
130

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Threat Analysis using Vulnerability Databases
– Topic Model Analysis using LDA and System Model Description –

Katsuyuki Umezawa
Department of Information Science

Shonan Institute of Technology
Fujisawa, Kanagawa 251–8511, Japan
e-mail: umezawa@info.shonan-it.ac.jp

Yusuke Mishina
Cyber Physical Security Research Center (CPSEC)

National Institute of Advanced Industrial Science and Technology (AIST)
Koto-ku, Tokyo 135–0064, Japan
e-mail: yusuke.mishina@aist.go.jp

Sven Wohlgemuth
Research & Development Group

Hitachi, Ltd.
Yokohama, Kanagawa 244–0817, Japan

e-mail: sven.wohlgemuth.kd@hitachi.com

Kazuo Takaragi
Cyber Physical Security Research Center (CPSEC)

National Institute of Advanced Industrial Science and Technology (AIST)
Koto-ku, Tokyo 135–0064, Japan
e-mail: kazuo.takaragi@aist.go.jp

Abstract—We proposed a threat analysis method utilizing topic
model analysis and vulnerability databases. The method is based
on attack tree analysis. We create an attack tree on a evaluation
target system and some attack trees on a known vulnerability,
and combine the two types of attack trees to create more concrete
attack trees. This enables us to calculate the probability of
occurrence of a safety accident and to utilize attack trees in
future analysis. In this paper, we formulate a topic model analysis
and confirm the feasibility of matching known attack cases to
vulnerability databases using a topic model analysis tool. In
addition, we show that our proposed method can use the results
of past threat analysis for the next one. Moreover, we create a
system model description based on the attack tree of Tesla’s case
created using our proposed method. It shows that fake commands
can be transmitted from the external information system to
the in-vehicle control system. Our approach to automatic threat
analysis supports risk analysis in discovering previous unknown
relationships and so threats including their potential escalation
within an connected IT system.

Keywords–Threat Analysis; Vulnerability Information; Attack
Tree; Topic Model Analysis; System Model Description.

I. INTRODUCTION

We proposed a threat analysis method utilizing topic model
analysis and vulnerability databases [1]. The background of
this proposal is as follows.

Interference and interruption to safety due to security inci-
dents are recognized as a big problem in safety critical systems,
such as those for electric power, information communication,
automobile, aviation, railway, and medical care. For security
of in-vehicle communication in the EVITA project [2], authors
have conducted a risk management process. Specifically, risk
analysis, security requirement setting, architecture design, pro-
totyping, and demonstration was held. The EVITA project uses
attack trees for risk analysis. One way to analyze the causal
relationship between safety (hazard) and security (threat) is
to express that relationship with a combination of a Fault
Tree (FT) and Attack Tree (AT) [3]. The US-based MITRE
Corporation provides several tools for vulnerability reporting
and aggregation in a vulnerability database (DB). In Common
Vulnerabilities and Exposures (CVE) [4], individual software
vulnerabilities are stored in a DB. In Common Weakness
Enumeration (CWE) [5], common vulnerabilities are cata-
loged with a focus on the cause of the vulnerability. Further-

more, Common Attack Pattern Enumeration and Classification
(CAPEC) [6] is a DB classified by attack pattern. Scientific
literature related to safety analysis using FTs is, nowadays, ma-
ture. However, the complexity of the problem has significantly
increased in security analysis. Elaborate attacks occur with
multiple combinations of those vulnerabilities. It is not easy to
create an AT that comprehensively captures such possibilities.

We have focused on such problems and proposed a threat
analysis method using a vulnerability DB as a practical
approach [7][8]. First, we assumed that many attacks were
imitations or minor changes of known attacks. Therefore, we
believed that expressing attack cases that occurred in the past
by using an AT could enable a designer (defender) to become
aware of related attacks (recognize the danger). By gradually
and continuously applying this approach, it can be useful for
reducing vulnerability.

We proposed an algorithm that includes a process for
matching each node of an AT described in natural language
[7][8]. However, the matching method utilized was not speci-
fied. We evaluated the feasibility of this unspecified matching
process using a topic model analysis method. In this paper, in
addition to our study, we add the formulation of our proposed
algorithm, application to examples of a Tesla case [9], the
formulation of a topic model, and the possibility of recognizing
dangers by using the system model description.

In Section II, we summarize the threat analysis method
we proposed in our previous studies [7][8]. In Section III,
we formulate the algorithm shown in Section II. We apply
the proposed algorithm to the Tesla case examples in Section
IV. In Section V, we introduce the topic model analysis. In
Section VI, we verify the feasibility of matching attack cases
to vulnerability DBs and show the result. We describe a
system model description using the attack tree created from
the proposed algorithm in Section VII. Section VIII concludes
this paper by summarizing the key points and providing an
outlook on future activities.

II. THREAT ANALYSIS USING VULNERABILITY
DATABASES

This section presents a summary of our proposed method
[8]. An overview of the threat analysis method using the
vulnerability DB is shown in Figure 1. The proposed threat
analysis method conducts the following three procedures:

131

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Overview of proposed threat analysis method

• Create vulnerability model information.
• Create lower-level component information embedded

in software.
• Perform threat analysis on the basis of design infor-

mation of analysis target system.

A. Creating vulnerability model information
The MITRE Corporation has published several forms of

vulnerability DBs [4]–[6]. However, it is difficult to create an
AT for a concrete target (for example, a connected car) simply
by referring to these DBs, because elaborate attacks occur with
multiple combinations of vulnerabilities. We will create an AT
with a reference to existing attack case literature, reports, etc.
Thus, let the AT be obtained from the existing vulnerability
DB and existing attack report be called the first AT. This
first AT is hierarchically drawn into a top node, a collection
of intermediate nodes and bottom nodes. A single first AT is
created for each vulnerability. A vulnerability DB such as CVE
monotonically increases, so it is not necessary to recreate the
first AT once it has been generated.

B. Proposal of component database
In some configurations of embedded systems, such as those

for automobiles and in general the Internet of Things (IoT), re-
quired lower-level components embedded within the software,
not the software itself, are incorporated. However, a vulnera-
bility DB such as CVE only includes vulnerability information
for software and does not describe information on the lower-
level components embedded within the software. Therefore,

a correspondence table between the software version and the
version for its lower-level components would be beneficial.
This makes it easy to check vulnerability information at the
manufacturing stage of embedded systems such as those in IoT
devices.

Specifically, using Tesla’s browser hacking case as an
example, the “UserAgent” property defined in Tesla’s browser
is “Mozilla / 5.0 (X11; Linux) AppleWebKit / 534.34 (HTML,
like Gecko) QtCarBrowser Safari / 534.34.” In contrast, the re-
lated vulnerability outlined in CVE describes “Google Chrome
before 16.0.912.77”. In this case, Chrome itself is not used, but
the WebKit component built into Chrome is used. Therefore, a
correspondence table indicating the version of the component
built into certain software is required. Table I shows an
example of Google Chrome’s component DB. The method to
create a component DB is outside the scope of this proposal.

TABLE I. Example of Google Chrome’s component DB

Version Release date Layout engine
0.2.149 2008-09-02 WebKit 522
0.3.154 2008-10-29 WebKit 522
0.4.154 2008-11-24 WebKit 525
· · · · · · · · ·

10.0.648 2011-03-08 WebKit 534.16
11.0.696 2011-04-27 WebKit 534.24
12.0.742 2011-06-07 WebKit 534.30
13.0.782 2011-08-02 WebKit 535.1
14.0.835 2011-09-16 WebKit 535.1
· · · · · · · · ·

56.0.2924 2016-12-08 Blink 537.36

132

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Threat analysis algorithm (cited from reference [8])

C. Threat analysis algorithm
This section describes the threat analysis algorithm. It

corresponds to the “Safety & Security Threat Analysis” section
in Figure 1. The algorithm, which is based on the vulnerability
model shown in Section II-A, the component DB shown in
Section II-B, and the design information of the analysis target
system, is as follows:

(1) Create a second AT with the top node as a safety
accident related to the evaluation target system. At this time,
even if the component is not directly included in the evaluation
target system, a component judged to be related by referring
to the component DB is included in the second AT (the black
circle node in Figure 2 (2)). The second AT is hierarchically
depicted using the top node, the multiple intermediate nodes,
and the lowest nodes. Thus, a second AT is created (Figure 2
(2)).

(2) One of the top nodes or intermediate nodes of the
second AT is selected and Natural Language Processing (NLP)
is used to mechanically determine whether there are first ATs
having a natural language expression similar to nodes of the
second AT (Figure 2 (3)). If this is the case, the first AT is
temporarily added to the second AT (Figure 2 (4)). OR gate
is attached to the node of the second AT temporarily, and the
first AT is attached below it. This is done for all nodes of
the second AT. As a result, the second AT is expanded more
after considering the existing vulnerability database, that is,
the entire set of the first AT.

(3) The focus is now on the temporary added nodes
in the expanded second AT. We check whether the added
node is necessary. Specifically, we define a node unrelated
to the component of the second AT (different components or
different versions) as FALSE nodes, and the FALSE node and
the AND gate that is just above the FALSE node are deleted
(Figure 2 (5)).

(4) Repeat steps 1–3 for all the first ATs that are related to
the second AT as described above. After the modification, we
evaluate the occurrence probability of the top node by using
the modified second AT.

Figure 3. Example of AT (quoted from Figure 2, cited from reference [3])

III. FORMULATION OF PROPOSED ALGORITHM

In this section, we formulate the algorithm shown in
Section II-C.

A. Definition

The definition of the attack tree AT according to reference
[3] is shown below. An example of AT is shown in Figure 3.

133

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

G = {gi} : AttackGoals (1)
O = {oi} : Operations (2)
AS = {asi} : Assertions (3)
V = {vi} : V ulnerabilities (4)
R = {ri} : Relationships (5)

Here, an attack goal is the goal of all potential cyber
attacks, and operations represent all the basic actions (reads,
writes, etc.) that can be performed by either the attacker or the
operator of the system. An assertion is a statement (for exam-
ple, ”Web server is not patched”) representing“ conditions to
be verified” in order to take account of the actual branching
of the attack tree. Vulnerability is a known vulnerability.
Relationships are relationships that exist between elements
that make up an attack tree (that is, attack goals, operations,
assertions, vulnerabilities). The attack tree ATk is defined as
follows.

ATk = {gi,Oi,ASi,Vi,Ri} (6)

Here, gi ∈ G,Oi ⊆ O,ASi ⊆ AS,Vi ⊆ V ,Ri is a set
of relationships.

All ATs have one main goal g, and the logic gate output
(upper side) becomes an assertion.

B. Formulation of proposed algorithm
The first attack tree AT 1

k and the second attack tree AT 2

are defined as follows.

AT 1
k = {gk,Ok,ASk,Vk,Rk} (7)

AT 2 = {gj ,Oj ,ASj ,Vj ,Rj} (8)

Next, look for k, which is gj = gk or asl ≈ gk. However,
it is asl ∈ ASj . In addition, look for n and m, which is
asn ≈ asm. However, asn ∈ ASk, asm ∈ ASj .

Here, x ≈ y means “Comparing the descriptions of both
sides with words, it is judged that x and y are close.”

Next, update the second attack tree AT 2 as follows.

AT 2 = { gj ,Oj ∪Ok ∪On,ASj ∪ASk ∪ASn,

Vj ∪ Vk ∪ Vn,Rj ∪Rk ∪Rn\R′} (9)

Here, \ represents the difference set. Also, R′ is R′ =
R′

OR ∪R′
AND. R′

OR is the relationship of the FALSE node,
and R′

AND is the relationship of the upper nodes of the AND
relationship just above the FALSE node. A FALSE node is
o ∈ Ok∪On, as ∈ ASk∪ASn, v ∈ Vk∪Vn that is unrelated
to the components of AT 2 (such as different components and
different versions).

C. Calculation of attack probability
According to the formulation in the previous section, it is

possible to calculate the probability of attack with the follow-
ing formula using the calculation method of the conventional
research [3].

If the inputs to the logic gates are independent, the proba-
bility of the output value from the ith AND gate PoutANDi

and the probability of the output value from the ith OR gate
PoutORi are as follows.

PoutANDi =

n∏
k=1

Pin(k, i) (10)

PoutORi =

n∑
k=1

Pin(k, i) (11)

However, Pin(k, i) is the probability of the input of the kth
input to the ith gate with n inputs (1 ≤ k ≤ n).

In addition, in reference [3], calculation formulas when the
inputs to the logic gates are not independent are also shown.
Furthermore, reference [3] suggests rewriting the operation
node with an AND gate and an assertion in order to obtain
the probability of the top event (attack goal) of the attack
tree. Specifically, replace the operation node with an AND
gate, substitute the description of the original operation as an
assertion, and input it as an input to the AND gate. With
this replacement, the description of the operation disappears
from the attack tree, and the probability of the top event can
be calculated by sequentially calculating the above expression
(10) and expression (11). In addition, reference [8] describes
the application of actual cases of car attacks [9][10].

IV. APPLICATION OF PROPOSED METHOD TO ACTUAL
CASE

In this section, we apply the proposed algorithm to exam-
ples in the Tesla case [9].

A. Creating first AT

First, a first AT is created on the basis of the vulnerability
DB. We must create first ATs for all vulnerabilities. In this
case, we created a first AT for CVE-2011-3928 as shown in
Figure 4.

Figure 4. first AT created from CVE-2011-3928 (cited from reference [8])

134

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. second AT created from Tesla model S case

B. Application to case of Tesla model S

Next, we attempted to create a second AT for the Tesla
model S case [9]. The second AT we created is shown in
Figure 5. The dashed-line area of Figure 5 is the resultant
subtree of combining the second AT with the first AT shown
in Figure 4.

To apply our method to this case, matching of the nodes
shown in gray in Figure 4 and Figure 5 was performed
manually by humans. The next section will outline how this
matching process will be performed automatically using topic
model analysis.

V. TOPIC MODEL ANALYSIS

In this section, we describe latent Dirichlet allocation
(LDA), which is a method of topic model analysis and cosine
similarity.

A. LDA

Topic models are formed under the notion that a document
contains a number of latent topics, with each keyword either
attributing to a certain topic or being generated as a result
of said topic. In topic model analysis, we estimate latent
topics from keywords. One of the analysis methods of topic
models is LDA [12]. This is a language model that assumes
the probability distribution of the topic (parameter θ of the
multinomial distribution) follows the Dirichlet distribution. In
LDA, topics are selected in accordance with the Dirichlet
distribution and words are selected in accordance with the
probability distribution of words for that topic.

B. Formulation of LDA
The LDA can be represented by the graphical model shown

in Figure 6.

Figure 6. Graphical model representation of LDA (cited from reference [12])

Here, d is the number ID of a document, n is the number
ID of a word in a document, and k is the number ID of a topic.
M is the number of documents and N and K are the number
of words and topics in a document, respectively. The number
of words in document d is represented as Nd. The ranges of
d, n, and k are 1 ≤ d ≤ M , 1 ≤ n ≤ Nd, and 1 ≤ k ≤ K,
respectively. wdn represents the nth word of document d. zdn
represents the latent topic of the nth word in the document
d. θdk is the mixing ratio of the latent topic k of document
d. For example, if the number of topics of document d is 3,
the mixing ratios of topics 1, 2, and 3 are 10%, 70%, and
20%, respectively then θd1 = 0.1, θd2 = 0.7, θd3 = 0.2, in
which θd = {0.1, 0.7, 0.2}. α is a hyper parameter related
to the mixing ratio of the latent topic, and β is one related
to the word generation rate. A set of documents is called a

135

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

corpus, and a corpus of M documents is denoted by D =
{w1,w2, · · · ,wM}. We obtain the probability of a corpus as
follows:

p(D|α,β) =

M∏
d=1

∫
p(θd|α)

 Nd∏
n=1

∑
zdn

p(zdn|θd)p(wdn|zdn,β)

 dθd (12)

Here, we can only observe the word wdn. We want to
know from which topic those words were generated. In other
words, when document d is given, we calculate the probability
distribution of θd and z as follows:

p(θ, z|w,α,β) =
p(θ, z,w|α,β)

p(w,α,β)
(13)

The variable Bayes method [12], Markov chain Monte
Carlo (MCMC) [13], Gibbs sampling method [14], which is
one kind of MCMC, etc. are proposed as a method to solve
the above equation.

C. Cosine similarity

We can compute the similarity between document d and d′

by calculating the cosine similarity for θd obtained approxi-
mately by the above LDA method. The cosine similarity can
be expressed by the following equation.

simcos(d, d
′) =

∑K
k=1 θdkθd′k√∑K

k=1 θdk
2
√∑K

k=1 θd′k
2

(14)

D. Topic model analysis tool

The National Institute of Advanced Industrial Science
and Technology (AIST) has developed a security requirement
analysis support tool using topic model analysis technology
including LDA [15]. We preliminarily used this tool to verify
whether the vast number of vulnerabilities CVE [4] listed in
the order of discovery can be organized into a hierarchical
structure by topic model analysis. Figure 7 shows the result
of using 1500 cases from CVE-2011-3001 to CVE-2011-4500
after translating it to Japanese using Google Translate [16].
As shown in Figure 7, we see that similar vulnerabilities are
classified near the hierarchical structure. Figure 7 is written in
Japanese, the boxes in CVE-2011-3017 to CVE2011-3077 are
described as “Use-after-free vulnerability in Google Chrome
before xx.0.xxx.xx allows remote attackers to cause ... or
possibly have unspecified other impact ...”.

VI. MATCHING ATTACK CASES TO VULNERABILITY
DATABASE

In this section, we describe the method and results of ex-
periments that match attack cases and vulnerability databases.

Figure 7. Example segment of vulnerability DB CVE hierarchy

A. Outline explanation
As mentioned in Section II-C(2), we used NLP when

matching and connecting the first AT and the second AT
nodes. We verified the feasibility of this matching process.

We have investigated on various reports to find vulnera-
bilities that should be related in the second AT of the target
system. However, depending on the report, the procedure of
attack is shown but the concrete CVE number is not speci-
fied. Even in such a case, we can extract the corresponding
CVE number from the attack description described in natural
language.

To achieve this, we must find a node of the second AT
that conceivably matches the description in CVE. However,
a mechanical word matching process will probably not lead
to a correct result as it is dependent on the words used to
describe sentences. The context or meaning of the known at-
tack description in each report should be thoroughly examined.
Therefore, we have focused on the sentences of existing papers.
Specifically, we have focused on the actual case of a car attack
[9]. The process flow is as follows.

We translated the paper [9] into Japanese by using Google
Translate because the tool we used only corresponded to
Japanese. An advantage of utilizing such a translation is that
it can prevent notation fluctuation of terms. The impact of
Google translation will be discussed in the appendix. Since
the section on BROWSER HACKING is long and its content
is related to two vulnerabilities, it was divided into two. The
vulnerabilities in question were CVE-2011-3928 and CVE-
2013-6282. CVE-2011-3928 is described in the section on
BROWSER HACKING, and CVE-2013-6282 is described in

136

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Matching attack cases to vulnerability DBs

the section on LOCAL PRIVILEGE ESCALATION. If “CVE-
2011-3928” or “CVE-2013-6282” is included as a keyword,
it may be detected by keyword matching, so the keywords
“CVE-2011-3928” and “CVE-2013-6282” were deleted from
BROWSER HACKING and LOCAL PRIVILEGE ESCALA-
TION, respectively.

However, regarding BROWSER HACKING, there is a
problem of component inclusion relationship stated in Section
II-B, and the keyword “Google Chrome” is added to the
sentences in which WebKit is described. This is considered to
be equivalent to referring to the component DB of the proposed
method. Since the topic analysis tool used has an upper limit on
the number of items to be handled, it was not possible to cover
all CVEs, so we targeted 500 items before and after including
the target vulnerability. The limitation of 500 items is not a
constraint of the topic model analysis, but an implementation
limitation of the tools we used.

We specifically targeted CVEs from CVE-2011-3501 to
CVE-2011-4000 including CVE-2011-3928 and those from
CVE-2013-6001 to CVE-2013-6500 including CVE-2013-
6282. For each section of the paper and each CVE vulnerabil-
ity, similar sentences were evaluated by topic model analysis.
The keyword extraction method was known as “noun and
Kana”, the feature quantity extraction method was “LDA”, and
the sentence similarity “Cosine” option was used.

B. Analysis result
The result of matching each section of the paper to each

CVE vulnerability is shown in Figure 8. Figure 9 shows the

enlarged view of BROWSER HACKING section of Figure
8, and Figure 10 shows enlarged view of the description of
“CVE-2011-3928” in Figure 8. When we click on a sentence
in the left pane, this tool will highlight similar sentences in
the right pane. The solid lined area in the left pane is the
BROWSER HACKING section with the keyword “CVE-2011-
3928” deleted. When clicking on this area, the dashed lined
area, which is the description of CVE-2011-3928 in the right
pane, is highlighted and is judged to be similar. The number
of items that included the appropriate CVE from the original
500 was filtered down to 22. It can be said that the smaller
the number, the better. Regarding CVE-2013-6282, a similar
result was obtained by matching the information of LOCAL
PRIVILEGE ESCALATION with that of CVE, in this case 23
out of the 500.

C. Consideration of topic model analysis
In this research, we used a topic model, which treats a

document as a set of words, and replaces distances between
different documents with distances between different “sets of
words” to measure proximity. Topic model analysis is one of
the so-called AI methods that enables high-speed processing
of big data and excels in clarifying the reason for the results.
For example, the number of pages in the Tesla attack case
paper [9], IRB 140 industrial robot attack case paper [11],
and Jeep Cherokee attack cases paper [10] are 16, 48, and
91, respectively. Manually analyzing such a large amount of
materials requires a great, if not greater, amount of work,
placing a heavy burden one those doing it. Furthermore,

137

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. Enlarged view of BROWSER HACKING section shown in Figure 8

Figure 10. Enlarged view of “CVE-2011-3928” description shown in Figure 8

considering that the number of attack papers will increase in
the future, the proposed method of processing attack papers
automatically with a topic model is significant.

VII. SYSTEM MODEL DESCRIPTION

In this section, we create a system model description using
the second attack tree shown in Figure 5 created using the
proposed algorithm. This shows that we can recognize the
dangers of related attacks using the description. We analyze
the input and output of messages in the nodes directly under
the attack goal node “Attacker takes remote control of Tesla
Model S” in Figure 5 using the system model description. As a
result, we achieve transparency in escalation of fake commands
from an external information system to the in-vehicle control
system.

A. Date flow diagram
A system model description of Tesla’s threat analysis

target system is shown in Figure 11, which is the description
result of the data flow diagram used for safety verification.
The system to be analyzed consists of four hardware blocks,
five software function modules, an operating system (OS),
Web browser, Web server (WS), and various networks. The
electronic control unit (ECU), communication gateway (GW),
and center information display (CID) of the hardware block
are installed inside the vehicle. The CID of the vehicle is
connected to the WS over the Internet via Wi-Fi.

First, the in-vehicle control system will be described.
The CID executes the vehicle information display function
module, which inputs an instruction from the driver and creates
a corresponding vehicle control command (for example, a
command for monitoring the operating state of the engine, a
command for unlocking the door, etc.) to the GW. The vehicle
communication control function module of the GW converts
the received command into an ECU command and transmits

it to the ECU via the CAN bus. The vehicle control function
module of the ECU activates the control logic inside the unit
corresponding to the received ECU command and executes the
vehicle control instructed by the driver.

Next, the external information system will be described.
The Web information display function module of the CID
inputs a driver’s instruction, creates a necessary Web page
request command (for example, a GET command of the HTTP
protocol), and transmits it to the WS via Wi-Fi. The Web server
function module of the WS searches the corresponding Web
page in accordance with the received command and returns
the search result (for example, HTML content or JavaScript
code).

At this stage, a safety analysis is carried out assuming
that there is no vulnerability. Figure 11 shows that the in-
vehicle control system and the external information system
are separate systems, and there is no interference with each
other.

B. Add vulnerability
Figure 12 expands the data flow diagram shown in Figure

11 to include the possibility of attack by adding Input / Output
by vulnerability attributes as depicted by the gray boxes and
dotted arrows.

As shown in Figure 5, the CID vulnerability is established
by satisfying three conditions: “CID gets malicious JavaScript
page from fake WS,” “Browser processes malicious JavaScript
page and executes arbitrary code generating unauthorized
ECU command,” and “Browser gets privilege escalation and
sends unauthorized ECU command.” The first condition is
established by “CID has hard-coded SSID and password.” The
second condition applies to both “Browser has UAF (Use-
after-free) Vulnerability in DOM handling” and “Apple WebKit
before 535.7.” The third condition is established by “Linux has
Kernel API vulnerability (CVE-2013-6282).”

138

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. System model description

At this stage, as shown in Figure 12, it is possible to create
a data flow diagram with attributes of these vulnerabilities
added. Safety analysis is performed on this new data flow
diagram. As a result, it became clear that fake commands can
be transmitted from the external information system to the in-
vehicle control system. With a fake command, it is possible
to open and close the door of a running vehicle, and so on,
demonstrating that a vehicle can be in danger.

VIII. CONCLUSION

In this paper, we propose a threat analysis method using
topic model analysis and vulnerability DBs. We confirmed the
feasibility of matching known attack cases to vulnerability DBs
using a topic model analysis tool. Moreover, we showed that
our proposed method can use the results of past threat analysis
for the next threat analysis. In addition, we created a system
model description based on the attack tree of Tesla’s case
created using the proposed method. We achieve transparency
in escalation of fake commands from an external information
system to the in-vehicle control system. We have shown by
the results of our work, that our approach to automatic threat
analysis support risk analysis in discovering previous unknown
relationships and so threats including their potential escalation
with an connected IT system.

However, this approach does not guarantee discovery and
prevention of new sophisticated attacks that are completely
different from those that occurred in the past. To detect
previously unknown critical vulnerabilities, it is necessary to
apply this method to advanced security engineering by artificial
intelligence that utilize vulnerability DBs and system design
information and evaluate it in actual cases.

ACKNOWLEDGMENT

Sven Wohlgemuth’s contribution to this work is based on
his research at Albert-Ludwig University, Freiburg, Germany,
and other organizations before he joined Hitachi, Ltd. in
February 2017. This work was supported by the Cabinet
Office (CAO), Cross-ministerial Strategic Innovation Promo-
tion Program (SIP), “Cybersecurity for Critical Infrastructure”
(funding agency: NEDO).

REFERENCES

[1] K. Umezawa, Y. Mishina, S. Wohlgemuth, and K. Takaragi, “Threat
Analysis using Vulnerability Databases – Matching Attack Cases and
Vulnerability Database by Topic Model Analysis –,” Proceeding of
the Third International Conference on Cyber-Technologies and Cyber-
Systems (CYBER 2018), pp. 74-77, Nov. 2018.

[2] A. Ruddle et al., “Deliverable D2.3: Security requirements for automo-
tive on-board networks based on dark-side scenarios,” Seventh Research
Framework Programme of the European Community, July 2008, pp. 1–
138.

[3] I. N. Fovino, M. Masera, and A. D. Cian, “Integrating cyber attacks
within fault trees,” Reliability Engineering and System Safety 94, 2009,
pp. 1394–1402.

[4] MITRE Corporation, “CVE - Common Vulnerability and Exposure,”
https://cve.mitre.org/ [retrieved: May, 2019]

[5] MITRE Corporation, “CWE List - Common Weakness Enumeration,”
https://cwe.mitre.org/data/ [retrieved: May, 2019]

[6] MITRE Corporation, “CAPEC - Common Attack Pattern Enumeration
and Classification,” https://capec.mitre.org/ [retrieved: May, 2019]

[7] K. Umezawa, Y. Mishina, K. Taguchi, and K. Takaragi, “A Proposal
of Threat Analyses using Vulnerability Databases,” Proceeding of the
Symposium on Cryptography and Information Security (SCIS2018),
1C2-6, January 2018, pp. 1–8.

139

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. System model description with vulnerabilities

[8] Y. Mishina, K. Takaragi, and K. Umezawa “A Proposal of Threat
Analyses for Cyber-Physical System using Vulnerability Databases,”
2018 IEEE International Symposium on Technologies for Homeland
Security (IEEE HST), October 2018.

[9] S. Nie, L. Liu, and Y. Du, “Free-Fall: Hacking Tesla from Wireless to
Can Bus,” Briefing, Black Hat USA 2017, July 2017. pp. 1–16.

[10] C. Miller and C. Valasek, “Remote Exploitation of an Unaltered
Passenger Vehicle,” Briefing, Black Hat USA 2015, pp. 1–91.

[11] D. Quarta, M. Pogliani, M. Polino, A.M. Zanchettin, and S. Zaner,
“Rogue Robots: Testing the Limits of an Industrial Robot’s Security,”
Briefing, Black Hat USA 2017, July 2017.

[12] D. Blei, A. Ng, and M. Jordan, “Latent Dirichlet Allocation,” Journal
of Machine Learning Research, 2003, pp. 1107–1135.

[13] T. L. Griffiths and M. Steyvers, “Finding scientific topics,” Proceedings
of the National Academy of Science, 2004, pp. 5228-5235.

[14] Y. W. Teh, D. Newman, and M. Welling, “A Collapsed Variational
Bayesian Inference Algorithm for Latent Dirichlet Allocation,” Pro-
ceedings of Advances in Neural Information Processing Systems 19,
NIPS ’07, Cambridge, MA, pp. 1353–1360, 2007.

[15] K. Handa, H. Ohsaki, and I. Takeuti, “Security Requirements Analysis
Supporting Tool: TACT,” Information Processing Society of Japan
(IPSJ) SIG Software Engineering (SIGSE), Proceeding of the Winter
Workshop 2017. pp. 5–6.

[16] Y. Wu et al. “Google’s Neural Machine Translation System: Bridging
the Gap between Human and Machine Translation,” arXiv:1609.08144,
2016. pp. 1–23.

[17] G. Biggs, T. Sakamoto, and T. Kotoku, “A profile and tool for modelling

safety information with design information in SysML,” Software &
Systems Modeling 15, 1 (Jan 2016), pp. 147–178.

APPENDIX

As shown in Section VI, we translate English documents
into Japanese by Google translator for tool constraints before
analyzing. This section examines the effect of this translation.

Figures 13 and 15 show the descriptions from Figures 9
and 10 translated back into English using Google Translate,
respectively. Figures 14 and 16 show the original English
descriptions.

The word underlined is the one of attention by the analysis
tool. The topic model analysis assumes a model ignoring the
order of words and relations between words. Therefore, it is
considered that the difference in the order of the Japanese and
English words does not affect the analysis result. Also, when
comparing Figure 13 and 14, only a few words that are similar
in meaning with double underline (such as “established” and
“founded”, “occur” and “triggered”) were different. We can
see that most other words are being retranslated to the same
word. In other words, it can be said that there is almost no
mixing of errors due to translation.

140

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. Description re-translated Figure 9 into English

Figure 14. Original description before translating Figure 9

Figure 15. Description re-translated Figure 10 into English

Figure 16. Original description before translating Figure 10

