International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/security/

95

Synthesis of Formal Specifications From Requirements for Refinement-based Real Time

Object Code Verification

Eman M. Al-Qtiemat*, Sudarshan K. Srinivasan*, Zeyad A. Al-Odat *, Mohana Asha Latha Dubasi*, Sana Shuja'
*Electrical and Computer Engineering, North Dakota State University,
Fargo, ND, USA
TDepartment of Electrical Engineering, COMSATS University,
Islamabad, Pakistan
Emails: *eman.alqtiemat@ndsu.edu, *sudarshan.srinivasan@ndsu.edu, *zeyad.alodat@ndsu.edu, *dubasi.asha@ gmail.com,
TSanaShuja@comsats.edu.pk

Abstract—Formal verification methods have been shown to be
very effective in finding corner case bugs and ensuring safety
of embedded software systems. The use of formal verification
requires a specification, which is typically a high-level mathemat-
ical model that defines the correct behavior of the system to be
verified. However, embedded software requirements are typically
described in natural language. Transforming these requirements
to formal specifications is currently a big gap. While there is some
work in this area, this paper proposes solutions to address this gap
in the context of refinement-based verification, a class of formal
methods that have shown to be effective for embedded object
code verification. The proposed approach also addresses both
functional and timing requirements and has been demonstrated in
the context of safety requirements for software control of infusion
pumps.

Keywords-requirements analysis; safety-critical IoT embedded
devices; timing specifications; timing transition systems; formal
model; formal verification.

I. INTRODUCTION

Ensuring the correctness of control software used in safety-
critical embedded devices is still an ongoing challenge [1]. For
example, from 2001 to 2017, the Food and Drug Administra-
tion (FDA) has issued 54 Class-1 recalls on infusion pumps
(medical devices used to deliver controlled doses of fluid
medications to patients intravenously) due to software issues
[2]. Class-1 recalls are applied to medical device models whose
use can cause serious adverse health consequences or death.
With the advent of IoT, such safety-critical embedded devices
incorporate a whole slew of additional functionality to interface
with the network and other components, in addition to their
core control functions. These additional functions significantly
exacerbate the challenge of ensuring that the core functionality
of the control software is correct and intact.

Critical devices such as insulin pump still have safeness
issues which need valuable software amendments to assure
the reliability on design level, this can be handled by either
appending new safety insurance specifications to fix existing
hazards, or modifying some defined specifications that cause
faulty behaviours. Since critical devices are considered as
real time systems, most of their specifications have well
defined timing constraints must be met else wise the system
will fail. This paper works with both functional and timing
specifications (called functional and timing requirements), they
are basically written in natural language and need to be
transformed into a formal model, then it can be tested using

a formal verification method. The use of formal verification
has become an industry standard when addressing software
correctness of safety-critical devices. There are many success
stories and commercial adoption of formal verification pro-
cesses. Examples include Intel [3], Microsoft [4] and [5], and
Airbus [6].

Refinement-based verification [7] is a formal verification
technology that has been demonstrated to be applicable to
the verification of embedded control software at the object-
code level [8]. In formal verification and refinement-based
verification, typically the design artifact to be verified is called
the implementation and the specification is a formal model
that captures the correct functionality of the implementation.
The goal of refinement-based verification is to mathematically
prove that the implementation behaves correctly as defined
by the specification. In refinement-based verification, both the
implementation and specification are modeled as transition
systems and timed transition systems if timing specifications
are existed.

One of the key features of refinement-based is the use of
refinement maps, which are functions that map implementation
states to specification states. In practice, these refinement maps
have a very favorable property in that they abstract out behav-
iors of the implementation not relevant to the specification, but
only after determining that these additional behaviors do not
actually impact the behaviors of the implementation relevant to
the specification. This property of refinement maps makes the
refinement-based verification very suitable for the verification
of control software used in IoT devices as refinement maps
can be used to abstract out the additional functionality of
software in IoT devices; again, only after determining that
these additional functionality are not impacting the behavior
of the core functionality of the implementation as defined by
the specification.

One of the crucial challenges in applying refinement-
based verification to commercial devices is the availability
of formal specifications. For commercial devices, typically,
the specification of a device is given as natural language
requirements. There are many approaches towards transform-
ing natural language requirements to formal specifications,
however none targeted towards refinement-based verification.
In this paper, we present methodologies for transforming
natural language requirements (both functional and timing)
into formal specifications that can be used in the context of
refinement-based verification.

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The rest of the paper is organized as follows. An overview
of the background is presented in Section II. Section III details
the related work. A formal model describing the synthesis pro-
cedure of functional requirements is presented in Section IV,
while Section V presents a different formal model describing
the synthesis procedure of timing requirements. Section VI
details the case study. Section VII gives the verification results
for the proposed formal model. Conclusions and direction for
future work are noted in Section VIIL.

II. BACKGROUND

This section explores the parsing tree, the definition of tran-
sition systems and the definition of timed transition systems
as key terms related to our work.

A. Parsing tree

A parse tree is an ordered tree that pictorially represents
how words in a sentence are connected to each other. The
connection between each word in the sentence gives the syntac-
tic categories for the sentence. The parsing process represents
the syntactic analysis of a sentence in natural language. For
example, when the parsing process is applied on a simple
sentence like ”Adam eats banana”, the parse tree categorizes
the two parts of speech: N for nouns (Adam, banana) and V
for the verb (eats). Here N, V are the syntactic categories.
The parsing process is considered to be a preprocessing
step for some applications, where natural language should be
converted into other forms. Usually, the system requirements
are written in natural language, which needs to be converted
into a structural form that can then be used to create the
transition system(s) (explained in Section II-B). Enju [9] is an
English consistency-based parser, which can process very long
complex sentences like system requirements using an accurate
analysis (the accuracy relation is around 90 percent of news
articles and bio-medical papers). Besides, Enju is a high-speed
parser with less than 500 msec per sentence. The output is the
resulting tree in an XML format which is considered to be
one of the commonly used formats by various applications.
As will be described later, the case study used to describe
the proposed methodology is from the bio-medical area, Enju
was the perfect tool as the natural language processing (NLP)
parser.

S
/\
N VP
: /\
'V NP
N
! | D N

John hit the ball

Figure 1. A simple example of a parsing tree using Enju parser [10].

Figure 1 shows a simple tree example using Enju. Here,
Enju distinguishes between terminal nodes (John is a terminal
node) and non-terminal nodes (VP is a verb phrase). The
abbreviations of the syntactic categories of Figure 1 are: S
stands for sentence (the head of the tree), N stands for noun,
VP stands for verb phrase (which is a subtree), NP stands

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/security/

96

for noun phrase, V stands for verb, and finally D stands for
determiner (comes with noun phrases). Using these syntactic
categories, we have developed an extraction technique that
would help in translating the natural language to a formal
model of the requirements.

B. Transition systems

The implementation and specification in refinement-based
verification are represented using Transition Systems (TSs) [7],
[8]. The definition of a TS is given below:

Definition 1: A TS M = (S,R,L) is a three tuple in
which S denotes the set of states, R C SXS is the transition
relation that provides the transition between states, and L is a
labeling function that describes what is visible at each state.

Figure 2. An example of a transition system (TS).

An Atomic Proposition (AP) is a statement that can be
evaluated to be either true or false. The labeling function maps
state to the APs that are true in every state. An example of
a TS is shown in Figure 2. Here S = {IBO, SPM, SYNC,
INDV}, R = {(IBO, SPM), (SPM, SYNC), (SYNC, INDV),
(INDV, SYNC), (INDV, SPM), (IBO, INDV)} and, L(SPM)
represents the atomic propositions that are true for the SPM
state. Similarly, labeling function can be applied to all the
states in this TS.

C. Timed Transition Systems

Some applications have requirements with timing condi-
tions on the state’s transitions called as timing requirements.
Timing requirements explain the system behaviour under some
timing constraints. Timing constraints are very important es-
pecially if we deal with a critical real time systems. As
mentioned in the previous section (Sec II-B), transition systems
are used to represent the implementation and specification
in refinement-based verification, however they do not contain
timing requirements. Hence, in the verification of real time
systems that contain timing constraints, timed transition sys-
tems (TTSs) [8] are used to represent the implementation and
specification.

Figure 3. An example of a timed transition system (TTS)

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Definition 2: A TTS M; = (S, R;, L) is a three tuple in
which S denotes the set of states and L is a labeling function
that describes what is visible at each state. The state transition
R, has the form of (x,y,l;, u;) where z,y € S and l;,u; € N
represents the lower and upper bounds as the timing condition
for the transition.

Figure 3 shows an example of a timed transition system
that consists of three states { S1, S2, S3 }, for instance; if the
system is in state S1 it can go to state S2 only between 1 and
4 units of time, while going from S2 to S3 the time is zero
meaning that it should happen immediately, and so on.

III. RELATED WORK

In the last few years, there has been a tremendous growth
in finding the optimal technique of requirement transformation
into a formal model. While most of them proposed system-
driven models, our approach is user-driven to ensure a safe
product.

Automatic Requirements Specification Extraction from
Natural Language (ARSENAL) [11] is a system based frame-
work that applies some semantic parsers in multi-level to
get the grammatical relations between words in the require-
ment. ARSENAL transforms natural language requirements
into formal and logical forms expressed in Symbolic Analysis
Laboratory (SAL) (a formal language to describe concurrent
systems), and Linear Temporal Logic (LTL) (a mathematical
language that describes linear time properties) respectively.
The LTL formulas are then used to build the SAL model.
Multiple validation checks are applied on Natural Language
Processing (NLP) stage and LTL formulas to check for their
correctness. However, ARSENAL records some inaccuracies
in NLP stage that need a user intervention.

Aceituna et al. [12] have proposed a front end frame-
work that builds a model to exhibit the system behavior
(for synchronous systems only) and help in creating temporal
logic properties automatically. This framework can be used
before applying the model checking technique, it exposes
accidental scenarios in the requirements. The framework is
designed in a manner that helps in understanding the errors in
a non-technical manner for users who do not have a formal
background. In contrast, our work does not need the temporal
logic in defining the specifications for a model.

A semantic parser has been developed by Harris [13] to
extract a formal behavioral description from natural language
specifications. The proposed semantic parser was employed
to extract key information describing bus transactions. The
natural language descriptions are then converted to verilog (a
hardware description language) tasks.

Kress-Gazit et al. [14] have proposed a human-robot inter-
face to translate natural language specification into motions.
This interface allows a user to instruct the robot using a
controller. LTL formulas are employed to formalize the desired
behavior requested by the user.

An approach supporting property elucidation (called PRO-
PEL) has been introduced by Smith et al. [15], it provides
templates that capture properties for creating property pattern.
Natural language and finite state automation are used to
represent the templates.

Two approaches have been proposed by Shimizu [16] to
solve the ambiguity of natural language specifications using

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/security/

97

formal specification. The first approach simplifies the formal
specification development for the popular PCI bus protocol
and the Intel Itanium bus protocol. The second approach
explains how formal specifications can help in automating
many processes that are now done manually.

A natural language parsing technique has been used with
the default reasoning, which is a requirement formalism to
support requirement development, this work helps stakeholders
to easily deal with requirements in a formal manner, in addi-
tion, a method has been proposed for discovering any existed
requirements inconsistencies. A prototype tool called CARL
was used for implementation and verification by Zowghi et
al. [17].

Gervasi et al. [18] have also worked on solving the
requirement’s inconsistencies issues by using a well-known
formalism called monotonic logic, it has been used especially
for requirement’s transformation. Multiple natural language
processing tools [19]-[22] in additional to grammatical anal-
ysis methodologies for requirement’s development have been
done to get requirements in a formal manner.

Bouyer et al. [23] have recently presented a survey on
timed automata and how it can be applied for model checking
of real-time systems. This survey has summarized the work
that has been done since the inception of timed automata in
the early 1990s till now. The timing information in real-time
models is expressed as temporal logic. However, the survey
does not specify gathering timing information from natural
language requirements, which has been the focus of our paper.

Knorreck et al. [24] have presented a graphical tool called
AVATAR-TEPE (Automated Verification of reAl Time soft-
wARe - TEmporal Property Expression Language), in which
the logical and temporal properties are expressed in formal
language. This tool can perform all tasks from requirement
capture to verification in one language and in one environment.
However, the tool requires the knowledge of logical and tem-
poral properties to verify the application. The tool is heavily
based on property modeling.

A standardized testing method for distributed real-time
cyber-physical systems (CPS) has been proposed by Shrivas-
tava et al. [25]. Temporal properties have been used to express
the timing constraints. Peters et al. [26] have proposed a new
language that considers timing requirement and checks for
errors in the description of the timing constraints. Kang et
al. [27] have presented a model-driven approach to verify the
timing requirements for automotive systems at the design level.
However, in all these works, gathering the timing constraints
from natural language requirements, which has been the focus
of this paper, has not been addressed.

Carvalho et al. [28] have proposed a symbolic model for
translating natural language requirements to a formal model
which consider time. Model-based testing techniques are then
applied to these formal models. Hassine [29] has presented
a formal framework to describe, simulate and analyze real-
time systems. This framework considers timing requirements.
However, this proposed framework is yet to be applied on
large scale industrial projects. In these works, even though the
timing requirements are considered, none of the these works
are targeted at refinement based verification.

The main advantages of our work over prior algorithms
in requirements engineering is its ability to generate a full

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

formal model directly from natural language requirements by
an expert supervision to emphasis on the safety transformation.
Also, our work does not require that the expert user know any
temporal logic languages which has been case for most of the
current literature.

IV. FORMAL MODEL SYNTHESIS PROCEDURE FOR
FUNCTIONAL REQUIREMENTS

The first step of computing the TSs is to extract the
APs from the requirements. We have developed three Atomic
Proposition Extraction Rules (APERs) that work on the parse
tree of the requirement obtained from Enju. The resulting APs
are then used to compute the states and transitions. The APERs
are described next.

A. Atomic Proposition Extraction Rule 1 (APER 1)

APER 1 is based on the hypothesis that noun phrases in a
requirement correspond to APs. Each subtree of the parse tree
with an NX root (called an NX head) corresponds to a noun
phrase and hence an AP. Therefore, APER 1 computes the
subtrees corresponding to NX heads. If NX heads are nested,
then the highest-level NX head is used to compute the AP. The
terminal nodes of the subtree are conjoined together to form
the noun phrase. APER 1 returns AP-list, which is the set of
APs corresponding to a parse tree.

Procedure 1 APER1

Require: Parse-tree
1: AP-list < 0 ;
2: for each n € TerminalNodes(Parse-tree) do
3: Start-cat = head(head(n));
4 if Start-cat = NX then
5: X = Sub-tree(Start-cat);
6 while (head(X) = NX) V (head(X) = COOD)
V (head(X) =NX-COOD) do

7: X = Sub-tree(head(X));
8 AP-list < AP-list U TerminalNodes(X) ;
| |
23 CONIP i
| |
[ve [
NP | P
and ‘ | I
DIP NX \‘? PI\
DTl 1 [|
12 x VP P i
ted | | | |
W M [|0 |
11 VP ?lN Pl,‘{ NP-COOD
priming process
cc
X NP i NP 00D
| either
VB :
| P X D NX [cONP NP
resume | ‘ ‘
DT D oo
'] w M [Jaoe xx | | D[WX
the| | 1
VBN I MW DT
| ADP NX 5] || aoP M
uspended | | basal profile} a | |
o n MW = non
[| |
basal delivery ftemporary basal

Figure 4. An Enju parsing tree portion shows some resulting APs by
applying APER 1.

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/security/

98

We now describe the procedure corresponding to APER 1
in detail. Firstly, AP-List is initialized to the empty set (line 1).
The procedure then iterates through each terminal node n (line
2). The head of a node is its parent. If a terminal node is part of
an NX subtree, its level two head will be marked as NX, which
is checked in line 3. The level-two NX node of the terminal
node is stored in variable State-cat. If the Start-cat is of NX
category (line 4), a function called Sub-tree is used to get the
resulting subtree (line 5), which is stored in variable X. A while
loop is used to traverse the tree of X upwards checking if the
head syntactic category is NX or COOD or NX-COOD (line
6). Only when one of the conditions is satisfied the subtree
is stored in X (line 7). The terminal nodes of the resulting
sub tree "X’ will be added to AP-List as a new suggested AP
(line 8). Figure 4 gives a sub tree example for APER 1. Note
that APER 1 may result in the same AP being duplicated.
Duplicates are checked and removed from the AP list in the
overall approach.

As shown in Figure 4, the terminal nodes ’the’ and ’prim-
ing’ does not have head(head(n)) = NX. The first terminal node
that has the NX category is ’process’. Traversing upwards,
the NX related categories gives us the subtree which contains
’priming process’. This now constitutes the first AP for this
part of requirement. Applying the APER 1 rule on the visible
part of the sentence in Figure 4 gives us the following APs:
’priming process’, ’suspended basal profile’, ’basal profile’,
and ’temporary basal’.

B. Atomic Proposition Extraction Rule 2 (APER 2)

APER 2 and APER 3 correspond to the two other parse tree
patterns that also lead to noun phrases. APER 2 examines the
parse tree for noun categories along with its upper verb head.
APs will be the conjoined terminal nodes of the resulting sub
tree. APER 2 states that APs are the terminal nodes under the
head VP passing through NX (or its related phrases such as
NX-COOD, COQOD), NP (or its related phrases NP-COOD,
COOD), and VX phrase.

Procedure 2 APER 2

Require: Parse-tree
I: AP-list <) ;
2: for each n € TerminalNodes(Parse-tree) do
3: Start-cat = head(head(n));

4: X, « 0

5: if Start-cat = NX then

6: X = Sub-tree(Start-cat);

7: while (head(X) = NX) V (head(X) = COOD)
V (head(X) =NX-COOD) do

8: X = Sub-tree(head(X));

9 while (head(X) = NP) V (head(X) = COOD)
V (head(X) = NP-COOD) do

10: X1 = Sub-tree(head(X));

11: if (head(X;) = VX) A (head(head(X;)) = VP) then

12: X = Sub-tree(head(head(X));

13: else

14: if (head(X;) = VP) then

15: X = Sub-tree(head(X4);

16: AP-list < AP-list U TerminalNodes(X);

APER 2 is built on top of APER 1 to get atomic proposi-

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tions for requirements that APER 1 is not able to collect. While
APER 1 looks only for APs that are noun phrases, APER 2
looks for noun phrases that are further characterized by verb
phrases. For example, if APER 1 finds the AP “suspended
basal delivery,” APER 2 will find “resume the suspended basal
delivery.”

APER 1 and APER 2 have the same algorithmic flow until
finding the sub tree of X that is the top NX head (line 8).
However, APER 2 does not consider the resulting X to be
an AP like APER 1 does. Instead, X is the input of the next
step. A while loop is used to search if the head category of
X is in NP category or one of its related phrases (line 9).
Only when the while loop condition is true, the new sub-tree
is stored temporarily in the variable X; (line 10), where X; is
a temporary variable initialized to null (line 4). This ensures
that X does not change in this step for future use. The search
for VX and VP categories is to be performed only when X;
is not null.

7 T
T m
VP | VP
’—k_‘ without A—‘
\"X NP VP P'll\
VB
| B NX VX NP |
override | | ‘
DT VBG '
| NX PP | NX
the | | changing
f | l | l_‘_\
ADIP NX PX NP \l'.P NX
| |
I N I—Ll VBG !_Ll
| ADIP NX DP NX | ADP NX
curent | | with | existing | |
I NN DT JJ NNS
| I | ADP NX | |
basal delivery a | | basal profile:
I a1
| |
temporary basal

Figure 5. An Enju parsing tree portion shows some resulting APs by
applying APER 2.

On the successful completion of NP category search,
the search for VX category followed by VP categories is
performed (line 11). When the if condition is satisfied, X is
updated with the new sub-tree (line 12). In the case of failure
of the if condition in line 11, a new search for VP category
is performed on the head of NP category sub-tree (line 14).
On success, X is updated with the new sub-tree (line 15). If
either of the if conditions (line 11 and line 14) fail, then X
will remain as the sub-tree of NX category. The terminal nodes
of the resulting subtree in X is appended to the AP-list (line
16). Figure 5 shows a resulting sub tree example by applying
APER 2.

Figure 5 shows that the procedure starts from left to right
looking for level two NX nodes and traversing upward until
higher NX nodes are accounted for. NP phrases are selected
to expand the tree. Then choosing the upper level which is VP
in this particular case (sometimes its VX — VP). The output
of APER 2 for this tree portion is ’override the current basal
delivery with a temporary basal’, and ’changing existing basal
profiles’.

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/security/

99

C. Atomic Proposition Extraction Rule 3 (APER 3)

APER 3 is built on top of APER 2, it explores the verb head
levels in the parse tree like APER 2, but APER 3 eliminates
some verb phrases that is not part of APs. This elimination is
done based on the head of the VP category as illustrated in
Procedure 3 below.

APER 3 and APER 2 have the same stream up to line
10. The algorithm starts with initializing temporary variables
X1 and Y to null (line 4). The search for syntactic categories
start with the top NX phrase (line 7) and the resultant sub
tree is stored in X (line 8). Then, the search begins for the
top NP phrase (line 9) and the resultant sub tree is stored
in X7 (line 10) since the sub tree in X is needed for future
use. As in APER?2, the search for either VX phrase followed
by VP phrase or just VP phrase is performed on X; and the
resultant sub tree is stored in Y (lines 11-15). If and only if
Y is not empty then the check on the head syntactic category
is performed to ensure that it does not contain CP or COOD
categories. In this case, X gets only the right child (line 16-18)
i.e. the left child of Y is pruned. On the other hand, if Y has
a CP or COOD head, X value will be updated to be equal to
Y (line 20). Finally, terminal nodes of the resulting sub tree X
will be saved in the AP-list as a new AP. The pruning process
(line 18) is done to remove some action verbs which are not
part of an AP.

Procedure 3 APER 3

Require: Parse-tree
1: AP-list <) ;
2: for each n € TerminalNodes(Parse-tree) do
3: Start-cat = head(head(n));

4: X1+ 0,Y « 0
5: if Start-cat = NX then
6: X = Sub-tree(Start-cat);
7: while (head(X) = NX) V (head(X) = COOD)
V (head(X) =NX-COOD) do
8: X = Sub-tree(head(X));
9: while (head(X) = NP) V (head(X) = COOD)
V (head(X) = NP-COOD) do
10: X1 = Sub-tree(head(X));
11: if (head(X7) = VX) A (head(head(X)) = VP) then
12: Y = Sub-tree(head(head(X));
13: else
14: if (head(X;) = VP) then
15: Y = Sub-tree(head(X);
16: if (Y # 0) then
17: if head(Y) # CP) A (head(Y) # COOD) then
18: X = Sub-tree(RightChild(Y));
19: else
20: X=Y;
21: AP-list + AP-list U TerminalNodes(X);

Like APER2, APER3 also works on verb head categories.
However, APER3 has some pruning techniques to remove parts
of the sentence that should not be part of an AP. Consider the
snippet in Figure 6, the sub tree “issue an alert” is subjected
to left branch pruning to remove the verb ’issue’ since such
verbs do not add value in the AP. According to the algorithm,
since the head node of VP is COOD, only the terminal nodes
of the right child are considered as an AP. Applying APER

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3 on the visible part of the requirement in Figure 6 gives the
following APs: pump’, ’an alert’, and ’deny the request’.

The proposed APERs may be used individually or in
combination depending on the system requirement and model
functionally. However, no one rule is considered to be the best
for all models because of the natural language structure.

PN 5
| 1
[|
| NP VP
DP| NX | VX VP-COOD
Ly .l | _l_‘
DT| KN |MD
! | VP COoD
the | pump|shall 3§
\;X NP COlNJP VP
VB CC
| DP NX| | VX NP
issue | | and || |
DT ¥ VB
. 3 | DP NX
an alert deny | |
DT NN
the request

Figure 6. An Enju parsing tree portion shows some resulting APs using
APER 3.

D. High-Level Procedure for Specification Transition System
Synthesis

Procedure 4 Procedure for synthesizing TSs from system
requirements

Require: set of requirements (System-requirements)
1: TS-set «+ 0 ;
2: for each Req € System-requirements do
3: Parse-tree <— Get(Req_tree.xml);
AP-list <+ APER(Parse-tree);
AP-list < Eliminate_Dup(AP-list);
AP-list «+ USR_IN(AP-List);
AP-truth-table +— Relation(AP-list);
AP-truth-table + USR_IN(AP-truth-table);
9: S-list < 0;
10: for each A € AP-truth-table do
11: S-list[7] = A; ;
12: S-list +— USR_IN(S-list);
13: T < CreateT(S-list);
14: T < USR_IN(T);
15: TS + CreateTS(T, S-list);
16: TS-set < TS-set U TS;
17: return TS-set;

A

Procedure 4 shows the overall flow for computing the
TSs. A set of system requirements in natural language are
fed as input to the procedure. TS-set is the output of the
procedure and will contain the set of transition systems that
capture the input requirements as a formal model. TS-set is
initialized to null (line 1). Each requirement is input to the
Enju parser. The parser gives an xml file as output. A function

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/security/

100

called Get is used to obtain the xml file into the variable
Parse-tree (line 3). The xml output in Parse-tree is subjected
to the proposed APERs, which give the atomic propositions
(APs) as output. APs are stored in the AP-list (line 4). Each
requirement is subject to all APERs and the AP-list obtained is
the union of the APs produced by each of the rules. The output
obtained by using the APERs may contain duplicates, which
are eliminated by using the function Eliminate_Dup (line 5).
AP-list is then subjected to an expert user check, where the
AP(s) might be appended, eliminated or revised based on the
expert user’s domain knowledge (line 6). Some of the APs
maybe expressible as a Boolean function of other APs.

Therefore, next, a truth table (AP-truth-table) is created,
where each row corresponds to an AP from AP-list and each
column also corresponds to an AP from AP-list (line 7). Each
entry in the table is a Boolean value (true or false). Completing
the truth table determines the relationship of each AP with the
other APs in the AP-list. The truth table is completed by the
expert user (line 8). The list of states for the input requirements
are stored in the variable S-list. S-list is initialized to null (line
9). Each truth table entry (A) is defined to be a single state in
the transition system (line 10). This heuristic has worked well
in practice. S-list is subjected to expert user input (line 12).

The transitions of the TS are computed next. The list of
transitions (T) is initialized to a transition between every two
states using function ’CreateT’ (line 13). The transition list is
subjected to expert user input (line 14). A transition system
(TS) is constructed using the CreateTS function, which takes
the transitions (T) and the list of states (S-list) as input (line
15). This transition system (TS) is then added to the transition
system set (TS-set) (line 16). The procedure finally returns
a set of transition systems for all the requirements in an
application (line 17).

V. FORMAL MODEL SYNTHESIS PROCEDURE FOR TIMING
REQUIREMENTS

In this section, the approach is extended to deal with timing
requirements. When synthesizing transition systems (TSs), the
core activity was the extraction of APs. For synthesizing timed
transition system, the core activity is the extraction of APs and
TCs. An additional extraction rule is developed, that can be
applied on timed requirements not only to get APs but also to
extract the timing constraints (TCs) on each state transition.

A. Atomic Proposition and Timing Constrains Extraction Rule
(APTCER) for Timed Transition System

This section explains a new proposed rule that analyzes
timing requirements to get APs with their corresponding TCs
as a base for building TTSs. This rule called Atomic Propo-
sition and Timing Constrains Extraction Rule (APTCER) is
specified as Procedure 5 and works as follows. First, the timing
requirement is split into smaller phrases that are individually
analyzed (lines 1-14 of Procedure 5). These phrases are called
Timed Based Sentences (TBSs). Each resulting phrase is then
analyzed to extract the APs and TCs in that phrase (lines 15-
38 of Procedure 5). The list of APs and TSs are stored in
(AP — list, TC — list).

APTCER takes the parse tree of the timing requirement as
input. The parse tree is obtained by applying the Enju parser
on the timing requirement. APTCER initilizes the list of TBSs
(TBS-list) to the empty list (line 1). APTCER then searches

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for sub-trees with root as ”’S” and with left child of NP and
right child as ”VP” (lines 2-5). Each such sub-tree is a TBS.

Note that TBSs can be nested in that there can be a TBS
inside of a TBS. The nested TBSs need to partitioned and
analyzed individually. This is done by searching for sub-trees
inside the TBS with ”SCP” or ”’S” roots. Such sub trees are
cut out and the resulting TBS is returned (lines 7-13).

Next, the TBSs are analyzed to extract the APs and TCs.
The extraction is performed by analyzing both the left child
and the right child of the TBS. The left and right sub-trees
are assigned to variables A and B, respectively (lines 19 and
23). Then APER 1 is used to analyze both A and B. Through
empirical observation, it has been determined that the APs
extracted by APER 1 from sub-tree A (line 21, 22) corresponds
to APs but the APs extracted by APER 1 from sub-tree B (line
25, 26) corresponds to TCs. The resulting AP-list and TC-list
are corresponds to one TBS (line 27), the TBS’s pair is saved
in the final TBS-list (line 28).

Applying lines 1-14 of APTCER on the requirement in
Figure 7 gives three TBSs, they are shown in separate red
boxes. While the rest of the algorithm (lines 15-38) works on
each TBS to find it’s AP-list and TC-list. The left sentence
has one AP which is “air-line-alarm” and one TC which is
”maximum delay time of x minutes”. The resulting AP and TC
will be saved as a pair. This helps in identify that the AP and
TC are correlated, which is used to determine the transition
for which the TC should be applied. More specifically, the
TC will be applied to a transition from a state in which the
corresponding AP is true. Overall the three TBS from Figure 7
give the following. AP-list is: ’air-in-line alarm’, *air bubbles
larger than y L', and ’insulin administrations’. TC-list will have
one TC: maximum delay time of x seconds which related to
the AP of ’air-in-line alarm’ as one pair.

Note that a TBS can correspond to more than one AP and
more than one TC. For example, Figure 8 shows a TBS that
has two APs (in red boxes) and one TC (in a green box).

B. High-Level Procedure for Specification Timed Transition
System Synthesis

Procedure 6 shows the overall flow for computing the
TTSs. A set of natural language timing requirements are input
to the procedure. TTS-set is the output of the procedure and
will contain the set of timed transition systems that capture
the input requirements as a formal model.

TTS-set is initialized to null (line 1). Each timing require-
ment is input to the Enju parser. The parser gives an xml
file as output. A function called Get is used to obtain the
xml file into the variable Parse-tree (line 3). The xml output
in Parse-tree is subjected to our proposed APTCER, which
gives the TBS-list that are pairs of atomic propositions and
their related timing constrains lists (line 4). The synthesizing
procedure then iterates through all TBSs (line 5) to get thier
corresponding pair of APs and TCs (line 6).

AP-lists is subjected to an expert user check, where the APs
might be appended, eliminated or revised based on the expert
users domain knowledge (line 7). Some of the APs maybe
expressible as a Boolean function of other APs. Therefore,
next, a truth table (AP-truth-table) is created, where each row
corresponds to an AP from AP-lists and each column also
corresponds to an AP from AP-lists (line 8). Each entry in the

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/security/

101

table is a Boolean value (true or false). Completing the truth
table determines the relationship of each AP with the other
APs in the AP-lists. The truth table is completed by the expert
user (line 9). TC-list is then checked by the expert user, where
some TCs might be appended, eliminated or revised based on
the expert users domain knowledge (line 10).

Procedure 5 APTCER

Require: Parse-tree
1: TBS-list < 0 ;
2: for each Head — Cat € Head(Parse-tree) do
3: if Head-Cat = S then
4: if (Left-Child (S)= NP vV NP-COOD) A
(Right-Child (S)= VP) then
5: TBS = Sub-tree (S);
6: for each Child-Head (TBS) do
7: if Child-Head (TBS) = SCP then
8: Cut-Sub-tree (SCP);
9: return TBS;

10: else

11: if Child-Head (TBS) = S then
12: Cut-Sub-tree (S);

13: return TBS;

14: TBS-list + TBS-list U TBS;

15: k « (;

16: for each T'BS € TBS-list) do

17: K=k +1;

18: A 0,B <+ 0

19: A = Sub-tree (left-Child (TBS));
20: AP — listy, + 0;

21: APER 1 (A) — AP-list;

22: AP — list, + AP-list ;

23: B = Sub-tree (Right-Child (TBS));
24 TC — listy, + 0;

25: APER 1 (B) — AP-list;

26: TC — list, < AP-list ;

27: TBS; = <AP — listk,TC’ — listk>;
28: TBS-list <+ TBS-list U T'BS};

Next, the states and transitions of the TTS are computed. S-
list variable (list of states) is initialized to null (line 11). Each
truth table entry (A) (line 12) is defined to be a single state
in the transition system (line 13). S-list is subjected to expert
user input (line 14). The transitions of the TTS are computed
next. The list of transitions (T) is initialized to a transition
between every two states using function CreateT (line 15). The
transition list is subjected to expert user input (line 16) where
some transitions might be pruned. A function called ’Apply-
TC-list’ is applied to link each TC to all transitions emanating
from states in which the corresponding APs are true, based on
the TBS pair — TBS (AP — list, TC — list) (line 17). The
expert user will confirm, modify, or apply the TC on specific
transition/s based on his domain knowledge (line 18). For the
remaining transitions that do not have any timing bounds, the
timing bounds are open from zero to infinity (0, co). For this
reason a new function called *Apply-TC-bounds’ is applied on
each transition that has no TC (line 19).

A timed transition system (TTS) is constructed using the
CreateTS function as in procedure 4, this function takes the
transitions (T) linked with their timing conditions and the

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

list of states (S-list) as input (line 20) to create a TTS. The
resulting TTS is then added to the timing transition system
set (TTS-set) (line 21). The procedure finally returns a set of
timing transition systems for all timing requirements that have
been fed to the algorithm (line 22).

Procedure 6 Procedure for synthesizing TTSs from timing
requirements

Require: set of requirements (Timed-requirements)

1: TTS-set « 0 ;

2: for each Req € Timed-requirements do

3: Parse-tree <— Get(Req_tree.xml);

4: TBS-list + APTCER(Parse-tree);

5: for each T'BS € TBS-list do

6: Get ((AP — list, TC — list));

7 AP-list <+~ USR_IN(AP-list);

8 AP-truth-table +— Relation(AP-list);

9: AP-truth-table +— USR_IN(AP-truth-table);
10: TC-list «— USR_IN(TC-list);

11: S-list < 0;
12: for each A ¢ AP-truth-table do
13: S-list[7] = A; ;

14 S-list «— USR_IN(S-list);

15: T < CreateT(S-list);

16: T <+ USR_IN(T);

17: T < Apply-TC-list ;

18: T + USR_IN(TC);

19: T + Apply-TC-bounds (0, co);
20: TTS < CreateTS(T, S-list);

21: TTS-set < TTS-set U TTS;

22: return TTS-set;

VI. CASE STUDY: GENERIC INSULIN INFUSION PUMP
(GIIP)

Insulin pump is a medical device that delivers doses of
insulin 24 hours a day to patients with diabetes. It is typically
used to keep the blood glucose level in an acceptable range.
Overdose of insulin can lead to low blood sugar that can lead
to coma/death. Therefore, the insulin pump is a safety-critical
device.

The Generic Insulin Infusion Pump (GIIP) has been pro-
posed [30], which lists a set of safety requirements for insulin
pumps. We use these safety requirements to explain our
approach. GIIP has proposed a list of both functional and
timing requirements, examples will be given about both cases.

A. Functional requirements of GIIP

GIIP model abstracts requirements that explains how spe-
cific critical behaviour of the system can be controlled, func-
tional requirements are introduced to solve common hazards
in the insulin pump’s market that might happen during insulin
administration and not related to specific timing constraints.

As an example, consider requirement 1.8.2 (from [30])
which is needed to address a hazard that may happen in
the suspension mode of the pump. Suspension mode can
occur when the pump may be in refill or priming or insulin
delivery processes. The insulin pump has two type of insulin
deliveries: bolus and basal. Bolus is a high insulin rate that is
recommended in case of low blood glucose level.

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/security/

102

Requirement 1.8.2: When the pump is in suspension mode,
insulin deliveries shall be prohibited. Any incomplete bolus
delivery shall be stopped and shall not be resumed after the
suspension.

From safety requirement 1.8.2, it is clear that the pump
should not resume a suspended bolus automatically after
returning from suspension since they would be an unexpected
amount of insulin.

Requirement 1.8.5: When the pump resumes from suspension,
calculations shall be performed to synchronize insulin used
and remaining reservoir volume.

Requirement 1.8.5 is an extension of how the pump should
function after returning from the suspension mode. Here two
requirements are needed to address one safety hazard. When
algorithm 4 is applied on these two requirements, the first step
is collecting the APs by using the extraction rules. Applying
APER 2 on 1.8.2 gives: ”pump”, ”suspension mode”, ’insulin
deliveries”, “incomplete bolus delivery”, and suspension”.
Applying APER 2 on 1.8.5 gives: “pump”, “suspension”,
“calculations”, and “synchronize insulin used and remaining
reservoir volume”. Next, duplicate APs are to be removed.
This eliminates ’pump’ and ’suspension’ from the AP-list.
Now, the expert user intervenes for manipulating the AP-list,
where APs can be deleted, modified or even inserted based on
the expert user’s domain knowledge. This yields the final AP-
list as ”suspension mode” (SPM), "insulin deliveries” (INDV),
“incomplete bolus delivery” (IBO) and “synchronize insulin
used and remaining reservoir volume” (SYNC). Next, the AP-
truth-table to define relations between APs is constructed as
shown in Table 1.

TABLE 1. AP-TRUTH-TABLE FOR REQUIREMENT 1.8.2 AND 1.8.5
FROM AP-LIST

APs — | SPM | INDV | IBO | SYNC
1
SPM T F F F
INDV F T F F
BO F T T F
SYNC F F F T

Here, each row represents a state. For example, SPM
represents a state where suspension mode is true, IBO is false,
INDV is false, and SYNC is also false; which emphasizes that
insulin bolus should not be active during suspension.

Finally, Procedure 4 applies transitions between every two
states as shown in Figure 9a. The expert user will approve
or remove some unacceptable transitions. Figure 9b shows the
final transition system.

B. Timing requirements of GIIP

The application of APTCER to some timing requirements
of GIIP are described next. Timing requirements are also criti-
cal to be preserved. In GIIP, a motor controls the fluid injection
and therefore the fluid flow rate and dosage. The motor is in
turn controlled by software and the speed of the motor is time
controlled by the software. The timing requirements of GIIP
are also safety-critical because if the software violates these
requirements, the dosage can be affected. Overdose or under
dose of medicines can be very harmful or even fatal to the
patient.

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security,

vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

$-COOD
|
[|
.‘li COOoD
I |
NP VP CONJP S
[I 1 I : |
DP NX VX VP PN CONTH NP VP
|] | | [
DT [| ™MD |] (e
| NP NX | VX VP i1 |Jop NX VX VP
An | | shall |] and | | |
NN NN VB [| DT MD
| | | VP SCP | NP NX | VX VP
air-in-line alarm be | all | | shall | |
I 1 NN NNS VB VBN
VP PP sc 13 | | T
| | insulin administrations be stopped
VBN IN
| PX NP | NP VP
triggered | if | J_‘
| DP NX NX VX VP
within | ’_l_‘ |
VBP VBN
| NX PP NX ADJP |
a are detected
ADJP NX X NP NP NX ADIP PP
| | | |
b N ‘ NN NNS IR I_L\
| NP NX NX | | | PX NP
maximum | | of air bubbles larger | |
NN NN N
| ADIP NX | NX
delay tis | | than
e I NNS !J_I
| | NP NX
x seconds [|
T
y uL
Figure 7. An Enju parsing tree shows three resulting TBSs after applying APTCER.
]
|
[|
NP-COOD VP
] |
| | | |
NP COOD VX VP
| |
[| VBEZ
DP NX CONIP NP | VX VP
| | | has | |
DT CcC VEN
| AP NX | DP NX | VP PP
the| | | or | been |
| | I I DT] | ven |
ADVP ADJP ADIP NX | ADIP NX | PX NP
| | | | the | | paused | |
RE VEN I NN [| [1 IN 1
| | | | ADVP ADIP ADIP NX | NX
currently activated basal profile | | | | for ’—l_‘
RB 17 I I
| | | I 1?{ FP
currently ing t ¢ basal
y ongoing temporary - I_LI
| PX NP
more | |
N
| NX
than |_I_|
ADJP NX
| |
I NNS
| |
x minutes

Figure 8. An Enju parsing tree portion shows the resulting TBS (AP — list, TC — list)) after applying APTCER.

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

103

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/security/

104

TABLE II. RESULTING TRANSITION SYSTEMS BY APPLYING PROCEDURE 4 AND APERS ON A SET OF SYSTEM REQUIREMENTS

Total No. No. of APs User input Final
Req. NO. APER
of APs Without DP | AP added AP removed AP modified APs states transitions
1 10 10 6 0
1.1.1 2 10 10 5 0 5 4 5
3 10 10 6 0
1 7 7 3 2
1.1.3 2 7 7 3 2 4 4 4
3 7 7 3 1
1 24 12 5 1
124,126, 1.2.7 2 24 18 8 0 10 10 14
3 24 16 8 0
1 11 6 3 0
1.3.5 2 11 8 4 1 4 4 4
3 11 8 5 0
1 9 7 3 1
1.82,1.85 2 9 7 3 0 4 4 5
3 9 7 3 0
1 6 6 3 1
222,223 2 7 6 3 1 3 3 4
3 7 6 3 2
1 15 14 9 0
3.1.1 2 14 12 7 0 5 3 3
3 14 13 8 0
1 10 9 7 2
325 2 7 7 4 1 3 3 3
3 7 7 4 1
1 4 4 1 0
327 2 4 4 1 1 3 3 3
3 4 4 1 0

As an example, consider requirement 1.6.1 (from [30])
which helps patients to be aware of the occurrence of an air in
line hazard. Air in line hazard is the presence of air bubbles in
the pump above the acceptable range. The requirement states
that if the air in line problem occurred during insulin delivery,
an air in line alarm should start in a time not more than
X minutes, in addition, every ongoing insulin delivery must
be stopped. The alarm will give the patient a warning that a
problem is going to happen, so the patient will interact with
the pump and solve the issue to prevent incorrect insulin doses
or other problems.

Requirement 1.6.1: An air-in-line alarm shall be triggered
within a maximum delay time of x seconds if air bubbles larger
than y puL are detected, and all insulin administrations shall
be stopped.

When procedure 6 is applied to this requirement, the first
step is collecting the lists of TBS by applying APTCER, which
gives three separate TBSs. TBS1 is ”An air-in-line alarm shall
be triggered within a maximum delay time of x seconds”, while
TBS?2 is "air bubbles larger than y pL are detected”, and TBS3
is 7all insulin administrations shall be stopped”.

Next, the AP-list and TC-list for each TBS is computed.
AP-list contains: “air-in-line alarm”, “air bubbles larger than
y pL”, and “insulin administrations”. TC-list contains: “max-
imum delay time of x seconds” which is related to the AP:

“air-in-line alarm” in TBS1.

Now, the expert user intervenes to manipulate the AP-list,
where APs can be deleted, modified or even inserted based

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

on the expert users domain knowledge. This yields the final
AP-list as “air-in-line alarm” (ALRM), "air bubbles larger than
y uL” (AIRB), ”insulin administrations” (INSAD). Next, the
AP-truth-table to define relations between APs is constructed
as shown in Table III.

oiE2

(a) TS with all suggested
transitions.

(b) TS after removing some
transitions.

Figure 9. Finite state machine for suspension mode requirements (1.8.1 and
1.8.5).

AIRB

(a) TTS with all suggested transitions.

(b) TTS after applying the TCs and removing some
transitions.

Figure 10. Timed finite state machine for air-in-line requirement (1.6.1).

TABLE III. AP-TRUTH-TABLE FOR TIMING REQUIREMENT 1.6.1
FROM AP-LIST

APs — | AIRB | INAD | ALRM
1
AIRB T T F
INAD F T F
ALRM F F T

As in Table I, each row in the Table III represents a state.
For example, AIRB represents a state where AIRB is true,
INAD is also true, while ALRM is false; which explains the
problem of having air bubbles while an insulin administration
is given to the patient. Now, the user can make changes to the

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/security/

105

TC-list which may have a TC that corresponds to one or more
APs. After the states are computed, the expert user can add or
modify any of the states if needed.

Then, Procedure 6 applies transitions between every two
states, the expert user will approve or remove some unac-
ceptable transitions as shown in Figure 10a. After following
Procedure 6, the final TTS is shown in Figure 10b

VII. RESULTS ANALYSIS

An evaluation process is applied on the resulting TSs
and TTSs by using NuSMV and UPPAAL model checkers
respectively. Firslty, evaluation of the first approach (APERs
and Procedure 4) for TSs is performed using the NuSMV
model checker. A model checker is a tool that can check if
a TS or a TTS satisfies a set of properties. The properties
have to be expressed in a temporal logic. Here, we have used
CTL to express the properties. The CTL properties are written
manually for each of the requirements that are subjected to our
approach. NuSMV is used to check if the TSs synthesized by
the first approach satisfied the CTL properties corresponding
to each functional requirement.

Secondly, UPPAAL is used to verify the resulting TTSs
by applying APTCER and Procedure 6 (the second approach).
UPPAAL is a tool that can verify real time systems and is
based on the timed automata theory [31]. UPPAAL is used to
check if the TTSs synthesized by the second approach satisfied
the CTL properties corresponding to each timing requirement.

Table II shows the results of applying Procedure 4 on
a number of GIIP requirements. The requirement numbers
in the table are from [30]. All the final TSs satisfied their
corresponding CTL properties. Each requirement or set of
requirements (listed in column 1) have been subjected to the
extraction rules (column 2), where column 3 shows the total
number of APs resulting from each extraction rule. Column 4
gives the number of APs after removing the duplicate APs. In
addition, a record of the suggested expert user intervention for
adding, removing or modifying the APs is shown in column
5. The final number of APs, states, and transitions are shown
in column 6.

As shown in Table II, when a requirement is subjected
to the APERs, the resultant output from each APER may
be different even though the number of APs is the same.
For requirements 1.8.2 and 1.8.5, although applying APERI,
APER2, and APER3 give the same number of APs, APERI1
gives different list of APs from APER2 and APER3.

Table IV presents the results of applying Procedure 6 on a
number of GIIP timing requirements from [30]. All applied
CTL properties are satisfied by the resulting TTSs. The listed
requirements (column 1) are subjected to the APTCER which
gives list of TBSs for each requirement (column 2). column
3 and 4 show the number of the resulting APs and TCs
respectively. Column 5 shows the pair of AP-list and TC-
list. As in Table II, column 6 has the user interventions of
appending, deleting, or modifying the AP-lists. The final TTS’s
components are shown in column 7: the number of APs, the
number of states, and finally the number of transitions between
states.

VIII. CONCLUSION

The key ideas of our approach for transforming require-
ments into transition systems and timed transitions systems

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/security/

106

TABLE IV. RESULTING TIMED TRANSITION SYSTEMS BY APPLYING PROCEDURE 6 AND APTCER ON A SET OF TIMING REQUIREMENTS

Total No. Total No. Total No. User input Final
Req. NO. (AP,TC)
of TBSs of APs of TCs AP added AP removed AP modified APs states transitions
(2,1)
1.2.8 2 3 3 (1,2) 0 1 4 3 4
1.6.1 3 3 1 (1,1) 0 0 3 3 7
(1,1)
1.8.4 2 3 2 (1,1) 1 2 3 3 4
2.2.1 4 6 1 (4,1) 0 1 6 3 4

are the following. The extraction rules work on the parse tree
to get an initial list of APs and TCs. The AP truth table is
used to establish relationships between the initial list of APs.
For example, an AP may be expressible as a conjunction of
two other APs. The initial expert user pruned list of APs gives
insight into the states of the transition system. We have found
empirically that having one state for this initial pruned AP
list is a good heuristic to compute the states of the transition
system. Transitions are applied between every two states and
then pruned by the expert user. TCs are paired with APs and
this information is used to assign TCs to transitions.

Transforming natural language requirements into formal
models is quite a hard problem and hard to get right without
input from domain expert. Our approach sets up a very
structured process, where the tool does lot of the work in
analyzing and synthesizing TSs and TTSs, but also allows
for input from domain expert. The proposed methodology has
worked very well in practice for the GIIP requirements. All
the TSs and TTSs computed for the requirements satisfied their
corresponding CTL properties.

ACKNOWLEDGMENT

This publication was funded by a grant from the United
States Government and the generous support of the American
people through the United States Department of State and the
United States Agency for International Development (USAID)
under the Pakistan - U.S. Science & Technology Cooperation
Program. The contents do not necessarily reflect the views
of the United States Government. The authors would like to
acknowledge Dr. Vinay Gonela for helping with proofreading
the paper.

REFERENCES

[1] E. M. Al-qtiemat, S. K. Srinivasan, M. A. L. Dubasi, and S. Shuja,
“A methodology for synthesizing formal specification models from
requirements for refinement-based object code verification,” in The
Third International Conference on Cyber-Technologies and Cyber-
Systems. IARIA, 2018, pp. 94-101.

(2]

(3]

[4]

(31

(6]

(71

(8]

(9]

[10]

[11]

[12]

FDA, “List of Device Recalls, U.S. Food and Drug Administration
(FDA),” 2018, last accessed: 2018-09-10. [Online]. Available:
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRES/res.cfm

R. Kaivola et al., “Replacing testing with formal verification
in intel coretm i7 processor execution engine validation,” in
Computer Aided Verification, 21st International Conference, CAV,
Grenoble, France, June 26 - July 2, 2009. Proceedings, ser.
Lecture Notes in Computer Science, A. Bouajjani and O. Maler,
Eds., vol. 5643. Springer, pp. 414—429. [Online]. Available:
https://doi.org/10.1007/978-3-642-02658-4_32

T. Ball, B. Cook, V. Levin, and S. K. Rajamani, “SLAM
and static driver verifier: Technology transfer of formal methods
inside microsoft,” in Integrated Formal Methods, 4th International
Conference, IFM, Canterbury, UK, April 4-7, 2004, Proceedings, ser.
Lecture Notes in Computer Science, E. A. Boiten, J. Derrick, and
G. Smith, Eds., vol. 2999. Springer, pp. 1-20. [Online]. Available:
https://doi.org/10.1007/978-3-540-24756-2_1

K. Bhargavan et al., “Formal verification of smart contracts: Short
paper,” in Proceedings of the 2016 ACM Workshop on Programming
Languages and Analysis for Security, PLAS@CCS, Vienna, Austria,
October 24, T. C. Murray and D. Stefan, Eds. ACM, pp. 91-96.
[Online]. Available: http://doi.acm.org/10.1145/2993600.2993611

D. Delmas et al., “Towards an industrial use of fluctuat on safety-critical
avionics software,” in International Workshop on Formal Methods for
Industrial Critical Systems. Springer, 2009, pp. 53-69.

P. Manolios, “Mechanical verification of reactive systems,” PhD
thesis, University of Texas at Austin, August 2001, last accessed:
2018-10-10. [Online]. Available: http://www.ccs.neu.edu/home/pete/
research/phd-dissertation.html

M. A. L. Dubasi, S. K. Srinivasan, and V. Wijayasekara, “Timed refine-
ment for verification of real-time object code programs,” in Working

Conference on Verified Software: Theories, Tools, and Experiments.
Springer, 2014, pp. 252-269.

Tsujii laboratory, Department of Computer Science at The University
of Tokyo, “Enju - a fast, accurate, and deep parser for English,” 2011,
available from http://www.nactem.ac.uk/enju, [accessed: 2018-07-10].

V. Agel, Dependency and valency: an international handbook of con-
temporary research. Walter de Gruyter, 2003, vol. 1.

S Ghosh et al., “Automatic requirements specification extraction from
natural language (ARSENAL),” SRI International, Menlo Park, CA,
Tech. Rep., 2014.

D. Aceituna, H. Do, and S. Srinivasan, “A systematic approach to

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/security/

[13]

[14]

[15]

[16]

[17]

[18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]

transforming system requirements into model checking specifications,”
in Companion Proceedings of the 36th International Conference on
Software Engineering. ACM, 2014, pp. 165-174.

I. G. Harris, “Extracting design information from natural language
specifications,” in Proceedings of the 49th Annual Design Automation
Conference. ACM, 2012, pp. 1256-1257.

H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Translating struc-
tured English to robot controllers,” Advanced Robotics, vol. 22, no. 12,
2008, pp. 1343-1359.

R. L. Smith, G. S. Avrunin, L. A. Clarke, and L. J. Osterweil, “Propel:
an approach supporting property elucidation,” in Proceedings of the
24th International Conference on Software Engineering. ACM, 2002,
pp. 11-21.

K. Shimizu, “Writing, verifying, and exploiting formal specifications for
hardware designs,” Ph.D. dissertation, PhD thesis, Stanford University,
2002.

D. Zowghi, V. Gervasi, and A. McRae, “Using default reasoning to
discover inconsistencies in natural language requirements,” in Software
Engineering Conference. APSEC 2001. Eighth Asia-Pacific. IEEE, pp.
133-140.

V. Gervasi and D. Zowghi, “Reasoning about inconsistencies in natural
language requirements,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 14, no. 3, 2005, pp. 277-330.

W. Scott, S. Cook, and J. Kasser, “Development and application of
a context-free grammar for requirements,” in SETE 2004: Focussing
on Project Success; Conference Proceedings; 8-10 November 2004.
Systems Engineering Society of Australia, 2004, p. 333.

X. Xiao, A. Paradkar, S. Thummalapenta, and T. Xie, “Automated ex-
traction of security policies from natural-language software documents,”
in Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering. ACM, 2012, p. 12.

Z. Ding, M. Jiang, and J. Palsberg, “From textual use cases to service
component models,” in Proceedings of the 3rd International Workshop
on Principles of Engineering Service-Oriented Systems. ACM, 2011,
pp. 8-14.

C. Rolland and C. Proix, “A natural language approach for requirements
engineering,” in International Conference on Advanced Information
Systems Engineering. Springer, 1992, pp. 257-277.

P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, J. Ouaknine, and
J. Worrell, “Model checking real-time systems,” in Handbook of Model
Checking., E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Eds.
Springer, 2018, pp. 1001-1046.

D. Knorreck, L. Apvrille, and P. de Saqui-Sannes, “TEPE: a sysml lan-
guage for time-constrained property modeling and formal verification,”
ACM SIGSOFT Software Engineering Notes, vol. 36, no. 1, 2011, pp.
1-8.

A. Shrivastava, M. Mehrabian, M. Khayatian, P. Derler, H. A. Andrade,
K. Stanton, Y. Li-Baboud, E. Griffor, M. Weiss, and J. C. Eidson, “A
testbed to verify the timing behavior of cyber-physical systems: Invited,”
in Proceedings of the 54th Annual Design Automation Conference,
DAC 2017, Austin, TX, USA, June 18-22, 2017. ACM, 2017, pp.
69:1-69:6.

J. Peters, N. Przigoda, R. Wille, and R. Drechsler, “Clocks vs. instants
relations: Verifying CCSL time constraints in UML/MARTE models,”
in 2016 ACM/IEEE International Conference on Formal Methods and
Models for System Design, MEMOCODE, Kanpur, India, November
18-20. IEEE, pp. 78-84.

E. Kang, L. Huang, and D. Mu, “Formal verification of energy and
timed requirements for a cooperative automotive system,” in Proceed-
ings of the 33rd Annual ACM Symposium on Applied Computing, SAC
2018, Pau, France, April 09-13, H. M. Haddad, R. L. Wainwright, and
R. Chbeir, Eds. ACM, pp. 1492-1499.

G. Carvalho, A. Cavalcanti, and A. Sampaio, “Modelling timed reactive
systems from natural-language requirements,” Formal Asp. Comput.,
vol. 28, no. 5, 2016, pp. 725-765.

J. Hassine, “Early modeling and validation of timed system require-
ments using timed use case maps,” Requir. Eng., vol. 20, no. 2, 2015,
pp. 181-211.

Y. Zhang, R. Jetley, P. L. Jones, and A. Ray, “Generic safety require-

[31]

107

ments for developing safe insulin pump software,” Journal of diabetes
science and technology, vol. 5, no. 6, 2011, pp. 1403-1419.

G. Behrmann, A. David, and K. G. Larsen, “A tutorial on uppaal,” in
Formal methods for the design of real-time systems. Springer, 2004,
pp. 200-236.

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

