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Abstract— A ciphertext inherits some properties of the 
plaintext, which is considered as a source of vulnerability and, 
therefore, it may be decrypted through a vigorous datamining 
process.  The vulnerability increases when a community of 
users is communicating with each other.  Masking the 
ciphertext is the solution to this vulnerability.  We have 
developed a new block cipher masking technique named 
Vaccine for which the block size is random and each block is 
further divided into segments of random size.  Each byte 
within a segment is instantiated using a dynamic multi-
instantiation approach, which means (i) the use of Vaccine 
does not produce the same masked outcome for the same given 
ciphertext and key and (ii) the choices for masking different 
occurrences of a byte are extremely high. Vaccine is tested in 
both single-paired-user and multi-paired-user communities 
with the revoking option.  A key agreement is	used to manage 
key changes required by the revoking option.  For testing in a 
single-paired-user environment, two sets (100 members in 
each) of 1K long plaintexts of natural (borrowed from natural 
texts) and synthesized (randomly generated from 10 characters 
to increase the frequency of characters in the plaintext) are 
built.  For each plaintext, two ciphertexts are generated using 
Advanced Encryption System (AES-128) and Data Encryption 
Standard (DES) algorithms. Vaccine and two well-known 
masking approaches of Cipher Block Chaining (CBC), and 
Cipher Feedback (CFB) are applied separately on each 
ciphertext.   On average: (a) the Hamming distance between 
masked and unmasked occurrences of a byte using Vaccine is 
0.72 bits higher than using the CBC, and CFB, and (b) Vaccine 
throughput is also 3.4 times and 1.8 times higher than the 
throughput for CBC and CFB, correspondingly, and (c) 
Vaccine masking strength is 1.5% and 1.8% higher than the 
masking strength for CBC and CFB, respectively.  For testing 
in a multi-paired-user community with the revoking option, 
the findings remain the same for every single-paired-user.  
However, there is an overhead cost related to re-keying and re-
profiling, which is caused by the revoking of a user from the 
community or expanding the community of users. The 
overhead cost is linearly related to the size of community. 
 
  Keywords- Cyber Security; Masking and Unmasking 
Ciphertext; Variable-Block Cipher Vaccination; Masking 
Strength; Key Aggregation; Re-keying; Re-Profiling 

I. INTRODUCTION 
 Protecting sensitive electronic documents and 
electronic messages from unintended eyes is a critical task.  
Such protections are provided by applying encryption.  
However, the encrypted text (ciphertext) is often vulnerable 
to datamining.   The root of such vulnerability is in the 
inherited-features of the plaintext by the ciphertext.  We 
have addressed the problem and its solution in the past for a 
secure single-paired-user environment [1].  (The distinct 
property of this environment is that there is no community 
of users, but there are individual pairs of users.) However, 
we expand the previously reported paper to address not only 
the single-paired-user environment but also a secure multi-
paired-user environment with the option of revoking user.  
 The distinct properties of such an environment are: (i) 
presenting the environment as a graph in which users make 
the vertices and the communications established among the 
users make the edges of the graph, (ii) having a community-
based key, which is the aggregation of the single-paired-
user keys, and (iii) having the option to revoke the 
membership of a user in the community.  The side effect of 
the last property demands a re-keying of the remaining 
single-paired users in the community whenever membership 
of a user is revoked.   Regardless of having a secure 
single or multi-paired-user environment, the problem of 
inherited-features will not disappear and the problem is not 
limited only to primitive encryption modes such as 
displacement but also it can be observed in the outcome of 
more sophisticated encryption modes such as CBC and CFB 
[2][3][4].  The following examples provide some evidence.   
 As an example related to primitive encryption modes, 
let us consider the plaintext message of: “The center is 
under an imminent attack”.  The plaintext may be converted 
into the following ciphertext using, for instance, a simple 
displacement encryption algorithm: 
“xligirxvmwyrhivermqqmrirxexxego”.  The features of the 
plaintext are also inherited by the ciphertext—a point of 
vulnerability.   To explain it further, the word “attack” is 
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among the key words related to security.  The 
characteristics of the word are: (i) length is six, (ii) the first 
and the fourth characters are the same, and (iii) the second 
and the third characters are the same.  Using these 
characteristics, one can mine the given ciphertext and 
isolate the subtext of “exxego” that stands for “attack" 
which, in turn may lead to decryption of the entire message.   
 As an example related to more sophisticated encryption 
modes, the block cipher techniques that employ CBC/CFB 
encryption mode to produce distinct ciphertexts are 
vulnerable to information leakage. In the case of CBC/CFB 
using the same Initial Text Vector (IV) with the same 
encryption key for multiple encryption operations could 
reveal information about the first block of plaintext, and 
about any common prefix shared by two different plaintext 
messages. In CBC mode, the IV must, in addition, be 
unpredictable at encryption time; in particular, the 
(previously) common practice of re-using the last ciphertext 
block of a message as the IV for the next message is 
insecure (for example, this method was used by Secure 
Sockets Layer (SSL) 2.0). If an attacker knows the IV (or 
the previous block of ciphertext) before he specifies the next 
plaintext, he can check his guess about plaintext of some 
block that was encrypted with the same key before (this is 
known as the Transport Layer Security (TLS) CBC IV 
attack) [5].  
 The problem of inherited-features becomes a bigger 
concern when communication takes place within a secure 
community of users with a user revoking option.  Upon 
revoking a user from the community, all the keys used for 
communication between any two users that collectively 
make a community-based aggregate key, need to be changed 
(re-keying process) on the fly.  As a result, the inherited-
features problem needs to be addressed in two 
environments: Single-paired-user and multi-paired-user 
[6][7].   
 In either environment, the fact remains the same that 
the logical solution for the inherited-features problem is to 
mask the ciphertext using a masking scheme that is dynamic 
and supports a high degree of multi-instantiations for each 
byte.  A dynamic masking scheme does not produce the 
same masked outcome for the same given ciphertext and the 
same key.  The high degree of multi-instantiation masking 
scheme replaces the n occurrences of a given byte in the 
ciphertext with m new bytes such that m is either equal to n 
or extremely close to n.   
 
The goal of this research effort has two prongs:  

(1) Introducing and building a dynamic masking scheme, 
named Vaccine for a single-paired-user environment.  
The Vaccine also supports a high degree of multi-
instantiations that can mask the inherited-features of 
a ciphertext in the eye of a data miner while 
providing for transformation of masked ciphertext 
into its original form, when needed and 

(2) Adapting the Vaccine for use in a multi-paired-user   
community that has the revoking option. 

 

The Vaccine has the following three unique traits, which 
makes it a powerful masking scheme:   It (1) divides the 
ciphertext into random size blocks, (2) divides each block 
into random size segments, and (3) every byte within each 
segment is randomly instantiated into another byte.  All 
three traits are major departures from the norm of masking 
schema.   
 The rest of the paper is organized as follows. The 
Previous Works is the subject of Section II.  For single-
paired-user environment, the Methodology is presented in 
Section III, the Empirical Results are discussed in Section 
IV, and the findings are covered in Section V.  For a 
multiple-paired-user environment, the adoption of the 
Vaccine is the subject of Section VI and the findings are 
discussed in Section VII. The conclusion and future 
research are presented in Section VIII. 

II. PREVIOUS WORKS 
 In a secure single-paired-user environment, masking the 
features of a ciphertext that are either inherited from the 
plaintext or generated by the encryption scheme itself is the 
essential step in protecting a ciphertext.  The block cipher 
and stream cipher mode of operations provide for such a 
step.  We are specifically interested in CBC [8][9][10] and 
CFB [11] as samples of the block cipher and stream cipher 
mode of operations.  They are to some degree comparable to 
the proposed Vaccine. 
 CBC divides the ciphertext into fixed–length blocks 
and masks each block separately. The use of fixed-length 
block demands padding for the last partial block of the 
ciphertext, if the latter exists.  The CBC avoids generating 
the same ciphertext when the input text and key remain the 
same by employing an Initial Text Vector (IV).   
 CFB eliminates the need for possible padding of the 
last block (that is considered a vulnerability for CBC [12]) 
by assuming the unit of transmission is 8-bits.  However, 
CFB also uses IV for the same purpose that it was used for 
CBC. 
 In contrast, Vaccine splits the ciphertext into random 
size blocks and then sub-divides each block into segments 
of random size.  Masking each pair of segments is done by 
using a pair of randomly generated patterns.  As a result, 
Vaccine needs neither padding nor IV.  The randomness of 
the block size, segment size, and patterns used for 
instantiation of a given character are the major departure 
points of Vaccine from the other block and stream cipher 
approaches.   
 In a secure multi-paired-user environment with a 
revoking option, the use of CBC and CFB demand key 
management, which could be executed either by a key 
distribution [13][14][15][16] or key agreement [17][18][19] 
process (both processes are considered as pure overhead.)  
Key management is also adopted by Vaccine, which in turn 
requires the re-keying operation of the entire community-
based aggregate key.  Such overhead may be reduced by 
using the Vaccine.  The reduction in overhead cost comes 
from the fact that the Vaccine masking is an amalgamation 
of random patterns, a key, and the use of a randomly 
generated byte from the plaintext.  Therefore, if the revoked 
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user knows only the keys then, it is not enough to correctly 
de-mask (or mask) a ciphertext as long as the patterns’ 
profile changes.  Changing the patterns’ profile is less 
expensive than the re-keying process.  Of course, re-keying 
always remains as another viable option.  

III. SINGLE-PAIRED-USER ENVIRONMENT 
 First, we present our methodology for instantiation of a 
byte, which contributes into dynamicity of Vaccine. Second, 
we introduce our methodology for building Vaccine.   The 
details of the two methodologies are the subjects of the 
following two subsections. 

A.		Instantiation		
 Instantiation is the replacement of a byte, c, by another 
one, c’, such that c’ is created by some modifications in c.  
To perform the instantiation, we present our two methods of 
Self-substitution and Mixed-Substitution. Through these 
methods, a number of parameters are introduced that are 
referred to as the masking parameters. At the end of this 
subsection, we present the masking parameters as a profile.  

 1) Self-Substitution:  Consider byte 10011101 and let us 
(i) pick two bits in positions p1 and p2 such that p1 ¹ p2, (ii) 
flip the bit in position p1, and (iii) swap its place with the bit 
in position p2—Two-Bit-One-Flip-Circular-Swap technique.  
 It is clear that the pairs (p1=1, p2=7) and (p1=7, p2=1) 
create different instances for the byte.  Therefore, the order 
of p1 and p2 is important. The number of possible ways 
selecting a pair (p1, p2) from the byte is 7*8=56, which 
means a byte may be instantiated by 56 possible different 
ways using Two-Bit-One-Flip-Circular Swap technique.  
The technique name may be generalized as W-R-Bit-M-Flip-
Circular-Swap.  For the above example (W=2 and M=1) the 
technique is shown in Figure 1.  As a more general example, 
(W=8 and M=4) is also shown in Figure 1.  As a rule, the 
value of parameter M is always less than the value of 
parameter W.  This is necessary for not diminishing the 
effect of the swapping step. (We introduce the parameter R 
shortly.) 
 
 
 
 
 
 
 
 
 
 
Figure 1. W-Bit-M-Flip-Circular-Swap Technique: (a) W=2 and M=1 and 

(b) W=8 and M=4  

 One may pick 3-bits (W=3) to instantiate the byte.  Let 
us assume 3 bits randomly selected that are located in the 

positions p1, p2, and p3.  There are many ways that M-Flip-
Circular-Swap technique can be applied: 

a. (One-Flip-Circular-Swap) Flip one of the three bits and 
then make a circular swap among p1, p2, and p3.   

b. (Two-Flip-Circular-Swap) Flip two out of the three bits 
and then apply circular swapping. 

c. (Three-Flip-Circular-Swap) is not used because it 
violates the rule of M being smaller than W. 

The number of possible combinations grows to 5040.  
 Using the W-R-Bit-M-Flip-Circular-Swap for all 
possible values of W (W=2 to 8) and M (M=1 to W-1) 
generates the total of (X=1,643,448) possible substitutes for 
a given byte.  If either W=1 or M= 0 then, the self-
substitution has not been enforced and in this case X=1 (the 
byte itself).  Now, we explain the role of parameter, R 
(where, R is a byte long) in the W-R-Bit-M-Flip-Circular-
Swap. 
 Let us refer to the case of W=2 and M=1 one more time 
where it is able to facilitate the generation of 56 
instantiations of a given byte using all the possible pairs of 
(p1=•, p2=•).  That is, the two positions of p1 and p2 could 
have any value from 1 to 8 as long as p1¹p2.  What if one is 
only interested in those instantiations resulting from the 
pairs of (p1=3, p2=•), which by definition also includes 
instantiations resulting from the pairs of (p1=•, p2=3)?  The 
chosen value (bit) of interest for p1 is a value from 1 to 8 
that is expressed by setting the bit of interest in R.  (Since 
p1 =3, the bit number 3, in R, is set to 1.)  The number of 
bits that are set to “1” in R is always equal to M. For our 
example, R=“00000100”.   
 The pairs represented by (p1=v, p2=•) are the set of 
seven pairs of {(p1=v, p2=1), . . ., (p1=v, p2=8)}.  The seven 
pairs are named the primary set for the primary signature of 
(p1=v, p2=•).  The (p1=*, p2=v), which is a tweaked version 
of (p1=•, p2=v) is the complementary signature of (p1=v, 
p2=•) and stands for the other set of seven pairs {(p1=8, 
p2=v), . . ., (p1=1, p2=v)}.  These seven pairs make the 
complementary set for (p1=*, p2=v).  (Values of p1, in the 
complementary set, are in reverse order of values of p2 in 
the primary set.) 
 The primary and complementary sets also referred to as 
the primary sub-pattern and complementary sub-pattern, 
respectively.  The two sub-patterns collectively make a 
pattern and the triplet of (W=2, M=1, R= “00000100”) 
make the pattern’s stamp, where W, M, and R are masking 
parameters.  It is clear that M cannot be equal to W, 
because, when M= W, the primary and complementary sets 
are the same and they have only one member. This is 
another reason for supporting the rule of M must be smaller 
than W.) 
 The stamp of (W=4, M=3, R = “00001011”) means 
four bits are chosen from the byte out of which three bits 
(M=3) in positions 1, 2, and 4 are the positions of interest 
(p1=1, p2=2, p3=4.)  Therefore, the primary signature and the 
Complementary signatures are, respectively, defined as 
(p1=1, p2=2, p3=4, p4=•) and (p1= *, p2=2, p3=4, p4=1).   
 When none of the bits in R is set to “1”, it means R has 
not been enforced.  In this case, we do not have the primary 
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and complementary sets.  However, to apply Vaccine, we 
ought to have both sets.  To do so, the default value of R, 
which is R with its M least significant bits set to “1” is 
used.) 

 2) Mixed-Substitution:  We also extend the byte 
instantiation to the key. In a nutshell, the instantiation of the 
given byte, c, and each key byte are done separately. One of 
the instantiated key bytes is selected as the key image and 
the final instance of c is generated by XORing the key 
image and the instantiated c.  The details are cited below. 
 Application of self-substitution with masking 
parameters of (W, M, and R) on a given byte generates the 
primary and the complementary sub-patterns of (𝑢)#  . . . 𝑢)*) 
and (𝑢+, . . . 𝑢+#).  The subscripts p and c stand for these two 
sub-patterns and there are n and m members in the p and c 
sub-patterns, respectively.  The key byte Bj is instantiated 
into another byte using the self-substitution with masking 
parameters of (Wj, Mj, and Rj, for j=1 to 4). Application of 
self-substitution on the individual four bytes of the key (B1 . 
. . B4) generates the primary and the complementary sub-
pattern for each byte as follows: 
(𝑢)

#./	.		.		. 	𝑢)
*#./)	and (𝑢+

,#./	.		.		. 	𝑢+
#./),	 

(𝑢)
#.3	.		.		. 	𝑢)

*4.3)	and (𝑢+
,4.3	.		.		. 	𝑢+

#.3), 
(𝑢)

#.5	.		.		. 	𝑢)
*$.5)	and (𝑢+

,$.5	.		.		. 	𝑢+
#.5), and  

(𝑢)
#.6	.		.		. 	𝑢)

*7.6)	and (𝑢+
,7.6	.		.		. 	𝑢+

#.6). 
 A byte, say c1, using the first member of the primary 
sub-pattern, 𝑢)#,	 is instantiated to c1’.  The first byte of the 
key, B1, using its first member of the primary sub-pattern, 
𝑢)
#./,	 is instantiated to B1’.  The other three bytes are also 

instantiated into B2’, B3’, and B4’ using their first member of 
the primary sub-patterns, 𝑢)

#.3, 𝑢)
#.5, 𝑎𝑛𝑑	𝑢)

#.6, respectively. 
The Hamming distance of HD(c’, Bj’), for j=1 to 4, are 
measured and B’=Argmax[HD(c’, Bj’), for j=1 to 4] is the 
key image. In the case that there are ties, the priority is 
given to the instantiated byte of B1, B2, B3, and B4 (and in 
that order.) The final substitution for c1 is:  
 

c1’’=(c1’ Å B’)   (1) 
 
 The next byte, c2, within a given segment of ciphertext 
is instantiated to c2’ using 𝑢)4,	 and key bytes of B1, B2, B3, 
and B4 are instantiated to B1’, B2’, B3’, and B4’ 

using	𝑢)
4./, 𝑢)

4.3, 𝑢)
4.5, 𝑎𝑛𝑑	𝑢)

4.6, respectively. 
   B’=Argmax[HD(c’, Bj’), for j=1 to 4] and c2’’=(c2’Å 
B’).  The process continues until the segment of the 
ciphertext is exhausted. The bytes of the next sub-list and 
the key bytes are instantiated using the complementary sub-
patterns.   Therefore, the sub-patterns are alternately used 
for consecutive segments of the ciphertext.  
 Using mixed substitution, the number of possible 
combinations for each key byte is equal to X and for the key 
of four bytes is X4 (>1.19*1031 combinations.)  The reader 
needs to be reminded that the four-byte key may be 
expanded to the length of N bytes for which the outcome of 
XOR is one of the XN+1 possible combination.  For N=16 

(128-bit key) The XOR is one of the X17 possible 
combinations (>4.65*10105.)  

 3) Profile: Considering both self and mixed 
substitutions, the masking parameters grow to five triplets: 
The first triplet, (W, M, and R) for the instantiation of a byte 
of segment and the next four triplets of (Wj, Mj, and Rj, for 
j=1 to 4) for instantiation of the four bytes of the key.  
Therefore, patterns’ profile, or simply profile, includes 15 
masking parameters, which are accommodated by a 96-bit 
long binary string (Figure 2) as described below. 
 Since the possible values for each of the parameters W 
and Wj is eight (2 through 8 and value of 1 means the self-
substitution has not been enforced), the value of each 
parameter can be accommodated by 3 bits (the total of 15 
bits).  Since the three bits make a decimal value between 0 
and 7, we always add 1 to the decimal value to get the true 
value for W or Wj.) The parameters M and Mj have eight 
possible values (1 through 7 where the value of 0 means that 
self-substitution has not been enforced) and each parameter 
can also be accommodated by 3 bits (the total of 15 bits).  
The parameters R and Rj need eight bits each (the total of 40 
bits).  In addition, we use twenty-six bits as prefix of the 
profile (five bits as reserved bits for possible expansion, 
sixteen bits as the Flag bits and five bits as the Preference 
bits.)  
 The sixteen flag bits represent a decimal number (D) in 
the range of (0: 65,535).  Let us assume that the length of 
the ciphertext that is ready to be masked is Lct.  Three bytes 
of f1, f2, and f3 of the ciphertext are selected (flagged), 
which are in locations: d1= d, d2=ë Lct/2+d/2û, and d3=Lct - d,  
where, d is calculated using the formula (2) 
 

   d=
	∆	𝑀𝑜𝑑	𝐿+?,						∆	> 𝐿+?
𝐿+?		𝑀𝑜𝑑	∆, 		∆	£	𝐿+?

  (2) 

 
The flagged bytes will not be masked during the vaccination 
process and they collectively make the native byte of 
F=(f1Åf2Åf3). Since the length of the ciphertext and the 
length of its masked version remain the same there is no 
need for including the length of the ciphertext in the profile.  
The question of why the flagged bytes are of interest will be 
answered shortly. 
 The purpose of preference bits is to build a model, 
which is influenced by both the key and flagged bytes.  The 
model is used to create variable length blocks and segments.  
The minimum number of preference bits is five and can 
grow up to ten by consuming the reserved bits.  The 
preference bits are partitioned such that the most significant 
bit is considered partition one and the rest of the bits make 
partition two.   
 To build the model, a desired byte number (z) of the 
key is identified by the bits of partition two.  That is, one 
can select any byte from a maximum of a 512-byte long 
key.  The key is treated as circular and two pairs of bytes 
A1=(z+1||z) and A2=(z+2||z-1) are obtained from the key. A 
new pair of bytes of A3=A1ÅA2Å(F||F) is built.  If the bit in 
the partition one is set to zero then, the model is A3; 
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otherwise, the model is a1Åa2, where, a1 and a2 are the pair 
of bytes in A3. 
 Let us assume that there are two similar ciphertexts of 
CT1 and CT2 and we are using the same key and the same 
profile to mask the two ciphertexts, separately.  As long as 
one of the three flagged bytes in CT1 and CT2 is different, 
the native bytes for the ciphertexts are different and so their 
models, which in turn make their masked versions different. 
This is one of the major advantages of Vaccine.  
 To summarize, using a 4-byte key, the number of bits 
needed for the profile is 96 bits.  Dissection of a pattern 
profile is shown in Figure 2.  The 24 hex digits representing 
the patterns’ profile along with eight hex digits representing 
the 4-byte key that are collectively called Masking Image, 
may be sent to the receiver in advance or they may hide in 
the masked ciphertext itself:   

a. In a predefined location/locations, 
b. In location/locations determined by the internal 

representation of the key following some formula(s), or 
c. A mixture of (a) and (b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Dissection of the masking Image 

B.  Vaccine 
 Vaccine is a variable-block cipher methodology 
capable of masking and unmasking a ciphertext. The details 
of masking and unmasking of Vaccine are presented in the 
following two subsections.   

 1)  Masking of the Ciphertext: Vaccine as a masking 
scheme is able to mask the features of a ciphertext in the 
eye of a text miner.  Vaccine: (1) divides the ciphertext into 
random size blocks, (2) each block, in turn, is divided into a 
number of segments such that the length of each segment is 
random, and (3) every byte within each segment is 
randomly instantiated to another byte using self and mixed 

substitutions.  The masking process is encapsulated in 
algorithm Mask shown in Figure 3. 
 The algorithm is made up of four sections.  In section 
one, (Step 1 of the algorithm) the profile is dissected to 
extract masking parameters and they, in turn, generate 
primary and complementary sub-patterns for five 
patterns:(𝑃𝑎𝑡𝑡𝑒𝑟𝑛)E	, 𝑃𝑎𝑡𝑡𝑒𝑟𝑛+E), (𝑃𝑎𝑡𝑡𝑒𝑟𝑛)F#, 𝑃𝑎𝑡𝑡𝑒𝑟𝑛+F#), 
(𝑃𝑎𝑡𝑡𝑒𝑟𝑛)F4, 𝑃𝑎𝑡𝑡𝑒𝑟𝑛+F4),  (𝑃𝑎𝑡𝑡𝑒𝑟𝑛)F$,		 𝑃𝑎𝑡𝑡𝑒𝑟𝑛+F$),  and 
(𝑃𝑎𝑡𝑡𝑒𝑟𝑛)F7 , 𝑃𝑎𝑡𝑡𝑒𝑟𝑛+F7) used for masking the chosen byte 
of the ciphertext and the four key bytes, respectively.  The 
array of pt with five elements keeps track of those primary 
and complementary sub-patterns of the five patterns that are 
in use.  The model is also extracted in this step. 
 
   
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 3. Algorithm Mask 

 The second section (Step 2.a of the algorithm) 
identifies a random size block prescribed by k—the model. 

Algorithm Mask 
Input:  A 32–bit key, a pattern’s profile of 96-bit, and a 

ciphertext, CT. 
Output: Delivering IC as the masking version of CT. 
Method: 
  Step1- //Dissection of the profile and initializations 

 Dissection delivers primary and secondary sub-patterns of 
five patterns (𝑃𝑎𝑡𝑡𝑒𝑟𝑛)E , 𝑃𝑎𝑡𝑡𝑒𝑟𝑛+E), (𝑃𝑎𝑡𝑡𝑒𝑟𝑛)F# , 

𝑃𝑎𝑡𝑡𝑒𝑟𝑛+F#),  (𝑃𝑎𝑡𝑡𝑒𝑟𝑛)F4 , 𝑃𝑎𝑡𝑡𝑒𝑟𝑛+F4),  (𝑃𝑎𝑡𝑡𝑒𝑟𝑛)F$ , 

𝑃𝑎𝑡𝑡𝑒𝑟𝑛+F$),  and (𝑃𝑎𝑡𝑡𝑒𝑟𝑛)F7 , 𝑃𝑎𝑡𝑡𝑒𝑟𝑛+F7). 
k ←Model obtained by using Preference bits, Flag bits, 

and key;  
 IC ← “”; C ← CT; 

pt[5]← 0;//pt gives turn to the primary (pt[•]=0) and 
complementary (pt[•] =1) sub-patterns of the five 
patterns for initializing  the CurrentP [5];  

Step 2-Repeat until C is exhausted 
a- Get the set of decimal numbers from k in ascending 

order: D ={d1, d2, . . . dy-1, dy}; 
 Get the next random size block,  
 bn,=Substr(C, 0, dy); 
b- CL = 0; //Current location in C 
c- Repeat for i =1 to y-1  
 //Divide bn into y-1 segments; 

si = Substr(bn, CL, di - CL); 
CL = CL+ di;  
CurrentP[m]=𝑃𝑎𝑡𝑡𝑒𝑟𝑛)?, 			//for m =0 to 4; 
d- Repeat for each byte, cj, in si 

    d1- If (cj is a flagged byte) Then continue; 
d2- If (CurrentP[0] is exhausted)  
 Then CurrentP[0] =	𝑃𝑎𝑡𝑡𝑒𝑟𝑛)?E ;  

 d3- cj’ = Flip cj bits using CurrentP[0]; 
    d4- cj’ = Circularly swap proper cj bits using 

CurrentP[0]; 
d5- σ = Select(cj’, CurentP[1],  

CurrentP[2],CurrentP[3],CurrentP[4]); 

d6- a = cj’ Å σ; 
d7- IC←IC || a; 

End;   
     pt[•]++; pt[•] ← pt[•] mode 2;   

     End; 
     e- Remove block bn from C; 
     f- Apply one-bit-left-rotation on k; 
End; 

End; 
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Profile: (0440029104645112000021C0)16 

(00000100010000000000001010010001000001000
110010001010001000100100000000000000000001
0000111000000)2    
 
Profile Dissection:  
 
Prefix 
     00000               10001             0000000000001010   
Reserved bits     Preference bits             Flag bits  
 
010      001     00000100      
W=3   M=1       R=3 
 
 011      001     00010100       000      000    00000000 
W1=4   M1=1    R1 =3 & 5    W3=1   M3=0      R3=0 
 
 010      010     00100000      100      010    11000000     
W2=3   M2=1      R2 = 6        W4=5  M4=2   R4=7 & 8   
 
 
A 4-byte Key: (ABC9023D)16  
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The identification process is done by creating y binary 
numbers using k.  The i-th binary number starts from the 
least significant bit of the k and ends at the bit with the i-th 
value of “1” in k.  The binary numbers are converted into 
decimal numbers and sorted in ascending order, {d1, d2, . . . 
dy-1, dy}.  The block, bn=Substr(C, 0, dy), where C is initially 
a copy of the cipher text. 
 The third section (Step 2.c of the algorithm) divides 
block bn into a number of random size segments.  The size 
and the number of segments are dictated by the k internal 
representation.  Block bn has y segments: { s0 . . .sy-1}.  
 The segment si starts from the first byte after the 
segment si-1  (the location is preserved in variable CL) and 
contains λi=di+1 – di bytes.  The number of segments and 
their lengths are not the same for different blocks.   
 To get the next block of the ciphertext, the block bn is 
removed from C (Step 2.e) and k is changed by having a 
one-bit-left-rotation (Step 2.f).  Using the above process 
along with the new k, the next block with a different size is 
identified.  This process continues until C is exhausted.   It 
is clear that the lengths of blocks are not necessarily the 
same.  In fact, the lengths of the blocks are random.  It 
needs to be mentioned that the length of blocks bi and bi+8 
are the same when k is one byte long.  When k is two bytes 
long, the length of the blocks bi and bi+16 are the same. And 
a block on average is 32,768 bytes long.  As a result, the 
ciphertext, on average, must be longer than 491,520 bytes 
before the blocks’ lengths are repeated. 
 

 

 

 

 

 

 

 

 

 
Figure 4. Algorithm Select 

 The fourth section (Step 2.d of the algorithm) delivers 
the masked version of the ciphertext, byte by byte, for a 
given segment.  Flagged bytes are not masked (Step 2.d1).  
If the number of bytes in the segment si is greater than the 
cardinality of the pattern then, the pattern repeats itself 
(Step 2.d2).  Each byte, cj, of the segments si (for i=1 to y-1) 
are masked by applying (i) the relevant member of the 
current sub-pattern on byte cj (Step 2.d3 and 2.d4), (ii) 
identifying the key image (Step 2.d5), by invoking the 
Algorithm Select (Figure 4), (iii) create cj’, the masked 
version of cj, by XORing the outcome of process (i) and 
process (ii), (Step 2.d6), and (iv) concatenate the masked 

version of cj, to the string of IC, which ultimately becomes 
the inoculated version of the inputted ciphertext  (Step 2.d7).   

 2) Unmasking of the Ciphertext: For unmasking a 
masked ciphertext, those steps that were taken during the 
masking process are applied in reverse order.  Therefore, the 
Algorithm Mask with a minor change in step 2.d can be 
used for unmasking.  We show only the changes to Step d of 
Figure 3 in Figure 5.   
 
 
 
 
 
 
 
 

 

Figure 5.  The modified part of the Algorithm Mask 

IV. EMPIRICAL RESULTS 
 To measure the effectiveness of the proposed Vaccine, 
we compared its performance with the performance of the 
well-established masking algorithms of CBC and CFB.  The 
behavior of Vaccine was observed using three separate 
profiles of simple, moderate, and complex.  These 
observations are named VACs, VACm, and VACc. 
 Two plaintext templates of natural and synthetic were 
chosen and 100 plaintexts were generated for each template.  
Each plaintext following the first template was selected 
from a natural document made up of the lower and upper-
case alphabets and the 10 digits—total of 62 unique 
symbols.  Each plaintext following the second template was 
randomly synthesized using the 10 symbols set of {A, b, C, 
L, x, y, 0, 4, 6, 9}.  The goal was to synthesize plaintexts 
with high occurrences of a small set of symbols.  Each 
plaintext created under both templates was 1K bytes long. 
 For each plaintext, two ciphertexts of Ca and Cd were 
generated using Advanced Encryption System (AES-128) 
and Data Encryption Standard (DES) algorithms 
[20][21][22]. The masking approaches of CBC, CFB, 
VACs, VACm, and VACc were applied separately on Ca and 
Cd generating the masked ciphertexts of:  
 
  	{𝐶I+J+, 𝐶I

+KJ, 	𝐶I
LI+M, 	𝐶I

LI+N, 	𝐶I
LI+O} and 

  	{𝐶Q+J+, 𝐶Q
+KJ, 	𝐶Q

LI+M, 	𝐶Q
LI+N, 	𝐶Q

LI+O}.  
 
   When CFB was applied on Ca and Cd the key lengths 
were 64-bit and 128-bit, respectively, and the IV was 
chosen from a natural document.  (The least significant 64 
bits of the 128-bit key was used as the key when CFB was 
applied on Ca.  The key used by VACs, VACm, and VACc 
was also borrowed from the least significant 32 bits of the 
128-bit key used for CFB.) 
 Let us consider the first set of masked ciphertexts 
	{𝐶I+J+, 𝐶I

+KJ, 	𝐶I
LI+M, 	𝐶I

LI+N, 	𝐶I
LI+O}	generated from Ca.  The 

d- Repeat for each byte, cj’, in si 

d1- If (cj is a flagged byte) Then continue; 

d2- If (CurrentP[0] is exhausted)  Then CurrentP[0] =	𝑃𝑎𝑡𝑡𝑒𝑟𝑛)?E ;  
d3- σ = Select(cj’, CurentP[1], CurrentP[2], CurrentP[3], CurrentP[4]; 
d4- a = cj’ Å σ; 

d5- a = Circularly swap bits of a using CurrentP[0]; 
d6- a = Flip a bits using CurrentP[0]; 
d7- UM←UM||a; //UM is the unmasked ciphertext;  

End; 
 

Algorithm Select 
Input: A byte (c), Key, and four patterns for the four key bytes. 
Output: key image, k. 
Method: 

a. Repeat for (w = 1 to 4) 
If (CurrentP[w] is exhausted)  
Then CurrentP[w] =	𝑃𝑎𝑡𝑡𝑒𝑟𝑛)?R ;  

End; 
b. h ← -1; 
c. Repeat for v= 1 to 4; 

i. cv ← An instantiated version of KeyBytev using 
related sub-pattern.  

ii. If HD(c, cv) >h //HD is Hamming distance function 
Then h = HD(c, cv); k = cv; 

   End; 
End; 
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following steps are used to compare the effectiveness of the 
proposed Vaccine with CBC and CFB.  (The same steps are 
also followed to compare the effectiveness of the proposed 
Vaccine with CBC and CFB using the masked ciphertexts 
of {𝐶Q+J+, 𝐶Q

+KJ, 	𝐶Q
LI+M, 	𝐶Q

LI+N, 	𝐶Q
LI+O}.) 

a. Get the list of unique symbols, which makes up the 
plaintext, List={s1 . . . sm }.  

b. Get the frequency of symbol si, for i = 1 to m, and 
calculate the average frequency of the symbols. 

c. Repeating the next two steps for every symbol, si, in the 
list. 

d. Identify the locations for all the occurrences of the 
symbol, si, in the plaintext, (ℓi

1 . . . ℓi
n). 

e. Identify the bytes in the locations of (ℓi
1 . . . ℓi

n) within 
the 𝐶I• and calculate the Hamming distance, hj, between 
the two bytes in location ℓj, for j=1 to n, in the plaintext 
and 𝐶I•.  The overall average of Hamming distance for 
the symbol si is hsi =Average(h1 . . . hn),  

f. Concluding that the underline masking methodology 
with the highest average values of the Hamming 
distances have a superior performance. 

TABLE I. AVERAGE OF HAMMING DISTANCES BETWEEN THE 
TWO 100 PLAINTEXTS OF 1K BYTE LONG (GENERATED 
BY TWO TEMPLATES) AND THEIR RELATED MASKED 
CIPHERTEXTS: (A) ENCRYPTED BY AES AND (B) 
ENCRYPTED BY DES 

Tem.  

Avg. 
Symb. 
Freq. 

AES-128 
CBC CFB128 VACs  VACm  VACc  

Dist. Dist. Dist. Dist. Dist. 
Syn. 103 3.568 3.570 4.415 4.373 4.411 
Natu. 16.5 3.569 3.561 4.423 4.361 4.411 

(a) 
 

 
 

Tem.  

Avg. 
Symb.
Freq. 

DES 
CBC CFB64 VACs  VACm  VACc  
Dist. Dist. Dist. Dist. Dist. 

Syn. 103 3.527 3.526 4.182 4.153 4.223 
Natu. 16.5 3.513 3.515 4.176 4.141 4.221 

(b) 
	

 

TABLE II. THROUGHPUT AVERAGE IN MILISECOND FOR THE 
TWO 100 PLAINTEXTS OF 1K BYTE LONG (GENERATED 
BY TWO TEMPLATES):  (A) ENCRYPTED BY AES AND 
(B) ENCRYPTED BY DES  

Tem.  

Avg 
Symb.
Freq. 

AES-128 
CBC CFB128 VACs  VACm  VACc  
TPut. TPut. TPut. TPut. TPut. 

Syn. 103 4545 11111 25000 33334 20000 
Natu. 16.5 12500 10000 16667 20000 12500 

(a) 

Tem.  

Avg 
Symb. 
Freq. 

DES 
CBC CFB64 VACs  VACm  VACc  
TPut. TPut. TPut. TPut. TPut. 

Syn. 103 3846 11111 20000 25000 14286 
Natu. 16.5 10000 10000 14286 20000 11111 

(b) 
 
 The outcome of applying the above steps on the 
ciphertexts of   	{𝐶I+J+, 𝐶I

+KJ, 	𝐶I
LI+M, 	𝐶I

LI+N, 	𝐶I
LI+O} and  

	{𝐶Q+J+, 𝐶Q
+KJ, 	𝐶Q

LI+M, 	𝐶Q
LI+N, 	𝐶Q

LI+O} are shown in Table I.a 
and Table I.b.  We have also used the system clock to 
calculate the average throughput (in millisecond) for the 
masking approaches of CBC, CFB, VACs, VACm, and 
VACc and reported in Tables II.a and II.b. 
 In addition, a masking strength of µ (0 < µ < 1), is 
introduced that is defined as µ=Ninst / Nocc, where Ninst is the 
number of unique bytes in the masked ciphertext 
representing the instantiations of the Nocc occurrences of 
symbol si in the underlying plaintext of the masked 
ciphertext.  The masking strength for CBC, CFB, VACs, 
VACm, and VACc are presented, respectively, in Tables III.a 
and III.b. 

TABLE III. AVERAGE MASKING STRENGTH FOR THE TWO 100 
PLAINTEXTS OF 1K BYTE LONG (GENERATED BY TWO 
TEMPLATES): (A) ENCRYPTED BY AES AND (B) 
ENCRYPTED BY DES 

Tem.  

Avg. 
Symb. 
Freq. 

AES-128 
CBC CFB128 VACs  VACm  VACc  
µ µ µ µ µ 

Syn. 103 0.506 0.486 0.451 0.540 0.571 
Natu. 16.5 0.882 0.878 0.845 0.890 0.889 

(a) 
 

Tem.  

Avg. 
Symb.
Freq. 

DES 
CBC CFB64 VACs  VACm  VACc  
µ µ µ µ µ 

Syn. 103 0.501 0.494 0.490 0.564 0.570 
Natu. 16.5 0.878 0.894 0.880 0.909 0.893 

(b) 
	

V. FINDINGS FOR SINGLE-PAIRED-USER 
ENVIRONMENT  

 The performance of the presented new cipher block 
approach, Vaccine, for masking and unmasking of 
ciphertexts seems superior to the performance of the well-
known masking approaches of CBC and CFB.  
The advantages of Vaccine over CBC and CFB are 
numerated as follows:    
a. The key and patterns’ profile may hide in the masked 

ciphertext. 
b. The block size for Vaccine is not fixed and it is selected 

randomly.    
c. Each block is divided into segments of random size.   
d. The masking pattern changes from one byte to the next 

in a given segment. 
e. Masking a ciphertext using Vaccine demands mandatory 

changes in the ciphertext.  Therefore, the identity 
transformation could not be provided through the 
outcome of Vaccine. The simple proof is that the 
Hamming weight is modified. 

f. The results revealed that on average: 
i. The Hamming distance between masked and 

unmasked occurrences of a byte using Vaccine is 
0.72 bits higher than using CBC and CFB. 

ii. Vaccine throughput is 3.4 times and 1.8 times higher 
than throughput for CBC and CFB. 

186

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



iii. Vaccine masking strength is 1.5% and 1.8% higher 
than masking strength for CBC and CFB. 

iv. VACm masking strength is 3.6% and 3.7% higher 
than masking strength for CBC and CFB.  And VACc 
masking strength is 3.9% and 4.2% higher than 
masking strength for CBC and CFB.  

VI. MULTI-PAIRED-USER ENVIRONMENT 

 A secure multi-user environment [13][23][24] is 
represented by a graph, G(V, E), where V is a set of vertices 
representing the user members of the environment and E is a 
set of bi-directional edges indicating the communication 
between paired users.  As an example, let us consider a 
secure multi-user environment, Figure 6, for which V is 
composed of the set {v1, v2, v3} and E is composed of the set 
{e1,2, e1,3, e2,3.) 
   
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. A safe multi-user environment with three cooperative users 

 There is a pairwise masking image, MIi,j associated with 
each edge, ei,j, that enables the two users of vi and vj to 
communicate securely with each other (i.e., vaccinated 
messages can flow between vi and vj through the edge of ei,j.)  
The pairwise MIi,j has two major components of a pairwise 
key, ki,j, and a pairwise profile, PFi,j, Figure 2.  For a pairwise 
ki,j of four-byte long the PFi,j includes a prefix, PREi,j, and 
five sets of triplets (W, M, R) , 𝑇𝑅𝐼V,W = {𝑇𝑟𝑖V,WE , . . ., 𝑇𝑟𝑖V,W7 }, 
that each one prescribes a set of patterns.  The number of bits 
to accommodate one triplet in PFij is 14.  The pairwise key 
ki,j can grow as many bytes as desired (the maximum of 512 
bytes.)  The number of triplets in TRIi,j also grows with the 
growth of key length.  For each added byte to the key, a new 
triplet is added to the PFij.  Beyond the key length of sixteen 
bytes, the length of prefix also grows one bit at a time.  Each 
added bit to the prefix doubles the length of key in bytes.  
Since there are five reserved bits in PFij and they can be used 
to increase the length of the prefix, the key length can grow 
up to 512 bytes.  Each one of these bytes can be addressed by 
the second partition of the preference bits (i.e., all the 
preference bits excluding the most significant bit.)  For the 
key length of Lk bytes, the PF length, Lp, is calculated in bits 
using formula (3): 
 

Lp = 14(Lk+1) +26  (3) 

 Since the pairwise masking images are associated with 
edges, we also refer to MI, k, and PF as the edge masking 
image, edge key, and edge profile, respectively. 
 The secure multi-user environment of our interest has 
the option of revoking existing users.  That is, upon revoking 
a user the keys become vulnerable and a key management 
approach needs to be employed.  Key management is 
achieved in two ways: key distribution [13][14][15][16] and 
key agreement[17][18][19].  In the key distribution approach, 
each user has its own private key and it is only shared with a 
key-distribution center (KDC).  In the case that vk needs to 
communicate with vm, KDC is asked for a session key that 
will be generated and delivered to both vk and vm.    
 In the key agreement approach, a number of users agree 
on having one community-based key, K, and all users 
participate in building such a key by donating their individual 
keys.  The community-based key remains private to the 
members.   
 The revoking option using key distribution has the same 
overhead cost for using CBC, CFB, and Vaccine.  However, 
adaptation of the Vaccine into the key agreement approach 
suggests some interesting developments that need to be 
discussed. 
 The key agreement approach requires that as soon as a 
user, vk, is revoked all the edges be re-keyed, re-profiled, or 
both (regardless of substituting or not substituting the 
revoked user.)  Let us take a closer look at these three 
options.  During the masking process conducted by Vaccine, 
edge key and edge profile, play a role.  In fact, the masking 
of a ciphertext is completed by the use of the model and 
native byte (both terms explained in Section III), which in 
turn was generated by employing the prefix (PRE), triplets 
(TRI), and key (k), along with the plaintext.  Therefore, the 
revoked user cannot correctly mask (or de-mask) a ciphertext 
as long as one of the three parameters of PRE, TRI and k 
changes.  However, both re-keying and re-profiling may 
provide a higher masking strength.    
 To implement the Vaccine adaptation into the key 
agreement approach we present three algorithms of Keys, 
Carve, and Profile. The Keys algorithm dynamically creates 
N pairwise keys of a given length for N edges that 
collectively make the community-based key, K.  The 
algorithm Carve randomly generates a set of triplets based on 
the key length and also enforces the internal constraints on 
the randomly generated triplets.  The Algorithm Profile 
generates either one profile used by all pairwise keys or N 
profiles for the N edges.  The details of the three algorithms 
are covered in the following three subsections. 

A. Algorithm keys 
 Dynamically creating a Community-based key, K, which 
is composed of a large number of edge keys (one per edge 
and for the purpose of re-keying) is encapsulated by the 
algorithm Keys, Figure 7.  In the N iterations of Step 3, 
which is the number of edge keys, the algorithm delivers N 
pairwise keys with the length of Lk bytes that are randomly 

 PF1,2={k1,2 , TRI1,2} 
v1  v2 
 
 
 
 
  
 
 
 v3 
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generated.  This is accomplished by randomly generating Lk 
binary strings with the length of Lk = 256-bit (Step 2.) Eight 
bits from each one of the Lk strings are selected randomly 
(Step 3.a.) The obtained bytes are concatenated in a random 
order to make one edge key of Lk bytes long (Step 3b.)  The 
resulting edge key, k, is added to the Community-based 
aggregated key, K, (Step 3.c.)  
 
 

 

 

 

 

 

 

 

	
	

Figure 7. Algorithm Keys 

B. Algorithm Carve 
 The algorithm Carve, shown in Figure 8, accepts an edge 
key with length of Lk bytes and randomly creates a binary 
number, TRI, of the length Lp delivered by formula (3) (Step 
2.)   
 Considering Figure 2, the length of PRIi,j in the edge 
profile of PFi,j is 26 bits.  As we mentioned previously the 
number of bits needed to express each triplet of (W, M, R) in 
PFi,j is 14 bits.  Therefore, each 14 bits after the 26-bit prefix 
is made up of three parts (Part1, Part2, and Part3).  Part1 (W) 
is 3 bits long and starts from the location r1 = 26 in the 
profile.  Part2 (M) is also 3 bits long and starts immediately 
after Part1 (i.e., location r2 = r1 +3.)  Part3 (R) is 8 bits long 
and starts 6 bits after Part1 (i.e., location r3 = r1 +6.)  (Step 3 
gets the starting points of Part1, Part2, and Part3.) 
 The locations of Part1of all the triplets are separated by 
14 bits and the same is true for the locations of Part2 and 
Part3 of all triplets. The three parts of each triplet are 
obtained in Step 4.a and converted to decimal numbers in 
Step 4.b.  In reference to the three parts of the triplets we 
have three concerns that need to be addressed.  These 
concerns are in reference to the constraints on W, R, and M 
values in W-R-Bit-M-Flip-Circular-Swap technique. 
 The first concern is about the validity of the equivalent 
decimal value carried by (Part1+1) of the triplet.  If the value 
is less than 2, the value changes to 2 (Step 4.c.) 

 The second concern is about the equivalent decimal 
value in Part2 that must be at least one less than the value in 
Part1 (a constraint rule between W and M.)  If the value of 
Part 2 is greater than or equal to the value in Part1, it is 
reduced to make it smaller such that the value of Part 1 is 
higher by 1 (Step 4.d.)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Algorithm Carve 

 The third concern is about the validity of the content of 
Part3 of the triplet.  The count of 1s in Part3 must be equal to 
the equivalent decimal value carried by Part2 of the triplet.  If 
the count of 1s is higher, randomly enough 1s are flipped to 
zero and if the number of 1s is lower, randomly enough 0s 
are flipped to one to solve the problem (Step 4.e.) 
 Replace the three parts of the triplet with their new 
changes (Step 4.f.)  By adjusting the index of i (Step 4.g) all 
the parts in TRI are inspected and corrected.           

C. Algorithm Profile 
Now we are ready to look into two cases of using: 

(a) a new aggregated community-based key, K, and (i) 
one new profile for all edges or (ii) one new profile 
per edge and  

(b) the existing aggregate key for the community and (i) 
one new profile for all edges or (ii) one new profile 
per edge. 

One may raise the question of why case (b) is a valid case to 
begin with.  The question is an important one because 

Algorithm Keys (Lk, N) 
Input: Lk, which is the length of key in bytes and N is the 

number of edge keys needed. 
Output: A Community-based key, K, made up of N edge keys 

randomly generated on fly. 
Method: 

Step 1: k = “”; l =0; J =0; 
Step 2: Create Lk binary numbers of 256-bit long: S1, . . ., SLk; 
Step 3: Repeat (while l < N) 

 a: Select eight bits randomly from each string: B1, . . ., BLk; 
 b: Repeat (while j < Lk) 

a1: Randomly pick a byte, B’, from the set{ B1, . . ., 
BLk}; 

a2: k = k|| B’; j = j++; 
 End; 
 c: K = K||k; 
 d: k = “”; 
 e: j =0; 
 f: l = l++; 

 End; 
End; 

Algorithm Carve (k, Lk)   
Input: An edge key, k, with the length of Lk bytes.  
Output: Dynamically generating a set of triplets, TRI, that is 

in agreement with k. 
Method: 

Step 1: i = 0; 
Step 2: Create a random binary number of Lp = 14(Lk+1) +26 
bits long, TRI; 
Step 3: r1 = 26; r2 = r1 +3; r3 = r1 +6; 
Step 4: Repeat while (i <14 Lk ) 

a: 𝑃𝑎𝑟𝑡V#  = SUBSTR(TRI, r1+i, 3); 
    𝑃𝑎𝑟𝑡V4  = SUBSTR(TRI, r2+i, 3);   
𝑃𝑎𝑟𝑡V$= SUBSTR(TRI, r2+i, 7);   

b: f1 = DECIMAL(𝑃𝑎𝑟𝑡V#)+1;  f2 = DECIMAL(𝑃𝑎𝑟𝑡V4) ;  
/*DECIMAL function converts a given binary 
number into decimal number*/ 

c: If (f1 < 2) Then f1 = 2; 
d: If (f1 £ f2) Then f2 = f1-1; 
e: If (COUNT(𝑃𝑎𝑟𝑡V$) - f2 > 0) 
 Then randomly flip (COUNT(𝑃𝑎𝑟𝑡V$) - f2) bits in 

𝑃𝑎𝑟𝑡V$  to 0; 
If (COUNT(𝑃𝑎𝑟𝑡V$) - f2 < 0) 

 Then randomly flip |COUNT(𝑃𝑎𝑟𝑡V$) - f2| bits in 
𝑃𝑎𝑟𝑡V$  to 1; 

f: SUBSTR(TRI, r1+i, 3) = BINARY(f1); 
SUBSTR(TRI, r2+i, 3) = BINARY(f2); /*BINARY 

function converts a given decimal number into 
binary number*/  

SUBSTR(TRI, r3+i, 8)=	𝑃𝑎𝑟𝑡V$; 
g:  i = i+14;   

End; 
End; 
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keeping the existing aggregate key may jeopardize the 
overall security of the system.   To answer the question, as it 
was mentioned before, the PF (composed of PRE and TRI) 
and k are needed to complete the vaccination.  As long as 
either PF or k changes, the vaccination results are different.  
Therefore, case (b) is a legitimate one.  The set of steps for 
implementing case (a) and case (b) are given in the algorithm 
Profile shown in Figures 9.   
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Algorithm Profile 

 The parameter Option is 2 bits long and the values “1” 
and “0” for the most significant bit represent case (a) and 
case (b), respectively.  The option (i) in both cases is 
represented by the least significant bit set to “0”.  The option 
(ii) in both cases is represented by the least significant bit set 
to “1”. 
 For case (a) option (i), the algorithm does not re-key the 
existing community-based key, EK, however, it generates 
one profile used by all users (Step 1.a) and for the same case 
option (ii), no re-keying takes place and the algorithm 
generates a new edge profile for every edge (Step 1.b.)  For 
the case (b) the algorithm reacts the same way that it has 
reacted for case (a) except that for both options of (i) and (ii) 

first, a new community-based, K, is generated and then one 
new edge profile (Step 1.c) or N edge profiles (one per edge) 
are generated (Step 1.d.)      
 It is worth mentioning that in the case of the pair-wise 
community growth, the above algorithms easily can provide 
for re-keying and re-profiling of only the new edges without 
disturbing the existing edge masking images. 

VII. FINDINGS FOR MULTI-PAIRED-USER 
COMMUNITY 

 The findings about the behavior of the Vaccine in a 
secure multi-paired-user community are the same as those of 
a single-paired-user environment.  The reason stems from the 
fact that the vaccine performs the same function in a single-
paired-user system as it does on each individual paired-user 
in the community.  However, the re-keying and re-profiling 
are pure overhead and this is true anytime that a key 
agreement is used.  To have a better understanding of this 
overhead cost we have completed the time complexity 
calculations for the three algorithms of Keys, Carve, and 
Profile, Table IV.  The notations of 		𝐿Z and N are used for 
the key length and the community size, respectively. 

TABLE IV. TIME COMPLEXITY FOR ALGORITHMS KEYS, CARVE, 
AND PROFILE  

Algorithm Time Complexity 
Keys O(N):                    if 		𝐿Z  < N 

O 𝑁⎾𝐿𝑘/_⏋ 	:      otherwise  
Carve O(1)   
 
 
 
Profile 

For Option = “10” and “11” 
O(N):                    if 		𝐿Z  < N 
O 𝑁⎾𝐿𝑘/_⏋ 	:      otherwise  
For Option = “00” 
O(1) 
For Option = “01” 
O(N) 

 
 The findings reveal that the performance of the three 
algorithms in the worst case is linear to the size of the 
community assuming the size is larger than the length of the 
key given to the community members.  The assumption is not 
far from reality and, in general, any linear growth in delivery 
of an algorithm with the large size of community is well 
accepted behavior.      

VIII. CONCLUSION AND FUTURE RESEARCH  
 A new cipher block approach, Vaccine, for masking 
and unmasking of ciphertexts was introduced and 
implemented with one major goal in mind: Removal of 
inherited-features from a ciphertext.  The methodology was 
first applied to a single-paired-user environment and the 
performance of the Vaccine was scrutinized by comparing it 
with the two well-known approaches of CBC and CFB 
modes. The advantages of the Vaccine application in a 
single-paired environment   were numerated in Section V.  
The adoption of Vaccine for a multi-paired-user 
environment with the option of user revocation was also 
explored, which resulted in a methodology for re-keying 

Algorithm Profile (Option, Lk, N, EK) 
Input:  Option (Option = “10” means a new aggregate key 

and one new profile is needed for the entire 
aggregate key. Option = “11” means a new 
aggregate key and one new profile is needed for 
each edge key within the aggregate key.  Option = 
“00” means one new profile is needed for the entire 
aggregate old key. Option = “01” means one new 
profile is needed for each edge key within the old 
aggregate key.), a desired key length, Lk, the number 
of needed edge keys, N, and an existing community-
based key, EK. 

Output: (a) A new community-based key K and one or N 
new profiles or 

 (b) One or N new profiles 
Method: 

Step 1: Switch (Option) 
a:  Case “10”:  

K = Keys(Lk, N);  
k = one individual key in the community-

based key K; 
Carve(k, Lk); 
Break; 

b:  Case “11”: 
K = Keys(Lk, N);  
Repeat for every key, ki, in the community-

based key K 
    Carve(ki, Lk); 
End; 
Break; 

c: Case “00”: 
ek = one individual key in EK.  
Carve(ek, Lk);  
Break; 

d: Default: 
Repeat for every key, eki, in EK. 
     Carve(ki, Lk); 
End 

End; 
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and re-profiling. One major property of the new keys and 
new profiles was that they were generated by starting with 
the creation of completely random and long binary strings.  
In general, using such strings provide a better protection for 
the keys and profiles against the adversarial attempts.   
 As future research, building a new version of the 
Vaccine is currently in progress to make the throughput and 
the masking strength of the methodology even higher.  
Study of Vaccine as an authentication method in a secure 
multi-paired-user environment has been scheduled. 
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