pang et al. [23] 
propose a technique based on a deep neural network to predict 
vulnerable software components. They claim that their 
technique can predict vulnerable Java classes in Android 
applications with high accuracy. Anand et al. [24] propose a 
model for classifying security patterns according to the type 
of vulnerability they address, claiming that their model helps 
software developers to select an appropriate security pattern 
once they know the type of vulnerability they would like to 
remove. The authors also claim that their classification 
scheme identifies missing security patterns, when no patterns 
can be found for particular vulnerabilities. Salfer and Eckert 
[25] consider the attack surface and vulnerability assessment 
of automotive electronic control units (ECUs). They propose 
a method and metric for assessing the attack surface and 
predicting the effort for a code injection exploit using ECU 
development data. They also provide an application of their 
method and metric to a graph-based security assessment. 

With regard to vulnerabilities classification, Spanos et al. 
[26] look at ways to improve CVSS. They propose a new 
vulnerability scoring system called the Weighted Impact 
Vulnerability Scoring System (WIVSS) that incorporates the 
different impact of vulnerability characteristics. In addition, 
the MITRE Corporation [27] maintains the Common 
Vulnerability and Exposures (CVE) list of vulnerabilities and 
exposures, standardized to facilitate information sharing.  

In terms of threat analysis, Schaad and Borozdin [28] 
present an approach for automated threat analysis of software 
architecture diagrams. Their work gives an example of 
automated threat analysis. Sokolowski and Banks [29] 
describe the implementation of an agent-based simulation 
model designed to capture insider threat behavior, given a set 

of assumptions governing agent behavior that pre-disposes an 
agent to becoming a threat. Sanzgiri and Dasgupta [30] 
present a taxonomy and classification of insider threat 
detection techniques based on strategies used for detection. 
Manzoor et al. [31] claim that contemporary cloud threat 
analysis approaches fail to include variants of identified 
vulnerabilities in their analyses. They target achieving a 
holistic cloud threat analysis procedure by designing a multi-
layer cloud model, employing Petri Nets to comprehensively 
profile the operational behavior of the services in cloud 
operations. They use this model to identify threats within and 
across different operational layers. They further claim that 
their approach also looks at the variants of potential 
vulnerabilities to infer the cloud attack surface. Valani [32] 
looks at Secure DevOps threat modeling and concludes that 
maintaining speed to support business needs is difficult due 
to the fact that  the threat modeling is too slow. He proposes 
the use of a lightweight threat modeling approach that uses a 
correlation matrix created from common lists and application 
abstractions, that is quicker and can be applied where detailed 
threat modeling is unnecessary. 

The following publications fall into the other category. 
Kotenko and Doynikova [33] investigate the selection of 
countermeasures for ongoing network attacks. They suggest 
a selection technique based on the countermeasure model in 
open standards. The technique incorporates a level of 
countermeasure effectiveness that is related to the reliability 
of measures securing vulnerabilities, used in the SPRM(t) 
metric proposed in this work. Ganin et al. [34] present a 
review of probabilistic and risk-based decision-making 
techniques applied to cyber systems. They propose a 
decision-analysis-based approach that quantifies threat, 
vulnerability, and consequences through a set of criteria 
designed to assess the overall utility of cybersecurity 
management alternatives. Pendleton et al. [35] provide a 
systematic survey of systems security metrics. Based on this 
survey, they propose that an overall system security metric 
can be represented by the following dimensions of metrics: 
vulnerabilities, defenses, attacks, and situations. The 
situation dimension is focused on the current security state of 
a given system at a particular point in time, in order to 
account for dynamics related to system security states, 
including the level of vulnerabilities, attacks, and system 
defenses. 

This author’s directly related work includes [36], [8], and 
[1] where [8] is an expanded version of [36]. Yee [1] 
improves on [36] and [8] by a) adding time dependency, 
together with the notion that an organization’s security level 
needs to be continuously evaluated, b) adding a new metric 
incorporating the reliability of the securing measures, and c) 
adding a description of new application areas. This work 
extends Yee [1] by adding the material mentioned at the start 
of Section I. 

VII.   CONCLUSION AND FUTURE WORK 
Since attackers continuously probe for new 

vulnerabilities to exploit, an organization cannot afford to 
assess its computer system’s vulnerabilities once, secure 
some of the vulnerabilities, and then do nothing further. 
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Rather, the organization needs to assess and secure its 
vulnerabilities on a continuous basis, i.e., perform CAD.  
This work has proposed two conceptually clear SL metrics, 
verified as sound, that can be used to evaluate a computer 
system’s security level at any point in time for CAD. One 
metric assumes that the measures securing vulnerabilities are 
totally reliable; the other considers the measures to be only 
partially reliable. CAD may be applied to specific types of 
vulnerabilities (e.g., vulnerabilities to insider attack), 
groupings of vulnerabilities that require special attention, 
specific application areas such as critical infrastructure and 
defence, and even at the code level. CAD may not be applied 
to areas that are missing any of the elements listed in Section 
V.C. 

There are many security metrics in the literature, as seen 
in Section VI. The metrics in this work have the advantages 
of being easy to understand, and easy to calculate, which may 
be needed to convince management to provide the necessary 
resources required for CAD.  

Future work includes formulations of other security 
metrics, the application of security metrics to critical 
infrastructure and defence, improving the methods for threat 
modeling, and exploring how this work may complement 
work in the literature and in the standardization community. 
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