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Abstract—This paper investigates the security of human-computer
interaction via a speech interface. The use of speech interfaces
for human-computer interaction is becoming more widespread,
particularly in the form of voice-controlled digital assistants.
We argue that this development represents new security vul-
nerabilities, which have yet to be comprehensively investigated
and addressed. This paper presents a comprehensive review of
prior and related work in this area to date. Based on this
review, we propose a high level taxonomy of attacks via the
speech interface. Our taxonomy systematises prior work on the
security of voice-controlled digital assistants, and identifies new
categories of potential attacks, which have yet to be investigated
and thus represent a focus for future research. The attack surface
presented by the speech interface comprises not only the voice-
controlled device itself, but the entire process of human-computer
interaction including the human user. In accordance with this, our
taxonomy categorises attacks via the speech interface according
to human perceptions of the attacks, whilst also aligning the
categories of the taxonomy to vulnerabilities in various parts
of the architecture of voice-controlled systems. This paper is an
extended version of a previous paper in which our taxonomy of
attacks via the speech interface was first presented.
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I. INTRODUCTION

The introduction of a speech interface represents a potential
expansion of a system’s attack surface. With regard to voice-
controlled digital assistants, there are clearly serious security
concerns arising from an increasingly pervasive presence of
such agents. This paper presents a comprehensive overview
of the types of attacks that might be targeted at voice-
controlled systems, and categorises these attacks in a high-level
taxonomy. This paper is an extended version of a previous
paper in which our taxonomy was first presented (Bispham et
al. [1]).

Voice-controlled digital assistants are being used to per-
form an increasing range of tasks, including Web searching
and question answering, diary management, sending emails,
and posting to social media. Such ‘assistants’ are intended
to act as brokers between users and the vastly complex,
often intimidating cyber world. Their functionalities are being
expanded from personal to business use [2]. Sarikaya [3] refers
to personal digital assistants as a “metalayer of intelligence”
between the user and various different services and actions.
With the advent of assistants such as Amazon’s Alexa that
can be used to control smart home devices, control of systems
via a speech interface has extended beyond purely virtual
environments to include also cyber-physical systems. Pogue
[4] describes voice control as a “breakthrough in convenience”
for the Internet of Things. Speech interfaces may eventually
be used in time-sensitive and even life-critical contexts, such
as hospitals, transport and the military [S] [6]. There is some

speculation that communication with computers via natural
language represents the next major development in computing
technology [7].

Notwithstanding its potential benefits, security concerns
associated with such a development have yet to be compre-
hensively addressed. There has been a considerable amount
of debate on the threat to privacy from ‘listening’ devices,
highlighted perhaps most dramatically in a recent request for
speech data from Amazon’s Alexa as a ‘witness’ in a murder
inquiry [8]. By comparison, the security issues associated
with voice-controlled assistants have to date received relatively
little attention. Such security issues are however significant. A
speech interface potentially enables an attacker to gain access
to a victim’s system without needing to obtain physical or
internet access to their device. Thus, the human-like digital
personas intended to give users a sense of familiarity and
control in interactions with their systems may in reality be
exposing users to additional risks. Internet security company
AVG pointed out in 2014 the danger of the speech interface
being exploited as a new attack surface, demonstrating how
smart TVs and voice assistants might respond to synthesised
speech commands crafted by an attacker as well as to their
users’ voices [9]. The reality of this possibility was recently
illustrated by a TV advertisement that contained spoken com-
mands for activation of Google Home on listeners’ phones
for product promotion purposes. The advert was criticised
as a potential violation of computer misuse legislation in
gaining unauthorised access to listeners’ systems [10]. Another
example was an instance in which it was shown to be possible
to open a house door from the outside by shouting a command
to digital assistant Siri (as discussed by Hoy [11]).

This paper provides a review of the research that has been
done to date on attacks via the speech interface, and identifies
the gaps in this prior work. Based on this review, we propose
a new taxonomy of attacks via the speech interface, and make
suggestions for further work. The scope of this taxonomy is
limited to attacks that gain unauthorised access to a system
by sound. It is possible to attack a voice-controlled system
other than by sound - in a security analysis of Amazon’s
Echo, for example, Haack et al. [12] identify three means of
attack on such systems. In addition to sound-based attacks,
the paper identifies network attacks (e.g., sniffing of speech
data in transmission between an individual user’s device and a
provider’s servers) and API-based attacks (which might involve
hacking a voice-controlled assistant’s API, e.g., to change the
default wake-up word). However, such attacks not based on
sound are not within scope of the taxonomy presented here.

The remainder of the paper is structured as follows. Section
II provides general background on human-computer interaction
by speech with reference to the current generation of voice-
controlled digital assistants. Section III contains a review of
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prior work relevant to the security of voice-controlled digital
assistants, as well as of some indirectly relevant work in related
areas of research. This section also includes some speculation
on the potential for attacks via the speech interface that are
not possible on current commercial systems, but may become
possible in future based on current trends in research on
speech dialogue systems. Section IV proposes a new high-
level taxonomy of attacks via the speech interface, including
attacks that have been demonstrated in prior work as well as
attacks that may be possible in the future. Section V concludes
the paper and contains some suggestions for future research.

II. BACKGROUND ON VOICE-CONTROLLED SYSTEMS

Speech interfaces that facilitate the execution of particular
actions in response to voice commands are referred to as ‘task-
based’ speech dialogue systems, as distinct from ‘chatbots’,
whose purpose is simply to hold a conversation with the user
without executing any actions. Current task-based dialogue
systems have some similarity with chatbots in that they are
often anthropomorphosised, with systems being given the
persona of a friendly digital assistant in order to create a sense
of communication with a human-like conversation partner. The
first voice-controlled digital assistant to be released commer-
cially was Apple’s Siri in 2011. Siri was based on an earlier
system named Cognitive Assistant that Learns and Organizes
(CALO), which had been developed with US defence funding.
Siri was followed by the release of Amazon’s Alexa in 2014,
Microsoft’s Cortana in 2015, and most recently in 2016 by
Google Assistant [13].

Input to a speech dialogue system is provided by a micro-
phone that captures speech sounds and converts these from
analog to digital form. Bellegarda and Monz [14] describe
the task of the speech recognition component as the task
of extracting from a set of acoustic features the words that
generated them, and the task of the natural language under-
standing component as the task of extracting from a string of
words a semantic representation of the user intent behind them.
The paper by Bellegarda and Monz conceptualises the process
of a user’s communication of intent to a speech dialogue
system as information transmission across a noisy channel,
whereby the user first formulates their intent in words and
then vocalises these words as speech, and the dialogue system
subsequently extracts from the user’s speech the words that
generated the speech and then extracts from the words a
semantic representation of the intent that generated them. This
process is illustrated in the diagram in Figure 1, copied from
Bellegarda and Monz’s paper.

The typical architecture of a generic speech dialogue
system consists of components for speech recognition, natural
language understanding, dialogue management, response gen-
eration and speech synthesis (see Lison and Meena [15]). In
current systems, the speech recognition and natural language
understanding components are the components most likely to
be targeted in an attack via the speech interface. As explained
further below, in current systems the dialogue management
and subsequent components are fully controlled by input from
the speech recognition and natural language understanding
components, and can therefore not be targeted directly.

Speech recognition is typically performed using Hidden
Markov Models (HMMs). HMMs calculate the most likely
word sequence for a segment of speech according to Bayes’
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rule as the product of the likelihood of acoustic features present
in the speech segment and the probability of the occurrence of
particular words in the sentence context (see for example Juang
and Rabiner [16]). HMM-based systems for speech recognition
originally used Gaussian Mixture Models (GMMs) for the
acoustic modelling and n-grams for the language modelling. In
recent years, a shift in modelling methods has been seen with
the advent of deep learning. Huang et al. [17] describe recent
developments in which Deep Neural Networks (DNNs) have
replaced GMMs to extract acoustic model probabilities, and
Recurrent Neural Networks (RNNs), a particular type of DNN,
have replaced n-grams to extract language model probabilities.
Speech recognition technology has become quite advanced. In
2016, Microsoft Research reported that its automatic speech
recognition capability had for the first time matched the
performance of professional human transcriptionists, achieving
a word error rate of 5.9 per cent on the Switchboard dataset
of conversational speech produced by the National Institute of
Standards and Technology (NIST) in the US (see Xiong et al.
[18]).

Natural language understanding in the context of a voice-
controlled system is the task of extracting from a user’s request
a computational representation of its meaning that can be used
by the system to trigger an action. The task of mapping a string
of words to a representation of their meaning is known as
semantic parsing. Liang [19] gives as an example of semantic
parsing the instance where a request to cancel a meeting is
mapped to a logical form that can be executed by a calendar
APIL. The process of semantic parsing may include syntactic
analysis as an intermediate step. Methods of syntactic analysis
used in voice-controlled systems include dependency parsing,
which is the task of determining syntactic relationships within
a sentence, such as verb-object connections (see for exam-
ple McTear [20]). Current speech dialogue systems typically
use semantic representations known as semantic frames (see
Sarikaya et al. [21]). Semantic frames provide a structure for
representing the meaning of utterances that requires firstly
identification of the general domain or concept that a user
request relates to (such as travel), secondly determination of
the user intent (such as to book a flight), and thirdly slot-filling,
which involves identifying specific information relevant to the
particular request (such as destination city). Sarikaya [3] states
that the tasks of domain identification and intent determination
in semantic parsing to frames are often performed using
support vector machines, whereas slot-fitting is commonly
performed using Conditional Random Fields (CRFs). Some
recent research has indicated that traditional machine learning
methods are now being out-performed in the semantic parsing
task for spoken dialogue systems by neural networks, similar
to the replacement of n-gram-based systems for language
modelling in speech recognition by RNNs. Mesnil et al. [22],
for example, present results showing superior performance by
RNNSs on the slot-filling task for the Air Travel Information
System (ATIS) dataset in comparison to the performance of
CRFs on the same task. Despite such efforts, it is clear that,
unlike in the case of speech recognition, the state-of-the-art in
natural language understanding remains far from parity with
human capabilities. This is evident in the occasional failure of
voice assistants to correctly interpret the meaning of a word
in context, despite the correct word or meaning being obvious
to any human listener. Stolk et al. [23] give the examples of
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Figure 1. An example of integrated speech and language processing: personal assistance seen as information transmission across a noisy
channel [14]

Apple’s assistant Siri mistaking the word ‘bank’ in the sense
of ‘river bank’ for a financial institution, and of Siri giving
directions to a casino when asked about a gambling problem.

Dialogue management is the task of determining the most
appropriate action that should be taken in response to a user’s
request. The dialogue management component then instructs
the response generation and (in the case that a verbal action
is required) speech synthesis components of system to take
the necessary action. Sarikaya [3] states that the dialogue
management task in personal digital assistants is far more
challenging than in older speech recognition systems. Older
speech recognition systems were commonly limited to one
general purpose, such as providing travel information. Digital
assistants, by contrast, are designed to perform a large number
of tasks, including providing information on many different
topics, connecting with web applications to fulfil a variety of
user requests, and controlling devices in the Internet of Things.
Sarikaya describes the structure of a dialogue manager in a
digital assistant as consisting of a dialogue state tracker, which
updates the ‘state’ of the dialogue based on the representation
of user intent generated by the natural language understanding
module, and a dialogue policy that controls the execution of
tasks in response to the user request.

The dialogue management component in current speech
dialogue systems is on the whole still rule-based, i.e., it maps
user intent to dialogue states and dialogue states to actions
based on hand-crafted rules, as stated by McTear [20]. The
dialogue management capabilities in current systems are thus
fully dependent on input from the speech recognition and nat-
ural language understanding components and do not therefore
represent a separate point of attack. Rule-based dialogue man-
agement systems have the advantage of limiting the potential
for error and unintended functionality in the dialogue manage-
ment process (see McTear [24]). However, such systems are
also likely to be lacking in flexibility and limited in scope.
There has been some research on the eventual replacement
of current rule-based systems by more sophisticated dialogue
management systems based on reinforcement learning, which
would enable voice assistants to learn directly from their
interactions with users. Young et al. [25] propose ideas for
dialogue management based on Partially Observable Markov
Decision Processes (POMDPs), which model a dialogue as a
Markov process with transition probabilities between states,
for which a probability distribution over all possible states
is continuously maintained. This approach seeks to represent
the uncertainty inherent in the fact that a user’s intent is not
directly observable, but rather inferred probabilistically from
their utterance. Systems based on POMDPs combine Bayesian

inference for belief state tracking to determine the most
likely interpretation of a user’s utterances with reinforcement
learning for optimisation of the dialogue policy, whereby a
reward function is used to train the system as to the most
appropriate action to take in response to a user utterance based
on user feedback.

Modern voice-controlled digital assistants implement the
generic components of speech dialogue systems in the context
of a cloud-based service that enables users to interact by voice
with smartphones and laptop/desktop computers, as well as to
control smart home devices by voice using bespoke hardware.
The speech recognition and natural language understanding
functionalities of these systems are performed in the provider’s
cloud. Chung et al. [26] provide an overview of the typical
ecosystem of modern voice-controlled digital assistants in the
example of Amazon’s Alexa (see Figure 2).

In order to control streaming of audio data to the cloud,
current voice-controlled digital assistants include, in addition
to the generic speech dialogue system components, an activa-
tion component consisting of a wake-up word, which, when
spoken by the user, triggers streaming of the subsequent speech
audio data to the provider’s cloud for processing. Examples
of wake-up words include ‘Ok Google’ for Google Assistant
and ‘Alexa’ for Amazon’s Alexa. Wake-up word recognition
is the only speech processing capability on users’ individual
devices, and consists of a short ‘buffer’ of audio data from
the device’s environment that is continuously recorded and
deleted [27]. Wake-up word activation can be triggered by false
positives. Chung et al. [28], for example, refer anecdotally
to accidental activation of the Alexa assistant by a sentence
containing the phrase ‘a Lexus’ (see also Michaely et al.
[29]), and Vaidya et al. [30] refer to the misrecognition of the
phrase “Cocaine Noodles” as “OK Google”. False positives
in wake-up word recognition may result from misrecognition
of a word as the wake-up word, as in the example given by
Chung et al., or else from use of a wake-up word in the
context of speech not intended to activate a voice assistant,
for example the use of the word °‘Alexa’ as the name of a
person in a conversation. Ké&puska and Bohouta [31] discuss
the latter problem of distinguishing between an ‘alerting’ and
a ‘referential’ context in wake-up word recognition. It is also
possible for voice assistants to be activated by background
noise that has frequencies overlapping with those of human
speech (see Islam et al. [32]). The vulnerability of wake-up
word recognition to false positives was demonstrated in an
incident in which an Amazon Alexa device misinterpreted a
word spoken in a private conversation as the wake-up word
‘Alexa’, and subsequently misinterpreted other words in the
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Figure 2. Amazon Alexa Ecosystem [26]

conversation as commands to send a message to a contact,
resulting in a recording of a couple’s private conversation in
their home being sent to a colleague [33].

The current generation of voice-controlled digital assis-
tants have also introduced platforms for the development of
third-party voice applications that can be incorporated in the
provider’s cloud and made available to users via the assistant’s
speech interface. Examples of such third-party applications
are Alexa Skills and Google Conversation Actions. Third-
party applications in systems such as Google Assistant can
be accessed by users by asking to ‘speak’ to the voice app
(as named by the developer) [34]. Such apps can be used for
example to enable users to access information services or to
purchase products.

III. ATTACKS VIA THE SPEECH INTERFACE IN PRIOR AND
RELATED WORK

There has been a limited amount of prior work on the
security of speech interfaces and voice-controlled digital assis-
tants, as well as some prior work in related areas of research.
A review of prior work relevant to attacks on the current
generation of voice-controlled digital assistants is presented,
and summarised in Table I. Our review further includes some
speculation on attacks that are not possible in relation to
the current generation of voice-controlled systems, but that
may become possible in the future based on current research
trends. The review is concerned with sound-based attacks only,
whilst recognising that attacks by sound are only a subset
of the potential attacks that might be targeted at a voice-
controlled digital assistant. The review does not analyse the
specific aims of the attacks described in prior work beyond the
general goal of gaining unauthorized access to a system via
a speech interface. Our review of attacks in prior and related
work is organised according the mechanism of attack that they
relate to. These mechanisms are plain speech, inaudible sound
injection, adversarial learning, and active attack.

A. Plain Speech

Several researchers have investigated the ways in which
voice-controlled digital assistants might be exploited simply

by using standard voice commands. This possibility arises
out of the inherently open nature of natural speech. Such
potential vulnerabilities associated with speech-controlled sys-
tems have been highlighted for example by Dhanjani [35],
who describes a security vulnerability identified in Windows
Vista that allowed an attacker to delete files on a victim’s
computer by playing an audio file hosted on a malicious
website or sent to the victim as an email attachment. Dhanjani
speculates that the potential for such attacks is magnified with
the increasing use of speech recognition technology in the
Internet of Things. He postulates a hypothetical attack on
Amazon’s Echo, a device designed to be used for voice control
of home appliances via digital assistant ‘Alexa’, which would
potentially cause psychological or physical harm to the victim
by controlling their smart home environment. This hypothetical
attack involves a piece of malware consisting of JavaScript
code that plays an audio file giving a command to Alexa if
there has been no user activity on the mouse or keyboard after
a certain period of time (thus aiming to play the file at a time
when the user may be away from their computer and therefore
will not hear the audio command being played). Diao et al.
[36] investigate possibilities for gaining unauthorised access
to a smartphone via a malicious Android app that uses the
smartphone’s own speakers to play an audio file containing
voice commands. The attacks proposed by the authors include
an attack in which the smartphone is manipulated to dial a
phone number that connects to a recording device, and then to
disclose information, such as the victim’s calendar schedule,
by synthesised speech that is recorded by the device. Diao et al.
envisage such attacks being executed whilst the victim is asleep
and therefore unable to hear the malicious voice command.
Such an attack might in fact be executed whilst the victim is
neither away from their phone or asleep, but their attention is
merely directed elsewhere.

B. Inaudible Sound Injection

Kasmi and Esteves describe a different type of attack
in which voice commands are transmitted silently to a vic-
tim’s phone via electromagnetic interference using the phone’s
headphones as an antenna [37]. Unlike plain speech attacks,
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this attack is not detectable even if the victim is consciously
present at the time of the attack, although for technical reasons
the attack can only be performed if the attacker is in close
proximity to the victim’s device. The attacks using this mech-
anism envisaged by Kasmi and Esteves include controlling
transmissions from a smartphone by activating or deactivating
Wifi, Bluetooth, or airplane mode, and browsing to a malicious
website to effect drive-by-download of malware. Young et al.
[38] also describe a ‘silent’ attack on smartphones via the
voice command interface that enables an attacker to perform
actions such as calling fee-paying phone numbers, posting to
Facebook in the victim’s name to damage their reputation,
accessing email messages, and changing website passwords
from the victim’s phone. The attack requires a short period of
time during which an attacker has unsupervised physical access
to the phone in order to attach a Raspberry Pi-based tool that
is recognised by the phone as headphones with a microphone.
Zhang et al. [39] and Song and Mittal [40] present methods for
injecting voice commands to voice-controlled digital assistants
at inaudible frequencies by exploiting non-linearities in the
processing of sounds by current microphone technology, which
can lead voice-controlled systems to detect a command as
having been issued within the human audible frequency range,
despite the sound not having been perceptible to humans in
reality. Silent attacks such as these target the ‘voice capture’
stage of voice control, i.e., the process of conversion of speech
sounds by the microphone from analog to digital form prior
to speech recognition.

C. Adversarial Learning

There has also been some prior work towards using adver-
sarial machine learning in attacks on voice-controlled digital
assistants. Adversarial learning can be broadly defined as a pro-
cess of identifying unexpected input that a machine learning-
based system classifies in a way that a human would regard as
erroneous. This is done by some form of systematic exploration
of the system’s input space, with the aim of discovering
‘adversarial examples’ within that space that an attacker can
exploit to their advantage. Some adversarial machine learning
methods involve manipulating inputs based on knowledge of
calculations within the classifier (such ‘white-box’ methods
include approaches such as the Fast Gradient Sign Method
and the Jacobian-based Saliency Map Approach for altering
input to a DNN, as described for example in Goodfellow et
al. [41]). Other methods seek to manipulate input on a ‘black-
box’ basis, i.e., without knowledge of the inner workings of a
target system. McDaniel et al. [42] explain that processes of
adversarial machine learning rely on identifying ‘adversarial
regions’ in a classification category that have not been covered
by training examples. The exact reasons for the effectiveness
of particular adversarial examples are difficult to determine,
as the decision-making process in a neural network cannot
be precisely reverse-engineered (see for example Castelvecchi
[43]). In this sense, whilst some adversarial learning methods
require more knowledge of the target network than others, all
attacks on DNN-based systems are of necessity ‘black-box’
attacks, although attacks requiring detailed knowledge of the
system’s functionality are referred to here as white-box in order
to distinguish them from attacks not requiring such detailed
knowledge.

Adversarial learning to attack DNN-based systems was first
demonstrated in image classification (see for example Szegedy
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et al. [44]), but has recently also been applied to speech
recognition. One example is the work presented by Vaidya
et al. [30], who used audio mangling to distort commands
issued to the precursor to Google Assistant, Google Now (this
‘mangling’ involved reverse MFCC, where MFCC features
extracted from a speech sound were used to generate a man-
gled version of the sound). The mangled commands included
commands to open a malicious website, make a phone-call
and send a text, in addition to the Google Now wake-up
command ‘Ok Google’. The work showed that the distorted
commands continued to be recognised by the speech recogni-
tion system despite being no longer recognisable by humans,
who perceived them instead as mere noise. Thus, the distorted
commands represented adversarial examples for the target
system. The work by Vaidya et al. was expanded by Carlini et
al. [45], who also proved the possibility of prompting Google
Now to execute mangled commands that had been shown to
be unintelligible to humans in an experiment using Amazon
Mechanical Turk. The attacks by Vaidya et al. and Carlini
et al. on Google Now were ‘black-box’ attacks, i.e., they
were constructed without knowledge of the inner workings
of the speech recognition system. Carlini et al. additionally
conducted a successful ‘white-box’ attack on Carnegie Mellon
University’s SPHINX speech recognition system (based on
GMMs rather than DNNs), in which ‘mangled’ adversarial
commands were crafted with knowledge of the workings of
the system.

Other work on adversarial learning targeting speech recog-
nition includes that by Iter et al. [47], who used two adver-
sarial machine learning methods originally applied in image
classification to manipulate a speech recognition system based
on Google DeepMind’s WaveNet technology to mistranscribe
a number of utterances. This included prompting the system
to transcribe the utterance “Please call Stella” as “Siri call
police”. The attacks by Iter et al. are white-box attacks, i.e.,
they rely on some knowledge of the details of the target neural
network. The authors mention the possibility of developing a
black-box attack methodology in future work. Similar to Iter et
al., Cisse et al. [48] were also able to prompt mistranscription
of utterances, including mistranscription by Google Voice in
a ‘black-box attack’, using an adversarial machine learning
method called Houdini. Alzantot et al. [49] used a black-box
attack method based on a genetic algorithm to engineer mis-
classification of speech command words, such as ‘on’, ‘off’,
‘stop’, etc., by a machine learning-based speech recognition
system. Carlini and Wagner [50] have demonstrated a white-
box attack on Mozilla’s DNN-based DeepSpeech speech-to-
text transcription in which it was shown to be possible to
prompt mistranscription of a speech recording as any target
phrase, regardless of its degree of similarity to the original
phrase, by making perturbations to the original recording
that did not affect the original phrase as heard by humans.
Schoenherr et al. demonstrate a similar type of attack on open-
source speech recognition system Kaldi [51]. In contrast to
the attacks by Vaidya et al. and Carlini et al., which would
be perceived by victims as unexplained noise, attacks based
on methods such as those developed by Iter et al., Cisse
et al., Carlini and Wagner and Schoenherr et al. would be
perceived by victims as ordinary speech and would therefore
by more difficult to detect. Schéenherr et al. refer to this type
of attack as “psychoacoustic hiding”. To date, such work has
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Paper

[

Attack Mechanism

[

Target Component

[ Human Perception of Attack

Dhanjani [35]

plain speech

speech interface in PC (Windows Vista)

standard voice command

Diao et al. [36]

plain speech

speech interface in voice-controlled digital assistant (Google Voice
Search)

standard voice command

Kasmi and Esteves [37] inaudible sound injection voice capture in voice-controlled digital assistant (Google Now, Siri) silence
Young et al. [38] inaudible sound injection voice capture in voice-controlled digital assistant (Siri) silence
Zhang et al. [39] inaudible sound injection voice capture in voice-controlled digital assistant (Apple Siri, Amazon | silence
Alexa, Microsoft Cortana and others)
Song and Mittal [40] inaudible sound injection voice capture in voice-controlled digital assistant (Google Now, Ama- | silence
zon Alexa)
Vaidya et al. [30] adversarial learning speech recognition in voice-controlled digital assistant (Google Now) white noise
Carlini et al. [45] adversarial learning speech recognition in voice-controlled digital assistant (Google Now) | white noise
/ speech recognition (CMU Sphinx)
Yuan et al. [46] adversarial learning speech recognition in speech transcription system (Kaldi) music

Iter et al. [47]

adversarial learning

speech recognition in speech transcription system (WaveNet)

unrelated language

Cisse et al. [48]

adversarial learning

speech recognition in voice-controlled digital assistant (Google Voice)

unrelated language

Alzantot et al. [49]

adversarial learning

speech recognition in speech transcription system (TensorFlow)

unrelated language

Carlini and Wagner [50]

adversarial learning

speech recognition in speech transcription system (DeepSpeech)
speech recognition in speech transcription system (DeepSpeech)

music
unrelated language

Schoenherr et al. [51]

adversarial learning

speech recognition in speech transcription system (Kaldi)

unrelated language

Papernot et al. [52]

adversarial learning

natural language understanding in sentiment analysis system

nonsensical language

Liang et al. [53]

adversarial learning

natural language understanding in text classification system

unrelated language

Jia and Liang [54]

adversarial learning

natural language understanding in question answering system

unrelated language

Alzantot et al. [55]

adversarial learning

natural language understanding in sentiment analysis and textual
entailment systems

unrelated language

Kuleshov et al. [56]

adversarial learning

natural language understanding in spam filtering, fake news detection
and sentiment analysis systems

unrelated language

Li et al. [57]

adversarial learning

natural language understanding in sentiment analysis and toxic content
detection systems

unrelated language

Bispham et al. [58]

adversarial learning

speech recognition in Google Assistant
natural language understanding in Amazon Alexa Skills

nonsensical language
unrelated language

been limited to speech-to-text transcription, i.e., it has not yet
demonstrated mistranscription of voice commands capable of
executing an action.

In addition to prompting mistranscription of speech, Car-
lini and Wagner demonstrated the possibility of manipulating
music recordings so as to prompt them to be transcribed
by DeepSpeech as a given string of words, demonstrating
for example that a recording of Verdi’s Requiem could be
manipulated to be transcribed by DeepSpeech as “Ok Google,
browse to evil.com”. Yuan et al. [46] similarly demonstrate
the possibility of hiding voice commands in music. Unlike
the attacks crafted by Carlini and Wagner, the attacks crafted
by Yuan et al. are reportedly effective over the air as well as
via audio file input, although their attacks are also white-box
attacks and are limited to speech-to-text transcription rather
than being demonstrated on voice-controlled digital assistants
as such. Another type of adversarial learning attack on speech
recognition is presented by Bispham et al. [58], who present
the results of work demonstrating a black-box attack in which
voice commands to a target system are hidden in nonsensical
word sounds that are perceived as meaningless by humans.
One further, currently hypothetical, type of adversarial learning
attack on speech recognition arises from the development of
voice-controlled systems that are capable of interacting with
users in more than one language (see for example Lopez-
Moreno et al. [59]). It could be possible for attackers to identify
instances where input in one language is misclassified by a
system as a different input in another language. Depending on
the language capabilities of the human listener, an adversarial
learning attack prompting mistranscription of a utterance in
one language as a different utterance in another language
would be perceived by the human listener either as unrelated
speech, or else as nonsensical or unintelligible speech.

Adversarial learning has also recently been applied to
some areas of natural language understanding. This work has
been performed mainly outside the context of voice-controlled
systems, although there has been some preliminary work on
attacks targeting natural language understanding in voice-
controlled digital assistants, as discussed below. The generation
of adversarial examples in natural language understanding is
more complex than the generation of adversarial examples in
image or speech recognition. Unlike in the case of continuous
data such as image pixels or audio frequency values, adver-
sarial generation of natural language is not a differentiable
problem. As word sequences are discrete data, it is not possible
to change a word sequence representing an input to a machine
learning classifier directly by a numerical value in order to
effect a change in output of the classifier. The areas focussed
on in prior work include sentiment analysis (see Papernot et
al. [52]), text classification (see Liang et al. [53]), and question
answering (see Jia and Liang [54]). Papernot et al. [52] use the
forward derivative method, a white-box adversarial learning
method, to identify word substitutions that can be made in
sentences inputted to an RNN-based sentiment analysis system
so as to change the ‘sentiment’ allocated to the sentence. In
contrast to adversarial examples in image classification and
speech recognition, in which alterations made to the origi-
nal input are imperceptible to humans, the alterations made
to sentences in order to mislead the RNN-based sentiment
analysis system targeted in the work by Papernot et al. are
easily perceptible to humans as nonsensical, albeit that the
attack intent remains hidden. For example, substituting the
word ‘" for the word ‘excellent’ in an otherwise negative
review is shown in the paper to lead it to being classified as
having positive sentiment. Whereas the altered sentence will
appear unnatural to a human, the target system is not capable
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of identifying the nonsensical nature of the adversarial input.

Papernot et al. state that the lack of naturalness of the
adversarial examples in their attacks on natural language
understanding will need to be addressed in future work. By
contrast to Papernot et al., Liang et al. [53] demonstrate a lin-
guistically plausible attack on a natural language understanding
system. The authors adapt the Fast Gradient Sign Method from
adversarial learning in image classification to make human-
undetectable alterations to a text passage (by adding, modify-
ing and/or removing words) so as to change the category that
is allocated to the passage by a DNN-based text classification
system. The attack by Liang et al. is white-box, requiring
details of the calculations inside the network. Jia and Liang
[54] also demonstrate a linguistically plausible attack in the
context of question answering. Their work involves misleading
a number of question answering systems by adding apparently
inconsequential sentences to text passages from which the
systems extract answers to questions. The method works by
first choosing a target wrong answer to a given question, and
then crafting a sentence containing information leading to this
wrong answer that can be inserted into the original passage
without noticeably changing its overall import. The attack
method proposed by Jia and Liang is a black-box method,
not requiring knowledge of the internal details of the target
network.

Kuleshov et al. [56] use a word replacement approach in
an adversarial learning attack targeting spam filtering, fake
news detection and sentiment analysis. Their attack selects
acceptable replacement words according to a semantic sim-
ilarity measure based on ‘thought vectors’ in the form of
averages of individual word vectors, and a syntactic similarity
measure based on a language model, with the stated aim of
‘formalising’ the process of generating adversarial examples
in natural language classification. The attacks demonstrated
by Kuleshov et al. are white-box attacks, in that they rely
on knowledge of objective function calculations in order to
optimise the attack. Li et al. [57] demonstrate an attack on
sentiment analysis and toxic content detection systems under
both white-box and black-box conditions, using different types
of perturbation of text including deliberate misspellings as well
as word replacement. They note that character-level pertur-
bations have a higher success rate in generating adversarial
examples than word-level perturbations. Whilst all of the
attacks on natural language understanding described above are
demonstrated outside the context of voice-controlled systems,
Bispham et al. [58] present a proof-of-concept study for attacks
targeting natural language understanding in a voice-controlled
digital assistant, using third-party Skills for Amazon Alexa as a
specific example of a target system. The attack concept devel-
oped in the proof-of-concept study involves word replacement
in a target command, as well as the transplant of content words
from a target command to another meaning context where they
are used in a different sense. These processes are shown to
generate adversarial utterances that trigger target actions in
a dummy Alexa Skill, whilst appearing to humans to have
an unrelated meaning. The examples of attacks on natural
language understanding described here are indicative of the
fact that natural language understanding technology currently
represents only a crude approximation of human language
understanding that is easily destabilised.

In the specific context of voice-controlled digital assistants,
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the need to circumvent the wake-up word activation presents a
potential issue of linguistic plausibility for adversarial learning
attacks on natural language understanding, in that unlike
in the case of adversarial learning attacks targeting speech
recognition, it is difficult to incorporate a device’s wake-up
word as part of an attack based on confusion of meaning.
However, given the known presence of false positives with
respect to wake-up word recognition, this type of attack should
not be dismissed as impossible.

D. Active Attack

All of the attacks described in the prior and related work
summarised above are ‘passive’ attacks, in the sense that
they seek to exploit vulnerabilities that are already present
in a target system. There is also the possibility of ‘active’
attacks that seek to undermine the functionality of the system
itself. Miller et al. [60] refer to these attack types as ‘foiling’
and ‘tampering’, respectively. An example of active attack
on a natural language interface was seen in an attempt by
Microsoft to launch a social media chatbot named Tay. Tay was
intended to learn human-like language use from interactions
with humans on social media platform Twitter. Within a short
time of launching the chatbot had to be closed down on
account of having been flooded by some users with offensive
language and views, which it then proceeded to imitate (see
Fglstad and Brandtsted [61]). In the context of cloud-based
voice assistants, active attacks might involve manipulating the
response behaviour of the system for malicious ends. Rather
than passively exploiting weaknesses in the speech recognition
and natural language understanding functionalities of a voice-
controlled system, such attacks would seek actively to under-
mine the system’s ability to respond appropriately to spoken
input by manipulating the dialogue management functionality.
The potential for active attacks on voice-controlled digital
assistants arises from the aim of providers of such systems
to enable cloud-based assistants to continually ‘improve’ in
interactions with their users. The capacity of voice-controlled
digital assistants to learn from feedback from user conver-
sations can be expected to increase with the introduction of
commercially available voice assistants based on reinforcement
learning. This capacity for learning might be abused by at-
tackers aiming to confuse the system using various means,
such as inconsistent verbal inputs over time, incongruous
feedback in dialogue turns, or inappropriate corrections of a
target system’s responses. Attackers might for example launch
a denial of service-type attack by mass disconfirmation of
legitimate commands. Such attacks remain hypothetical at
time of writing, as the current generation of voice-controlled
digital assistants still use rule-based rather than reinforcement
learning-based dialogue management technology, as explained
above. However, this type of attack may become significant in
future.

A different type of active attack affecting human interac-
tion with voice-controlled systems in future might arise from
the voice-controlled systems themselves, via the evolution of
machine-generated languages that diverge from human lan-
guage use. Whilst mismatches between human and machine
understanding of natural language have generally been viewed
as failure on the part of machines to attain human levels
of language understanding, it is also possible to view such
mismatches as a failure on the part of humans to grasp
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the way in which meaning is represented by a machine.
This was illustrated by an instance in which two bots were
observed to develop a language for communication between
themselves that was unintelligible to humans. This occurred
as an unintended consequence of research by Lewis et al.
[62], the aim of which was to train two bots to negotiate
with one another in natural language using reinforcement
learning. In the course of the learning process, the bots
began to deviate from natural English in their language use,
instead using apparently nonsensical strings of words in their
communication with each other. This deviation was presumed
to have effected more efficient communication between the two
bots in achieving an optimal outcome in their negotiations.
The development of bots capable of autonomously evading
human language understanding may represent an increasingly
significant future security threat, given the potential for loss
of control over the behaviour of such systems by their human
users. A malicious actor might be able to trigger a machine-
machine reinforcement learning process in a target system with
the specific aim of prompting it to behave in a way that was
unintended by its human developers.

IV. TAXONOMY OF ATTACKS VIA THE SPEECH
INTERFACE

Reflecting on the review of prior work and related work in
Section III, we propose a high-level taxonomy of categories of
attacks via the speech interface. This taxonomy is presented
in Figure 3. The principle behind the taxonomy is to identify
the various categories of non-speech and speech sounds that
humans are capable of perceiving, and to group attacks via
the speech interface according to these categories, rather than
according to the attack mechanism used by an attack or by
the specific technical vulnerability that it exploits. The last
column of Table I shows the perceptual category that might
be allocated to the attacks described above by humans. By
applying this categorisation principle, our taxonomy is capable
of encompassing attack types that have been shown to be pos-
sible in relation to the current generation of voice-controlled
systems, as well as attacks that may become possible in
future as the state-of-the-art in voice control advances. Thus
our taxonomy fulfils the dual purpose of systematising prior
work whilst also identifying new directions for future research.
Attacks via the speech interface as categorised under our
taxonomy might be targeted at any voice-controlled system,
including any voice-controlled digital assistant and any third-
party applications accessible through it, and might be delivered
via any speaker-enabled device capable of producing sound in
the target system’s environment.

In the taxonomy, attacks via the speech interface are pri-
marily grouped into two categories: ‘overt’ attacks, which seek
to gain unauthorised access to systems using the same voice
commands as might be given by a legitimate user and are thus
easily detectable by a human, and ‘covert’ attacks, which seek
to gain access using speech commands that have been distorted
in some way so as to escape detection by the victim. Another
way of characterizing this division is as a distinction between
attacks that make illicit use of the intended functionalities of
a speech dialogue system, and attacks that exploit unintended
functionalities. Overt attacks use plain speech to exploit an
inherent vulnerability in voice-controlled systems that arises
from the difficulty of controlling access to a system via the
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‘speech space’. Covert attacks exploit gaps in the processes of
capturing human speech or of translating the captured speech
input into computer executable actions in a voice-controlled
system. Covert attacks include attacks using inaudible sound
injection, adversarial learning, and active attack, as discussed
above.

Within the two primary categories of overt and covert
attacks, attacks are grouped hierarchically into six final sub-
categories based on human perceptual categories, as shown in
Figure 3 and explained further below. Malicious inputs in overt
attacks consist by definition of ordinary speech. Thus a single
sub-category of ‘plain-speech’ attacks was identified for overt
attacks. The attacks demonstrated in prior work using standard
voice commands, such as those demonstrated by Dhanjani et
al. [35] discussed above, fall into this sub-category. Malicious
inputs in covert attacks may include input that consists in
human terms of silence, as for example in the attacks demon-
strated by Zhang et al. [39], noise, as for example in the attacks
demonstrated by Carlini et al. [45], music, as for example
in the attacks demonstrated by Yuan et al. [46], nonsense,
as for example in the attacks on Google Assistant hiding
malicious commands in nonsensical word sounds demonstrated
by Bispham et al. [58], and unrelated speech, as for example
in the attacks demonstrated by Carlini and Wagner [50]. Based
on these examples of attacks in prior work, and in accordance
with the categorisation principle chosen for the taxonomy of
grouping attacks according to the nature of attacks as they
might be perceived by a human listener, five sub-categories of
covert attacks via a speech interface were identified, namely
attacks consisting of silence, music, noise, ‘nonsense’, and
‘missense’. Nonsense as a malicious input in covert attacks is
defined as input that is made up of words or sounds that are in
legitimate use in the relevant language, but that combines them
in such a way that they do not convey any meaning in terms of
human understanding. Missense is defined as unrelated speech
that is misheard or misinterpreted by the target system as a
target command.

Our taxonomy accords with established criteria for attack
taxonomies, as described for example in Hansman and Hunt
[63]. These criteria include the requirement that a taxonomy
should be ‘complete’, i.e., cover all possible attacks within its
scope, and unambiguous, i.e., it should be possible clearly to
allocate every attack to one category within the scope of the
taxonomy. The principle of categorising attacks according to
human perception ensures that the taxonomy is complete, as
all attacks via a speech interface can be allocated to one of
the six sub-categories. The taxonomy is also unambiguous, in
that it is not possible to allocate the same voice attack to more
than one of the six final sub-categories.

At the bottom of Figure 3, the attack categories based on
human perceptual distinctions as identified in the taxonomy are
aligned to the technical vulnerabilities in the architecture of
the current generation of voice-controlled systems that might
be targeted by each type of attack. The taxonomy of attacks
categorised according to human perception as aligned to tech-
nical vulnerabilities at various points of the handling of speech
input by voice-controlled systems represents the entire attack
surface presented by a speech interface. To the extent that
speech processing by voice-controlled systems mimics human
speech processing, the attack categories in the taxonomy based
on human perception correspond to vulnerabilities in the parts
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Figure 3. Taxonomy of Attacks via the Speech Interface aligned to Vulnerabilities in the Architecture of Voice-Controlled Systems

of the architecture of voice-controlled systems that represent
equivalent human processes, although this correspondence is
not exact. The alignment presented in Figure 3 covers the tech-
nical vulnerabilities that are present in the current generation
of voice-controlled digital assistants, namely the vulnerability
arising from the inherent difficulty of controlling access to a
system by sound, vulnerabilities in the voice capture process,
vulnerabilities in speech recognition, and vulnerabilities in
natural language understanding. Whilst the categories of attack
based on human perception can be expected to remain stable
over time, their alignment to vulnerabilities in the architecture
of voice-controlled systems might be expected to shift in future
to include new vulnerabilities as the state-of-the-art in voice-
controlled systems progresses. Thus, for example, missense
attacks might be aligned in future not only to vulnerabilities
in the speech recognition and natural language understanding
components of voice-controlled systems, but also to vulnera-
bilities in the dialogue management component, such as the
vulnerability presented by the potential for mistraining in the
context of dialogue management functionality based on rein-
forcement learning, as well as the vulnerability presented by
the potential for the evolution in reinforcement learning-based
systems of bot-generated language that is incomprehensible to
humans, as discussed above.

As reflected in the alignment in Figure 3, attacks in plain-
speech exploit the inherent vulnerability of speech interfaces
on account of the difficulty of controlling access to a system by
sound. Attacks in silence attacks exploit vulnerabilities in the
voice capture process, as is shown by the alignment of silent
attacks to the voice capture component of the architecture
in Figure 3. Attacks that use music and noise as malicious
input exploit unintended functionality in speech recognition,
as is shown by the alignment of these attack categories to the

speech recognition component of the architecture. As further
reflected in the alignment in Figure 3, nonsense attacks on
current voice-controlled systems might be targeted either at
the speech recognition or the natural language understanding
components of a target system. The attacks in which malicious
voice commands were hidden in nonsensical word sounds
demonstrated by Bispham et al. [58] can be categorised as
nonsense attacks targeting the speech recognition level of
handling of speech input in a voice-controlled system. As
regards attacks targeting the natural language understanding
level, nonsense attacks have yet to be demonstrated with
respect to voice-controlled systems directly, although there has
been some related work that could be described as nonsense
attacks on natural language understanding, such as in the
attacks on a sentiment analysis system by Papernot et al. [52]
by making nonsensical alterations to text discussed in Section
III. Similar attacks might be demonstrated in the context of
voice-controlled digital assistants in future.

Similar to nonsense attacks, missense attacks might also be
targeted at either the speech recognition or natural language
understanding component of current voice-controlled systems,
as is also shown in the alignment in Figure 3. Missense
attacks targeting speech recognition rely on mistranscription
of adversarial input by a target system as a target command. In
a missense attack that targets natural language understanding
functionality, on the other hand, words might be transcribed
correctly by the target system, but their meaning would be
misinterpreted. This type of missense attacks would seek to
exploit the shortcomings of current natural language under-
standing functionality in voice-controlled digital assistants in
terms of being able to identify the correct meaning of words
in context. Prior work on missense attacks in voice-controlled
systems has to date been focussed primarily on attacks on
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speech recognition as incorporated in such systems, as for
example in the work of Carlini and Wagner [50]. The attacks
described in the proof-of-concept study presented by Bispham
et al. [58] for attacks that trigger a target command in an
Amazon Alexa Skill using unrelated utterances would fall into
the category of missense attacks targeting natural language
understanding. There has also been more extensive work
demonstrating missense attacks that target natural language
understanding functionality in related research areas, such the
attacks on question answering by Jia and Liang [54] by making
apparently inconsequential alterations to text, or in the work
by Kuleshov et al. [56] using word replacement to mislead
spam filtering, toxic content detection and sentiment analysis
systems, as described in Section III.

As discussed above, attacks on future systems may also
include attacks targeting speech recognition in multilingual
systems, prompting a target system to mistranscribe input
in one language as different input in another. Such attacks
would be classed as either nonsense or missense attacks,
based on whether or not the cover language used by an
attacker was understood by a human listener. As also discussed
above, future attacks might further include attacks in which
a target system’s ability to respond appropriately to spoken
input is actively undermined by mistraining of a dialogue
management component based on reinforcement learning, as
well as attacks that are based on facilitating the evolution
of human-incomprehensible languages in autonomous bot-to-
bot interactions in reinforcement learning-based systems. The
former type of attack would represent a missense attack, with
the adversarial input being perceived by human listeners as
unrelated language, whereas the latter type of attack would
represent a nonsense attack, with the adversarial input being
perceived by human listeners as nonsensical language.

V. CONCLUSION AND FUTURE WORK

This paper proposes a taxonomy of attacks via the speech
interface that covers attacks investigated in prior and related
work, as well as attacks that may be possible in the future.
The review of prior and related work in this paper indicates
that the potential for attacks via a speech interface has yet
to be comprehensively assessed. The scope of attacks via a
speech interface can be expected to expand with the increasing
sophistication of voice-controlled systems. Consequently, there
is a need for further security-focussed research in the area of
voice-controlled technology.

Future work should seek more extensively to demonstrate
the potential for attacks in the various categories of the
proposed taxonomy in the context of different technologies and
use-case scenarios. Among the taxonomy categories, nonsense
and missense attacks targeting the natural language under-
standing functionality of voice-controlled systems represent
types of attacks that have yet to be explored fully in practice.
Thus, such attacks should be a special focus of future work.
Looking further into the future, attacks based on language
confusion in multilingual systems, as well as attacks based
on mistraining of dialogue management or facilitation of bot-
generated languages in reinforcement learning-based systems,
may become a reality requiring the attention of security
researchers.

The results of future work should ultimately be used as a
basis for the development of more effective defence measures
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to improve the security of voice-controlled digital assistants
and other voice-controlled systems. As a first step in this
direction, Bispham et al. [64] present some attack and defence
modelling work in which the attack categories in the taxonomy
presented here are mapped to currently available defences
against attacks via the speech interface, enabling an assessment
of the effectiveness of current defences against the various
types of attack.
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