

A Block Cipher Masking Technique for

Single and Multi-Paired-User Environments

Ray R. Hashemi
Amar Rasheed
Jeffrey Young

Department of Computer Science
Georgia Southern University, Armstrong Campus

Savannah, GA, USA
e-mails: {rayhashemi, amarrasheed, alanyoung10101}

@gmail.com

Azita A. Bahrami
IT Consultation

Savannah, GA, USA
e-mail: Azita.G.Bahrami@gmail.com

Abstract— A ciphertext inherits some properties of the
plaintext, which is considered as a source of vulnerability and,
therefore, it may be decrypted through a vigorous datamining
process. The vulnerability increases when a community of
users is communicating with each other. Masking the
ciphertext is the solution to this vulnerability. We have
developed a new block cipher masking technique named
Vaccine for which the block size is random and each block is
further divided into segments of random size. Each byte
within a segment is instantiated using a dynamic multi-
instantiation approach, which means (i) the use of Vaccine
does not produce the same masked outcome for the same given
ciphertext and key and (ii) the choices for masking different
occurrences of a byte are extremely high. Vaccine is tested in
both single-paired-user and multi-paired-user communities
with the revoking option. A key agreement is	used to manage
key changes required by the revoking option. For testing in a
single-paired-user environment, two sets (100 members in
each) of 1K long plaintexts of natural (borrowed from natural
texts) and synthesized (randomly generated from 10 characters
to increase the frequency of characters in the plaintext) are
built. For each plaintext, two ciphertexts are generated using
Advanced Encryption System (AES-128) and Data Encryption
Standard (DES) algorithms. Vaccine and two well-known
masking approaches of Cipher Block Chaining (CBC), and
Cipher Feedback (CFB) are applied separately on each
ciphertext. On average: (a) the Hamming distance between
masked and unmasked occurrences of a byte using Vaccine is
0.72 bits higher than using the CBC, and CFB, and (b) Vaccine
throughput is also 3.4 times and 1.8 times higher than the
throughput for CBC and CFB, correspondingly, and (c)
Vaccine masking strength is 1.5% and 1.8% higher than the
masking strength for CBC and CFB, respectively. For testing
in a multi-paired-user community with the revoking option,
the findings remain the same for every single-paired-user.
However, there is an overhead cost related to re-keying and re-
profiling, which is caused by the revoking of a user from the
community or expanding the community of users. The
overhead cost is linearly related to the size of community.

 Keywords- Cyber Security; Masking and Unmasking
Ciphertext; Variable-Block Cipher Vaccination; Masking
Strength; Key Aggregation; Re-keying; Re-Profiling

I. INTRODUCTION
 Protecting sensitive electronic documents and
electronic messages from unintended eyes is a critical task.
Such protections are provided by applying encryption.
However, the encrypted text (ciphertext) is often vulnerable
to datamining. The root of such vulnerability is in the
inherited-features of the plaintext by the ciphertext. We
have addressed the problem and its solution in the past for a
secure single-paired-user environment [1]. (The distinct
property of this environment is that there is no community
of users, but there are individual pairs of users.) However,
we expand the previously reported paper to address not only
the single-paired-user environment but also a secure multi-
paired-user environment with the option of revoking user.
 The distinct properties of such an environment are: (i)
presenting the environment as a graph in which users make
the vertices and the communications established among the
users make the edges of the graph, (ii) having a community-
based key, which is the aggregation of the single-paired-
user keys, and (iii) having the option to revoke the
membership of a user in the community. The side effect of
the last property demands a re-keying of the remaining
single-paired users in the community whenever membership
of a user is revoked. Regardless of having a secure
single or multi-paired-user environment, the problem of
inherited-features will not disappear and the problem is not
limited only to primitive encryption modes such as
displacement but also it can be observed in the outcome of
more sophisticated encryption modes such as CBC and CFB
[2][3][4]. The following examples provide some evidence.
 As an example related to primitive encryption modes,
let us consider the plaintext message of: “The center is
under an imminent attack”. The plaintext may be converted
into the following ciphertext using, for instance, a simple
displacement encryption algorithm:
“xligirxvmwyrhivermqqmrirxexxego”. The features of the
plaintext are also inherited by the ciphertext—a point of
vulnerability. To explain it further, the word “attack” is

180

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

among the key words related to security. The
characteristics of the word are: (i) length is six, (ii) the first
and the fourth characters are the same, and (iii) the second
and the third characters are the same. Using these
characteristics, one can mine the given ciphertext and
isolate the subtext of “exxego” that stands for “attack"
which, in turn may lead to decryption of the entire message.
 As an example related to more sophisticated encryption
modes, the block cipher techniques that employ CBC/CFB
encryption mode to produce distinct ciphertexts are
vulnerable to information leakage. In the case of CBC/CFB
using the same Initial Text Vector (IV) with the same
encryption key for multiple encryption operations could
reveal information about the first block of plaintext, and
about any common prefix shared by two different plaintext
messages. In CBC mode, the IV must, in addition, be
unpredictable at encryption time; in particular, the
(previously) common practice of re-using the last ciphertext
block of a message as the IV for the next message is
insecure (for example, this method was used by Secure
Sockets Layer (SSL) 2.0). If an attacker knows the IV (or
the previous block of ciphertext) before he specifies the next
plaintext, he can check his guess about plaintext of some
block that was encrypted with the same key before (this is
known as the Transport Layer Security (TLS) CBC IV
attack) [5].
 The problem of inherited-features becomes a bigger
concern when communication takes place within a secure
community of users with a user revoking option. Upon
revoking a user from the community, all the keys used for
communication between any two users that collectively
make a community-based aggregate key, need to be changed
(re-keying process) on the fly. As a result, the inherited-
features problem needs to be addressed in two
environments: Single-paired-user and multi-paired-user
[6][7].
 In either environment, the fact remains the same that
the logical solution for the inherited-features problem is to
mask the ciphertext using a masking scheme that is dynamic
and supports a high degree of multi-instantiations for each
byte. A dynamic masking scheme does not produce the
same masked outcome for the same given ciphertext and the
same key. The high degree of multi-instantiation masking
scheme replaces the n occurrences of a given byte in the
ciphertext with m new bytes such that m is either equal to n
or extremely close to n.

The goal of this research effort has two prongs:

(1) Introducing and building a dynamic masking scheme,
named Vaccine for a single-paired-user environment.
The Vaccine also supports a high degree of multi-
instantiations that can mask the inherited-features of
a ciphertext in the eye of a data miner while
providing for transformation of masked ciphertext
into its original form, when needed and

(2) Adapting the Vaccine for use in a multi-paired-user
community that has the revoking option.

The Vaccine has the following three unique traits, which
makes it a powerful masking scheme: It (1) divides the
ciphertext into random size blocks, (2) divides each block
into random size segments, and (3) every byte within each
segment is randomly instantiated into another byte. All
three traits are major departures from the norm of masking
schema.
 The rest of the paper is organized as follows. The
Previous Works is the subject of Section II. For single-
paired-user environment, the Methodology is presented in
Section III, the Empirical Results are discussed in Section
IV, and the findings are covered in Section V. For a
multiple-paired-user environment, the adoption of the
Vaccine is the subject of Section VI and the findings are
discussed in Section VII. The conclusion and future
research are presented in Section VIII.

II. PREVIOUS WORKS
 In a secure single-paired-user environment, masking the
features of a ciphertext that are either inherited from the
plaintext or generated by the encryption scheme itself is the
essential step in protecting a ciphertext. The block cipher
and stream cipher mode of operations provide for such a
step. We are specifically interested in CBC [8][9][10] and
CFB [11] as samples of the block cipher and stream cipher
mode of operations. They are to some degree comparable to
the proposed Vaccine.
 CBC divides the ciphertext into fixed–length blocks
and masks each block separately. The use of fixed-length
block demands padding for the last partial block of the
ciphertext, if the latter exists. The CBC avoids generating
the same ciphertext when the input text and key remain the
same by employing an Initial Text Vector (IV).
 CFB eliminates the need for possible padding of the
last block (that is considered a vulnerability for CBC [12])
by assuming the unit of transmission is 8-bits. However,
CFB also uses IV for the same purpose that it was used for
CBC.
 In contrast, Vaccine splits the ciphertext into random
size blocks and then sub-divides each block into segments
of random size. Masking each pair of segments is done by
using a pair of randomly generated patterns. As a result,
Vaccine needs neither padding nor IV. The randomness of
the block size, segment size, and patterns used for
instantiation of a given character are the major departure
points of Vaccine from the other block and stream cipher
approaches.
 In a secure multi-paired-user environment with a
revoking option, the use of CBC and CFB demand key
management, which could be executed either by a key
distribution [13][14][15][16] or key agreement [17][18][19]
process (both processes are considered as pure overhead.)
Key management is also adopted by Vaccine, which in turn
requires the re-keying operation of the entire community-
based aggregate key. Such overhead may be reduced by
using the Vaccine. The reduction in overhead cost comes
from the fact that the Vaccine masking is an amalgamation
of random patterns, a key, and the use of a randomly
generated byte from the plaintext. Therefore, if the revoked

181

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a)

	p1																																											p2	

(i) Flip
�̅�#

(ii)
Circular

Swap

		p1	p2	p3		p4	p5		p6	p7		p8	

(i) Flip
�̅�#�̅�$	�̅�&�̅�'		

 (ii) Circular
Swap

(b)

user knows only the keys then, it is not enough to correctly
de-mask (or mask) a ciphertext as long as the patterns’
profile changes. Changing the patterns’ profile is less
expensive than the re-keying process. Of course, re-keying
always remains as another viable option.

III. SINGLE-PAIRED-USER ENVIRONMENT
 First, we present our methodology for instantiation of a
byte, which contributes into dynamicity of Vaccine. Second,
we introduce our methodology for building Vaccine. The
details of the two methodologies are the subjects of the
following two subsections.

A.		Instantiation		
 Instantiation is the replacement of a byte, c, by another
one, c’, such that c’ is created by some modifications in c.
To perform the instantiation, we present our two methods of
Self-substitution and Mixed-Substitution. Through these
methods, a number of parameters are introduced that are
referred to as the masking parameters. At the end of this
subsection, we present the masking parameters as a profile.

 1) Self-Substitution: Consider byte 10011101 and let us
(i) pick two bits in positions p1 and p2 such that p1 ¹ p2, (ii)
flip the bit in position p1, and (iii) swap its place with the bit
in position p2—Two-Bit-One-Flip-Circular-Swap technique.
 It is clear that the pairs (p1=1, p2=7) and (p1=7, p2=1)
create different instances for the byte. Therefore, the order
of p1 and p2 is important. The number of possible ways
selecting a pair (p1, p2) from the byte is 7*8=56, which
means a byte may be instantiated by 56 possible different
ways using Two-Bit-One-Flip-Circular Swap technique.
The technique name may be generalized as W-R-Bit-M-Flip-
Circular-Swap. For the above example (W=2 and M=1) the
technique is shown in Figure 1. As a more general example,
(W=8 and M=4) is also shown in Figure 1. As a rule, the
value of parameter M is always less than the value of
parameter W. This is necessary for not diminishing the
effect of the swapping step. (We introduce the parameter R
shortly.)

Figure 1. W-Bit-M-Flip-Circular-Swap Technique: (a) W=2 and M=1 and

(b) W=8 and M=4

 One may pick 3-bits (W=3) to instantiate the byte. Let
us assume 3 bits randomly selected that are located in the

positions p1, p2, and p3. There are many ways that M-Flip-
Circular-Swap technique can be applied:

a. (One-Flip-Circular-Swap) Flip one of the three bits and
then make a circular swap among p1, p2, and p3.

b. (Two-Flip-Circular-Swap) Flip two out of the three bits
and then apply circular swapping.

c. (Three-Flip-Circular-Swap) is not used because it
violates the rule of M being smaller than W.

The number of possible combinations grows to 5040.
 Using the W-R-Bit-M-Flip-Circular-Swap for all
possible values of W (W=2 to 8) and M (M=1 to W-1)
generates the total of (X=1,643,448) possible substitutes for
a given byte. If either W=1 or M= 0 then, the self-
substitution has not been enforced and in this case X=1 (the
byte itself). Now, we explain the role of parameter, R
(where, R is a byte long) in the W-R-Bit-M-Flip-Circular-
Swap.
 Let us refer to the case of W=2 and M=1 one more time
where it is able to facilitate the generation of 56
instantiations of a given byte using all the possible pairs of
(p1=•, p2=•). That is, the two positions of p1 and p2 could
have any value from 1 to 8 as long as p1¹p2. What if one is
only interested in those instantiations resulting from the
pairs of (p1=3, p2=•), which by definition also includes
instantiations resulting from the pairs of (p1=•, p2=3)? The
chosen value (bit) of interest for p1 is a value from 1 to 8
that is expressed by setting the bit of interest in R. (Since
p1 =3, the bit number 3, in R, is set to 1.) The number of
bits that are set to “1” in R is always equal to M. For our
example, R=“00000100”.
 The pairs represented by (p1=v, p2=•) are the set of
seven pairs of {(p1=v, p2=1), . . ., (p1=v, p2=8)}. The seven
pairs are named the primary set for the primary signature of
(p1=v, p2=•). The (p1=*, p2=v), which is a tweaked version
of (p1=•, p2=v) is the complementary signature of (p1=v,
p2=•) and stands for the other set of seven pairs {(p1=8,
p2=v), . . ., (p1=1, p2=v)}. These seven pairs make the
complementary set for (p1=*, p2=v). (Values of p1, in the
complementary set, are in reverse order of values of p2 in
the primary set.)
 The primary and complementary sets also referred to as
the primary sub-pattern and complementary sub-pattern,
respectively. The two sub-patterns collectively make a
pattern and the triplet of (W=2, M=1, R= “00000100”)
make the pattern’s stamp, where W, M, and R are masking
parameters. It is clear that M cannot be equal to W,
because, when M= W, the primary and complementary sets
are the same and they have only one member. This is
another reason for supporting the rule of M must be smaller
than W.)
 The stamp of (W=4, M=3, R = “00001011”) means
four bits are chosen from the byte out of which three bits
(M=3) in positions 1, 2, and 4 are the positions of interest
(p1=1, p2=2, p3=4.) Therefore, the primary signature and the
Complementary signatures are, respectively, defined as
(p1=1, p2=2, p3=4, p4=•) and (p1= *, p2=2, p3=4, p4=1).
 When none of the bits in R is set to “1”, it means R has
not been enforced. In this case, we do not have the primary

182

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and complementary sets. However, to apply Vaccine, we
ought to have both sets. To do so, the default value of R,
which is R with its M least significant bits set to “1” is
used.)

 2) Mixed-Substitution: We also extend the byte
instantiation to the key. In a nutshell, the instantiation of the
given byte, c, and each key byte are done separately. One of
the instantiated key bytes is selected as the key image and
the final instance of c is generated by XORing the key
image and the instantiated c. The details are cited below.
 Application of self-substitution with masking
parameters of (W, M, and R) on a given byte generates the
primary and the complementary sub-patterns of (𝑢)# . . . 𝑢)*)
and (𝑢+, . . . 𝑢+#). The subscripts p and c stand for these two
sub-patterns and there are n and m members in the p and c
sub-patterns, respectively. The key byte Bj is instantiated
into another byte using the self-substitution with masking
parameters of (Wj, Mj, and Rj, for j=1 to 4). Application of
self-substitution on the individual four bytes of the key (B1 .
. . B4) generates the primary and the complementary sub-
pattern for each byte as follows:
(𝑢)

#./	.		.		. 	𝑢)
*#./)	and (𝑢+

,#./	.		.		. 	𝑢+
#./),	

(𝑢)
#.3	.		.		. 	𝑢)

*4.3)	and (𝑢+
,4.3	.		.		. 	𝑢+

#.3),
(𝑢)

#.5	.		.		. 	𝑢)
*$.5)	and (𝑢+

,$.5	.		.		. 	𝑢+
#.5), and

(𝑢)
#.6	.		.		. 	𝑢)

*7.6)	and (𝑢+
,7.6	.		.		. 	𝑢+

#.6).
 A byte, say c1, using the first member of the primary
sub-pattern, 𝑢)#,	 is instantiated to c1’. The first byte of the
key, B1, using its first member of the primary sub-pattern,
𝑢)
#./,	 is instantiated to B1’. The other three bytes are also

instantiated into B2’, B3’, and B4’ using their first member of
the primary sub-patterns, 𝑢)

#.3, 𝑢)
#.5, 𝑎𝑛𝑑	𝑢)

#.6, respectively.
The Hamming distance of HD(c’, Bj’), for j=1 to 4, are
measured and B’=Argmax[HD(c’, Bj’), for j=1 to 4] is the
key image. In the case that there are ties, the priority is
given to the instantiated byte of B1, B2, B3, and B4 (and in
that order.) The final substitution for c1 is:

c1’’=(c1’ Å B’) (1)

 The next byte, c2, within a given segment of ciphertext
is instantiated to c2’ using 𝑢)4,	 and key bytes of B1, B2, B3,
and B4 are instantiated to B1’, B2’, B3’, and B4’

using	𝑢)
4./, 𝑢)

4.3, 𝑢)
4.5, 𝑎𝑛𝑑	𝑢)

4.6, respectively.
 B’=Argmax[HD(c’, Bj’), for j=1 to 4] and c2’’=(c2’Å
B’). The process continues until the segment of the
ciphertext is exhausted. The bytes of the next sub-list and
the key bytes are instantiated using the complementary sub-
patterns. Therefore, the sub-patterns are alternately used
for consecutive segments of the ciphertext.
 Using mixed substitution, the number of possible
combinations for each key byte is equal to X and for the key
of four bytes is X4 (>1.19*1031 combinations.) The reader
needs to be reminded that the four-byte key may be
expanded to the length of N bytes for which the outcome of
XOR is one of the XN+1 possible combination. For N=16

(128-bit key) The XOR is one of the X17 possible
combinations (>4.65*10105.)

 3) Profile: Considering both self and mixed
substitutions, the masking parameters grow to five triplets:
The first triplet, (W, M, and R) for the instantiation of a byte
of segment and the next four triplets of (Wj, Mj, and Rj, for
j=1 to 4) for instantiation of the four bytes of the key.
Therefore, patterns’ profile, or simply profile, includes 15
masking parameters, which are accommodated by a 96-bit
long binary string (Figure 2) as described below.
 Since the possible values for each of the parameters W
and Wj is eight (2 through 8 and value of 1 means the self-
substitution has not been enforced), the value of each
parameter can be accommodated by 3 bits (the total of 15
bits). Since the three bits make a decimal value between 0
and 7, we always add 1 to the decimal value to get the true
value for W or Wj.) The parameters M and Mj have eight
possible values (1 through 7 where the value of 0 means that
self-substitution has not been enforced) and each parameter
can also be accommodated by 3 bits (the total of 15 bits).
The parameters R and Rj need eight bits each (the total of 40
bits). In addition, we use twenty-six bits as prefix of the
profile (five bits as reserved bits for possible expansion,
sixteen bits as the Flag bits and five bits as the Preference
bits.)
 The sixteen flag bits represent a decimal number (D) in
the range of (0: 65,535). Let us assume that the length of
the ciphertext that is ready to be masked is Lct. Three bytes
of f1, f2, and f3 of the ciphertext are selected (flagged),
which are in locations: d1= d, d2=ë Lct/2+d/2û, and d3=Lct - d,
where, d is calculated using the formula (2)

 d=
	∆	𝑀𝑜𝑑	𝐿+?,						∆	> 𝐿+?
𝐿+?		𝑀𝑜𝑑	∆, 		∆	£	𝐿+?

 (2)

The flagged bytes will not be masked during the vaccination
process and they collectively make the native byte of
F=(f1Åf2Åf3). Since the length of the ciphertext and the
length of its masked version remain the same there is no
need for including the length of the ciphertext in the profile.
The question of why the flagged bytes are of interest will be
answered shortly.
 The purpose of preference bits is to build a model,
which is influenced by both the key and flagged bytes. The
model is used to create variable length blocks and segments.
The minimum number of preference bits is five and can
grow up to ten by consuming the reserved bits. The
preference bits are partitioned such that the most significant
bit is considered partition one and the rest of the bits make
partition two.
 To build the model, a desired byte number (z) of the
key is identified by the bits of partition two. That is, one
can select any byte from a maximum of a 512-byte long
key. The key is treated as circular and two pairs of bytes
A1=(z+1||z) and A2=(z+2||z-1) are obtained from the key. A
new pair of bytes of A3=A1ÅA2Å(F||F) is built. If the bit in
the partition one is set to zero then, the model is A3;

183

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

otherwise, the model is a1Åa2, where, a1 and a2 are the pair
of bytes in A3.
 Let us assume that there are two similar ciphertexts of
CT1 and CT2 and we are using the same key and the same
profile to mask the two ciphertexts, separately. As long as
one of the three flagged bytes in CT1 and CT2 is different,
the native bytes for the ciphertexts are different and so their
models, which in turn make their masked versions different.
This is one of the major advantages of Vaccine.
 To summarize, using a 4-byte key, the number of bits
needed for the profile is 96 bits. Dissection of a pattern
profile is shown in Figure 2. The 24 hex digits representing
the patterns’ profile along with eight hex digits representing
the 4-byte key that are collectively called Masking Image,
may be sent to the receiver in advance or they may hide in
the masked ciphertext itself:

a. In a predefined location/locations,
b. In location/locations determined by the internal

representation of the key following some formula(s), or
c. A mixture of (a) and (b).

Figure 2. Dissection of the masking Image

B. Vaccine
 Vaccine is a variable-block cipher methodology
capable of masking and unmasking a ciphertext. The details
of masking and unmasking of Vaccine are presented in the
following two subsections.

 1) Masking of the Ciphertext: Vaccine as a masking
scheme is able to mask the features of a ciphertext in the
eye of a text miner. Vaccine: (1) divides the ciphertext into
random size blocks, (2) each block, in turn, is divided into a
number of segments such that the length of each segment is
random, and (3) every byte within each segment is
randomly instantiated to another byte using self and mixed

substitutions. The masking process is encapsulated in
algorithm Mask shown in Figure 3.
 The algorithm is made up of four sections. In section
one, (Step 1 of the algorithm) the profile is dissected to
extract masking parameters and they, in turn, generate
primary and complementary sub-patterns for five
patterns:(𝑃𝑎𝑡𝑡𝑒𝑟𝑛)E	, 𝑃𝑎𝑡𝑡𝑒𝑟𝑛+E), (𝑃𝑎𝑡𝑡𝑒𝑟𝑛)F#, 𝑃𝑎𝑡𝑡𝑒𝑟𝑛+F#),
(𝑃𝑎𝑡𝑡𝑒𝑟𝑛)F4, 𝑃𝑎𝑡𝑡𝑒𝑟𝑛+F4), (𝑃𝑎𝑡𝑡𝑒𝑟𝑛)F$,		 𝑃𝑎𝑡𝑡𝑒𝑟𝑛+F$), and
(𝑃𝑎𝑡𝑡𝑒𝑟𝑛)F7 , 𝑃𝑎𝑡𝑡𝑒𝑟𝑛+F7) used for masking the chosen byte
of the ciphertext and the four key bytes, respectively. The
array of pt with five elements keeps track of those primary
and complementary sub-patterns of the five patterns that are
in use. The model is also extracted in this step.

Figure 3. Algorithm Mask

 The second section (Step 2.a of the algorithm)
identifies a random size block prescribed by k—the model.

Algorithm Mask
Input: A 32–bit key, a pattern’s profile of 96-bit, and a

ciphertext, CT.
Output: Delivering IC as the masking version of CT.
Method:
 Step1- //Dissection of the profile and initializations

 Dissection delivers primary and secondary sub-patterns of
five patterns (𝑃𝑎𝑡𝑡𝑒𝑟𝑛)E , 𝑃𝑎𝑡𝑡𝑒𝑟𝑛+E), (𝑃𝑎𝑡𝑡𝑒𝑟𝑛)F# ,

𝑃𝑎𝑡𝑡𝑒𝑟𝑛+F#), (𝑃𝑎𝑡𝑡𝑒𝑟𝑛)F4 , 𝑃𝑎𝑡𝑡𝑒𝑟𝑛+F4), (𝑃𝑎𝑡𝑡𝑒𝑟𝑛)F$,

𝑃𝑎𝑡𝑡𝑒𝑟𝑛+F$), and (𝑃𝑎𝑡𝑡𝑒𝑟𝑛)F7 , 𝑃𝑎𝑡𝑡𝑒𝑟𝑛+F7).
k ←Model obtained by using Preference bits, Flag bits,

and key;
 IC ← “”; C ← CT;

pt[5]← 0;//pt gives turn to the primary (pt[•]=0) and
complementary (pt[•] =1) sub-patterns of the five
patterns for initializing the CurrentP [5];

Step 2-Repeat until C is exhausted
a- Get the set of decimal numbers from k in ascending

order: D ={d1, d2, . . . dy-1, dy};
 Get the next random size block,
 bn,=Substr(C, 0, dy);
b- CL = 0; //Current location in C
c- Repeat for i =1 to y-1
 //Divide bn into y-1 segments;

si = Substr(bn, CL, di - CL);
CL = CL+ di;
CurrentP[m]=𝑃𝑎𝑡𝑡𝑒𝑟𝑛)?, 			//for m =0 to 4;
d- Repeat for each byte, cj, in si

 d1- If (cj is a flagged byte) Then continue;
d2- If (CurrentP[0] is exhausted)
 Then CurrentP[0] =	𝑃𝑎𝑡𝑡𝑒𝑟𝑛)?E ;

 d3- cj’ = Flip cj bits using CurrentP[0];
 d4- cj’ = Circularly swap proper cj bits using

CurrentP[0];
d5- σ = Select(cj’, CurentP[1],

CurrentP[2],CurrentP[3],CurrentP[4]);

d6- a = cj’ Å σ;
d7- IC←IC || a;

End;
 pt[•]++; pt[•] ← pt[•] mode 2;

 End;
 e- Remove block bn from C;
 f- Apply one-bit-left-rotation on k;
End;

End;
	

M
A
S
K
I
N
G

I
M
A
G
E

Profile: (0440029104645112000021C0)16

(00000100010000000000001010010001000001000
110010001010001000100100000000000000000001
0000111000000)2

Profile Dissection:

Prefix
 00000 10001 0000000000001010
Reserved bits Preference bits Flag bits

010 001 00000100
W=3 M=1 R=3

 011 001 00010100 000 000 00000000
W1=4 M1=1 R1 =3 & 5 W3=1 M3=0 R3=0

 010 010 00100000 100 010 11000000
W2=3 M2=1 R2 = 6 W4=5 M4=2 R4=7 & 8

A 4-byte Key: (ABC9023D)16

P
R
O
F
I
L
E

K
E
Y

184

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The identification process is done by creating y binary
numbers using k. The i-th binary number starts from the
least significant bit of the k and ends at the bit with the i-th
value of “1” in k. The binary numbers are converted into
decimal numbers and sorted in ascending order, {d1, d2, . . .
dy-1, dy}. The block, bn=Substr(C, 0, dy), where C is initially
a copy of the cipher text.
 The third section (Step 2.c of the algorithm) divides
block bn into a number of random size segments. The size
and the number of segments are dictated by the k internal
representation. Block bn has y segments: { s0 . . .sy-1}.
 The segment si starts from the first byte after the
segment si-1 (the location is preserved in variable CL) and
contains λi=di+1 – di bytes. The number of segments and
their lengths are not the same for different blocks.
 To get the next block of the ciphertext, the block bn is
removed from C (Step 2.e) and k is changed by having a
one-bit-left-rotation (Step 2.f). Using the above process
along with the new k, the next block with a different size is
identified. This process continues until C is exhausted. It
is clear that the lengths of blocks are not necessarily the
same. In fact, the lengths of the blocks are random. It
needs to be mentioned that the length of blocks bi and bi+8
are the same when k is one byte long. When k is two bytes
long, the length of the blocks bi and bi+16 are the same. And
a block on average is 32,768 bytes long. As a result, the
ciphertext, on average, must be longer than 491,520 bytes
before the blocks’ lengths are repeated.

Figure 4. Algorithm Select

 The fourth section (Step 2.d of the algorithm) delivers
the masked version of the ciphertext, byte by byte, for a
given segment. Flagged bytes are not masked (Step 2.d1).
If the number of bytes in the segment si is greater than the
cardinality of the pattern then, the pattern repeats itself
(Step 2.d2). Each byte, cj, of the segments si (for i=1 to y-1)
are masked by applying (i) the relevant member of the
current sub-pattern on byte cj (Step 2.d3 and 2.d4), (ii)
identifying the key image (Step 2.d5), by invoking the
Algorithm Select (Figure 4), (iii) create cj’, the masked
version of cj, by XORing the outcome of process (i) and
process (ii), (Step 2.d6), and (iv) concatenate the masked

version of cj, to the string of IC, which ultimately becomes
the inoculated version of the inputted ciphertext (Step 2.d7).

 2) Unmasking of the Ciphertext: For unmasking a
masked ciphertext, those steps that were taken during the
masking process are applied in reverse order. Therefore, the
Algorithm Mask with a minor change in step 2.d can be
used for unmasking. We show only the changes to Step d of
Figure 3 in Figure 5.

Figure 5. The modified part of the Algorithm Mask

IV. EMPIRICAL RESULTS
 To measure the effectiveness of the proposed Vaccine,
we compared its performance with the performance of the
well-established masking algorithms of CBC and CFB. The
behavior of Vaccine was observed using three separate
profiles of simple, moderate, and complex. These
observations are named VACs, VACm, and VACc.
 Two plaintext templates of natural and synthetic were
chosen and 100 plaintexts were generated for each template.
Each plaintext following the first template was selected
from a natural document made up of the lower and upper-
case alphabets and the 10 digits—total of 62 unique
symbols. Each plaintext following the second template was
randomly synthesized using the 10 symbols set of {A, b, C,
L, x, y, 0, 4, 6, 9}. The goal was to synthesize plaintexts
with high occurrences of a small set of symbols. Each
plaintext created under both templates was 1K bytes long.
 For each plaintext, two ciphertexts of Ca and Cd were
generated using Advanced Encryption System (AES-128)
and Data Encryption Standard (DES) algorithms
[20][21][22]. The masking approaches of CBC, CFB,
VACs, VACm, and VACc were applied separately on Ca and
Cd generating the masked ciphertexts of:

 	{𝐶I+J+, 𝐶I

+KJ, 	𝐶I
LI+M, 	𝐶I

LI+N, 	𝐶I
LI+O} and

 	{𝐶Q+J+, 𝐶Q
+KJ, 	𝐶Q

LI+M, 	𝐶Q
LI+N, 	𝐶Q

LI+O}.

 When CFB was applied on Ca and Cd the key lengths
were 64-bit and 128-bit, respectively, and the IV was
chosen from a natural document. (The least significant 64
bits of the 128-bit key was used as the key when CFB was
applied on Ca. The key used by VACs, VACm, and VACc
was also borrowed from the least significant 32 bits of the
128-bit key used for CFB.)
 Let us consider the first set of masked ciphertexts
	{𝐶I+J+, 𝐶I

+KJ, 	𝐶I
LI+M, 	𝐶I

LI+N, 	𝐶I
LI+O}	generated from Ca. The

d- Repeat for each byte, cj’, in si

d1- If (cj is a flagged byte) Then continue;

d2- If (CurrentP[0] is exhausted) Then CurrentP[0] =	𝑃𝑎𝑡𝑡𝑒𝑟𝑛)?E ;
d3- σ = Select(cj’, CurentP[1], CurrentP[2], CurrentP[3], CurrentP[4];
d4- a = cj’ Å σ;

d5- a = Circularly swap bits of a using CurrentP[0];
d6- a = Flip a bits using CurrentP[0];
d7- UM←UM||a; //UM is the unmasked ciphertext;

End;

Algorithm Select
Input: A byte (c), Key, and four patterns for the four key bytes.
Output: key image, k.
Method:

a. Repeat for (w = 1 to 4)
If (CurrentP[w] is exhausted)
Then CurrentP[w] =	𝑃𝑎𝑡𝑡𝑒𝑟𝑛)?R ;

End;
b. h ← -1;
c. Repeat for v= 1 to 4;

i. cv ← An instantiated version of KeyBytev using
related sub-pattern.

ii. If HD(c, cv) >h //HD is Hamming distance function
Then h = HD(c, cv); k = cv;

 End;
End;

185

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

following steps are used to compare the effectiveness of the
proposed Vaccine with CBC and CFB. (The same steps are
also followed to compare the effectiveness of the proposed
Vaccine with CBC and CFB using the masked ciphertexts
of {𝐶Q+J+, 𝐶Q

+KJ, 	𝐶Q
LI+M, 	𝐶Q

LI+N, 	𝐶Q
LI+O}.)

a. Get the list of unique symbols, which makes up the
plaintext, List={s1 . . . sm }.

b. Get the frequency of symbol si, for i = 1 to m, and
calculate the average frequency of the symbols.

c. Repeating the next two steps for every symbol, si, in the
list.

d. Identify the locations for all the occurrences of the
symbol, si, in the plaintext, (ℓi

1 . . . ℓi
n).

e. Identify the bytes in the locations of (ℓi
1 . . . ℓi

n) within
the 𝐶I• and calculate the Hamming distance, hj, between
the two bytes in location ℓj, for j=1 to n, in the plaintext
and 𝐶I•. The overall average of Hamming distance for
the symbol si is hsi =Average(h1 . . . hn),

f. Concluding that the underline masking methodology
with the highest average values of the Hamming
distances have a superior performance.

TABLE I. AVERAGE OF HAMMING DISTANCES BETWEEN THE
TWO 100 PLAINTEXTS OF 1K BYTE LONG (GENERATED
BY TWO TEMPLATES) AND THEIR RELATED MASKED
CIPHERTEXTS: (A) ENCRYPTED BY AES AND (B)
ENCRYPTED BY DES

Tem.

Avg.
Symb.
Freq.

AES-128
CBC CFB128 VACs VACm VACc

Dist. Dist. Dist. Dist. Dist.
Syn. 103 3.568 3.570 4.415 4.373 4.411
Natu. 16.5 3.569 3.561 4.423 4.361 4.411

(a)

Tem.

Avg.
Symb.
Freq.

DES
CBC CFB64 VACs VACm VACc
Dist. Dist. Dist. Dist. Dist.

Syn. 103 3.527 3.526 4.182 4.153 4.223
Natu. 16.5 3.513 3.515 4.176 4.141 4.221

(b)
	

TABLE II. THROUGHPUT AVERAGE IN MILISECOND FOR THE
TWO 100 PLAINTEXTS OF 1K BYTE LONG (GENERATED
BY TWO TEMPLATES): (A) ENCRYPTED BY AES AND
(B) ENCRYPTED BY DES

Tem.

Avg
Symb.
Freq.

AES-128
CBC CFB128 VACs VACm VACc
TPut. TPut. TPut. TPut. TPut.

Syn. 103 4545 11111 25000 33334 20000
Natu. 16.5 12500 10000 16667 20000 12500

(a)

Tem.

Avg
Symb.
Freq.

DES
CBC CFB64 VACs VACm VACc
TPut. TPut. TPut. TPut. TPut.

Syn. 103 3846 11111 20000 25000 14286
Natu. 16.5 10000 10000 14286 20000 11111

(b)

 The outcome of applying the above steps on the
ciphertexts of 	{𝐶I+J+, 𝐶I

+KJ, 	𝐶I
LI+M, 	𝐶I

LI+N, 	𝐶I
LI+O} and

	{𝐶Q+J+, 𝐶Q
+KJ, 	𝐶Q

LI+M, 	𝐶Q
LI+N, 	𝐶Q

LI+O} are shown in Table I.a
and Table I.b. We have also used the system clock to
calculate the average throughput (in millisecond) for the
masking approaches of CBC, CFB, VACs, VACm, and
VACc and reported in Tables II.a and II.b.
 In addition, a masking strength of µ (0 < µ < 1), is
introduced that is defined as µ=Ninst / Nocc, where Ninst is the
number of unique bytes in the masked ciphertext
representing the instantiations of the Nocc occurrences of
symbol si in the underlying plaintext of the masked
ciphertext. The masking strength for CBC, CFB, VACs,
VACm, and VACc are presented, respectively, in Tables III.a
and III.b.

TABLE III. AVERAGE MASKING STRENGTH FOR THE TWO 100
PLAINTEXTS OF 1K BYTE LONG (GENERATED BY TWO
TEMPLATES): (A) ENCRYPTED BY AES AND (B)
ENCRYPTED BY DES

Tem.

Avg.
Symb.
Freq.

AES-128
CBC CFB128 VACs VACm VACc
µ µ µ µ µ

Syn. 103 0.506 0.486 0.451 0.540 0.571
Natu. 16.5 0.882 0.878 0.845 0.890 0.889

(a)

Tem.

Avg.
Symb.
Freq.

DES
CBC CFB64 VACs VACm VACc
µ µ µ µ µ

Syn. 103 0.501 0.494 0.490 0.564 0.570
Natu. 16.5 0.878 0.894 0.880 0.909 0.893

(b)
	

V. FINDINGS FOR SINGLE-PAIRED-USER
ENVIRONMENT

 The performance of the presented new cipher block
approach, Vaccine, for masking and unmasking of
ciphertexts seems superior to the performance of the well-
known masking approaches of CBC and CFB.
The advantages of Vaccine over CBC and CFB are
numerated as follows:
a. The key and patterns’ profile may hide in the masked

ciphertext.
b. The block size for Vaccine is not fixed and it is selected

randomly.
c. Each block is divided into segments of random size.
d. The masking pattern changes from one byte to the next

in a given segment.
e. Masking a ciphertext using Vaccine demands mandatory

changes in the ciphertext. Therefore, the identity
transformation could not be provided through the
outcome of Vaccine. The simple proof is that the
Hamming weight is modified.

f. The results revealed that on average:
i. The Hamming distance between masked and

unmasked occurrences of a byte using Vaccine is
0.72 bits higher than using CBC and CFB.

ii. Vaccine throughput is 3.4 times and 1.8 times higher
than throughput for CBC and CFB.

186

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

iii. Vaccine masking strength is 1.5% and 1.8% higher
than masking strength for CBC and CFB.

iv. VACm masking strength is 3.6% and 3.7% higher
than masking strength for CBC and CFB. And VACc
masking strength is 3.9% and 4.2% higher than
masking strength for CBC and CFB.

VI. MULTI-PAIRED-USER ENVIRONMENT

 A secure multi-user environment [13][23][24] is
represented by a graph, G(V, E), where V is a set of vertices
representing the user members of the environment and E is a
set of bi-directional edges indicating the communication
between paired users. As an example, let us consider a
secure multi-user environment, Figure 6, for which V is
composed of the set {v1, v2, v3} and E is composed of the set
{e1,2, e1,3, e2,3.)

Figure 6. A safe multi-user environment with three cooperative users

 There is a pairwise masking image, MIi,j associated with
each edge, ei,j, that enables the two users of vi and vj to
communicate securely with each other (i.e., vaccinated
messages can flow between vi and vj through the edge of ei,j.)
The pairwise MIi,j has two major components of a pairwise
key, ki,j, and a pairwise profile, PFi,j, Figure 2. For a pairwise
ki,j of four-byte long the PFi,j includes a prefix, PREi,j, and
five sets of triplets (W, M, R) , 𝑇𝑅𝐼V,W = {𝑇𝑟𝑖V,WE , . . ., 𝑇𝑟𝑖V,W7 },
that each one prescribes a set of patterns. The number of bits
to accommodate one triplet in PFij is 14. The pairwise key
ki,j can grow as many bytes as desired (the maximum of 512
bytes.) The number of triplets in TRIi,j also grows with the
growth of key length. For each added byte to the key, a new
triplet is added to the PFij. Beyond the key length of sixteen
bytes, the length of prefix also grows one bit at a time. Each
added bit to the prefix doubles the length of key in bytes.
Since there are five reserved bits in PFij and they can be used
to increase the length of the prefix, the key length can grow
up to 512 bytes. Each one of these bytes can be addressed by
the second partition of the preference bits (i.e., all the
preference bits excluding the most significant bit.) For the
key length of Lk bytes, the PF length, Lp, is calculated in bits
using formula (3):

Lp = 14(Lk+1) +26 (3)

 Since the pairwise masking images are associated with
edges, we also refer to MI, k, and PF as the edge masking
image, edge key, and edge profile, respectively.
 The secure multi-user environment of our interest has
the option of revoking existing users. That is, upon revoking
a user the keys become vulnerable and a key management
approach needs to be employed. Key management is
achieved in two ways: key distribution [13][14][15][16] and
key agreement[17][18][19]. In the key distribution approach,
each user has its own private key and it is only shared with a
key-distribution center (KDC). In the case that vk needs to
communicate with vm, KDC is asked for a session key that
will be generated and delivered to both vk and vm.
 In the key agreement approach, a number of users agree
on having one community-based key, K, and all users
participate in building such a key by donating their individual
keys. The community-based key remains private to the
members.
 The revoking option using key distribution has the same
overhead cost for using CBC, CFB, and Vaccine. However,
adaptation of the Vaccine into the key agreement approach
suggests some interesting developments that need to be
discussed.
 The key agreement approach requires that as soon as a
user, vk, is revoked all the edges be re-keyed, re-profiled, or
both (regardless of substituting or not substituting the
revoked user.) Let us take a closer look at these three
options. During the masking process conducted by Vaccine,
edge key and edge profile, play a role. In fact, the masking
of a ciphertext is completed by the use of the model and
native byte (both terms explained in Section III), which in
turn was generated by employing the prefix (PRE), triplets
(TRI), and key (k), along with the plaintext. Therefore, the
revoked user cannot correctly mask (or de-mask) a ciphertext
as long as one of the three parameters of PRE, TRI and k
changes. However, both re-keying and re-profiling may
provide a higher masking strength.
 To implement the Vaccine adaptation into the key
agreement approach we present three algorithms of Keys,
Carve, and Profile. The Keys algorithm dynamically creates
N pairwise keys of a given length for N edges that
collectively make the community-based key, K. The
algorithm Carve randomly generates a set of triplets based on
the key length and also enforces the internal constraints on
the randomly generated triplets. The Algorithm Profile
generates either one profile used by all pairwise keys or N
profiles for the N edges. The details of the three algorithms
are covered in the following three subsections.

A. Algorithm keys
 Dynamically creating a Community-based key, K, which
is composed of a large number of edge keys (one per edge
and for the purpose of re-keying) is encapsulated by the
algorithm Keys, Figure 7. In the N iterations of Step 3,
which is the number of edge keys, the algorithm delivers N
pairwise keys with the length of Lk bytes that are randomly

 PF1,2={k1,2 , TRI1,2}
v1 v2

 v3

187

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

generated. This is accomplished by randomly generating Lk
binary strings with the length of Lk = 256-bit (Step 2.) Eight
bits from each one of the Lk strings are selected randomly
(Step 3.a.) The obtained bytes are concatenated in a random
order to make one edge key of Lk bytes long (Step 3b.) The
resulting edge key, k, is added to the Community-based
aggregated key, K, (Step 3.c.)

	
	

Figure 7. Algorithm Keys

B. Algorithm Carve
 The algorithm Carve, shown in Figure 8, accepts an edge
key with length of Lk bytes and randomly creates a binary
number, TRI, of the length Lp delivered by formula (3) (Step
2.)
 Considering Figure 2, the length of PRIi,j in the edge
profile of PFi,j is 26 bits. As we mentioned previously the
number of bits needed to express each triplet of (W, M, R) in
PFi,j is 14 bits. Therefore, each 14 bits after the 26-bit prefix
is made up of three parts (Part1, Part2, and Part3). Part1 (W)
is 3 bits long and starts from the location r1 = 26 in the
profile. Part2 (M) is also 3 bits long and starts immediately
after Part1 (i.e., location r2 = r1 +3.) Part3 (R) is 8 bits long
and starts 6 bits after Part1 (i.e., location r3 = r1 +6.) (Step 3
gets the starting points of Part1, Part2, and Part3.)
 The locations of Part1of all the triplets are separated by
14 bits and the same is true for the locations of Part2 and
Part3 of all triplets. The three parts of each triplet are
obtained in Step 4.a and converted to decimal numbers in
Step 4.b. In reference to the three parts of the triplets we
have three concerns that need to be addressed. These
concerns are in reference to the constraints on W, R, and M
values in W-R-Bit-M-Flip-Circular-Swap technique.
 The first concern is about the validity of the equivalent
decimal value carried by (Part1+1) of the triplet. If the value
is less than 2, the value changes to 2 (Step 4.c.)

 The second concern is about the equivalent decimal
value in Part2 that must be at least one less than the value in
Part1 (a constraint rule between W and M.) If the value of
Part 2 is greater than or equal to the value in Part1, it is
reduced to make it smaller such that the value of Part 1 is
higher by 1 (Step 4.d.)

Figure 8. Algorithm Carve

 The third concern is about the validity of the content of
Part3 of the triplet. The count of 1s in Part3 must be equal to
the equivalent decimal value carried by Part2 of the triplet. If
the count of 1s is higher, randomly enough 1s are flipped to
zero and if the number of 1s is lower, randomly enough 0s
are flipped to one to solve the problem (Step 4.e.)
 Replace the three parts of the triplet with their new
changes (Step 4.f.) By adjusting the index of i (Step 4.g) all
the parts in TRI are inspected and corrected.

C. Algorithm Profile
Now we are ready to look into two cases of using:

(a) a new aggregated community-based key, K, and (i)
one new profile for all edges or (ii) one new profile
per edge and

(b) the existing aggregate key for the community and (i)
one new profile for all edges or (ii) one new profile
per edge.

One may raise the question of why case (b) is a valid case to
begin with. The question is an important one because

Algorithm Keys (Lk, N)
Input: Lk, which is the length of key in bytes and N is the

number of edge keys needed.
Output: A Community-based key, K, made up of N edge keys

randomly generated on fly.
Method:

Step 1: k = “”; l =0; J =0;
Step 2: Create Lk binary numbers of 256-bit long: S1, . . ., SLk;
Step 3: Repeat (while l < N)

 a: Select eight bits randomly from each string: B1, . . ., BLk;
 b: Repeat (while j < Lk)

a1: Randomly pick a byte, B’, from the set{ B1, . . .,
BLk};

a2: k = k|| B’; j = j++;
 End;
 c: K = K||k;
 d: k = “”;
 e: j =0;
 f: l = l++;

 End;
End;

Algorithm Carve (k, Lk)
Input: An edge key, k, with the length of Lk bytes.
Output: Dynamically generating a set of triplets, TRI, that is

in agreement with k.
Method:

Step 1: i = 0;
Step 2: Create a random binary number of Lp = 14(Lk+1) +26
bits long, TRI;
Step 3: r1 = 26; r2 = r1 +3; r3 = r1 +6;
Step 4: Repeat while (i <14 Lk)

a: 𝑃𝑎𝑟𝑡V# = SUBSTR(TRI, r1+i, 3);
 𝑃𝑎𝑟𝑡V4 = SUBSTR(TRI, r2+i, 3);
𝑃𝑎𝑟𝑡V$= SUBSTR(TRI, r2+i, 7);

b: f1 = DECIMAL(𝑃𝑎𝑟𝑡V#)+1; f2 = DECIMAL(𝑃𝑎𝑟𝑡V4) ;
/*DECIMAL function converts a given binary
number into decimal number*/

c: If (f1 < 2) Then f1 = 2;
d: If (f1 £ f2) Then f2 = f1-1;
e: If (COUNT(𝑃𝑎𝑟𝑡V$) - f2 > 0)
 Then randomly flip (COUNT(𝑃𝑎𝑟𝑡V$) - f2) bits in

𝑃𝑎𝑟𝑡V$ to 0;
If (COUNT(𝑃𝑎𝑟𝑡V$) - f2 < 0)

 Then randomly flip |COUNT(𝑃𝑎𝑟𝑡V$) - f2| bits in
𝑃𝑎𝑟𝑡V$ to 1;

f: SUBSTR(TRI, r1+i, 3) = BINARY(f1);
SUBSTR(TRI, r2+i, 3) = BINARY(f2); /*BINARY

function converts a given decimal number into
binary number*/

SUBSTR(TRI, r3+i, 8)=	𝑃𝑎𝑟𝑡V$;
g: i = i+14;

End;
End;

188

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

keeping the existing aggregate key may jeopardize the
overall security of the system. To answer the question, as it
was mentioned before, the PF (composed of PRE and TRI)
and k are needed to complete the vaccination. As long as
either PF or k changes, the vaccination results are different.
Therefore, case (b) is a legitimate one. The set of steps for
implementing case (a) and case (b) are given in the algorithm
Profile shown in Figures 9.

Figure 9. Algorithm Profile

 The parameter Option is 2 bits long and the values “1”
and “0” for the most significant bit represent case (a) and
case (b), respectively. The option (i) in both cases is
represented by the least significant bit set to “0”. The option
(ii) in both cases is represented by the least significant bit set
to “1”.
 For case (a) option (i), the algorithm does not re-key the
existing community-based key, EK, however, it generates
one profile used by all users (Step 1.a) and for the same case
option (ii), no re-keying takes place and the algorithm
generates a new edge profile for every edge (Step 1.b.) For
the case (b) the algorithm reacts the same way that it has
reacted for case (a) except that for both options of (i) and (ii)

first, a new community-based, K, is generated and then one
new edge profile (Step 1.c) or N edge profiles (one per edge)
are generated (Step 1.d.)
 It is worth mentioning that in the case of the pair-wise
community growth, the above algorithms easily can provide
for re-keying and re-profiling of only the new edges without
disturbing the existing edge masking images.

VII. FINDINGS FOR MULTI-PAIRED-USER
COMMUNITY

 The findings about the behavior of the Vaccine in a
secure multi-paired-user community are the same as those of
a single-paired-user environment. The reason stems from the
fact that the vaccine performs the same function in a single-
paired-user system as it does on each individual paired-user
in the community. However, the re-keying and re-profiling
are pure overhead and this is true anytime that a key
agreement is used. To have a better understanding of this
overhead cost we have completed the time complexity
calculations for the three algorithms of Keys, Carve, and
Profile, Table IV. The notations of 		𝐿Z and N are used for
the key length and the community size, respectively.

TABLE IV. TIME COMPLEXITY FOR ALGORITHMS KEYS, CARVE,
AND PROFILE

Algorithm Time Complexity
Keys O(N): if 		𝐿Z < N

O 𝑁⎾𝐿𝑘/_⏋ 	: otherwise
Carve O(1)

Profile

For Option = “10” and “11”
O(N): if 		𝐿Z < N
O 𝑁⎾𝐿𝑘/_⏋ 	: otherwise
For Option = “00”
O(1)
For Option = “01”
O(N)

 The findings reveal that the performance of the three
algorithms in the worst case is linear to the size of the
community assuming the size is larger than the length of the
key given to the community members. The assumption is not
far from reality and, in general, any linear growth in delivery
of an algorithm with the large size of community is well
accepted behavior.

VIII. CONCLUSION AND FUTURE RESEARCH
 A new cipher block approach, Vaccine, for masking
and unmasking of ciphertexts was introduced and
implemented with one major goal in mind: Removal of
inherited-features from a ciphertext. The methodology was
first applied to a single-paired-user environment and the
performance of the Vaccine was scrutinized by comparing it
with the two well-known approaches of CBC and CFB
modes. The advantages of the Vaccine application in a
single-paired environment were numerated in Section V.
The adoption of Vaccine for a multi-paired-user
environment with the option of user revocation was also
explored, which resulted in a methodology for re-keying

Algorithm Profile (Option, Lk, N, EK)
Input: Option (Option = “10” means a new aggregate key

and one new profile is needed for the entire
aggregate key. Option = “11” means a new
aggregate key and one new profile is needed for
each edge key within the aggregate key. Option =
“00” means one new profile is needed for the entire
aggregate old key. Option = “01” means one new
profile is needed for each edge key within the old
aggregate key.), a desired key length, Lk, the number
of needed edge keys, N, and an existing community-
based key, EK.

Output: (a) A new community-based key K and one or N
new profiles or

 (b) One or N new profiles
Method:

Step 1: Switch (Option)
a: Case “10”:

K = Keys(Lk, N);
k = one individual key in the community-

based key K;
Carve(k, Lk);
Break;

b: Case “11”:
K = Keys(Lk, N);
Repeat for every key, ki, in the community-

based key K
 Carve(ki, Lk);
End;
Break;

c: Case “00”:
ek = one individual key in EK.
Carve(ek, Lk);
Break;

d: Default:
Repeat for every key, eki, in EK.
 Carve(ki, Lk);
End

End;
	

189

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and re-profiling. One major property of the new keys and
new profiles was that they were generated by starting with
the creation of completely random and long binary strings.
In general, using such strings provide a better protection for
the keys and profiles against the adversarial attempts.
 As future research, building a new version of the
Vaccine is currently in progress to make the throughput and
the masking strength of the methodology even higher.
Study of Vaccine as an authentication method in a secure
multi-paired-user environment has been scheduled.

REFERENCES
 [1] R. Hashemi, A. A. Rasheed, A. Bahrami, and J. Young,

“Vaccine: A Block Cipher Method for Masking and
Unmasking of Ciphertexts’ Features”, The Second
International Conference on Cyber-Technologies and Cyber-
Systems (CYBER 2017), Barcelona, Spain, Nov. 2017, pp.
41-47.

 [2] A. A. Rasheed, M. Cotter, B. Smith, D. Levan, and S. Phoha,
“Dynamically Reconfigurable AES Cryptographic Core for
Small, Power Limited Mobile Sensors", The 35th IEEE
International Performance Computing and Communication
Conference and Workshop, pp. 1-7, 2016.

[3] G. P. Saggese, A. Mazzeo, N. Mazzocca, and A. G. M.
Strollo, “An FPGA-based performance analysis of the
unrolling, tiling, and pipelining of the AES algorithm”, LNCS
2778, pp. 292-302, 2003.

[4] N. Pramstaller and J. Wolkerstorfer, “A Universal and
Efficient AES Co-processor for Field Programmable Logic
Arrays”, Lecture Notes in Computer Science, Springer,
Vol.3203, pp. 565-574, 2004.

[5] B. Moeller. Security of CBC Cipher suites in SSL/TLS:
Problems and Countermeasures. [Online]. Available from:
https://www.openssl.org/~bodo/tls-cbc.txt

[6] W. Stallings, “Cryptography and Network Security:
Principles and Practice”, Pearson, 2014.

[7] C. A. Henk and V. Tilborg, “Fundamentals of Cryptology: A
Professional Reference and Interactive Tutorial”, Springer
Science & Business Media, 2006.

[8] N. Feruson, B. Schneier, and T. Kohno, “Cryptography
Engineering: Design Principles and Practical Applications”,
Indianapolis: Wiley Publishing, Inc., pp. 63-64, 2010.

[9] W. F. Ehrsam, C. H. W. Meyer, J. L. Smith, and L. W.
Tuchman, "Message Verification and Transmission Error
Detection by Block Chaining", US Patent 4074066, 1976.

[10] C. Kaufman, R. Perlman, and M. Speciner, “Network
Security”, 2nd ed., Upper Saddle River, NJ: Prentice Hall,
p. 319, 2002.

[11] National Institute of Standards and Technology
(NIST), Advanced Encryption Standard (AES), Federal

Information Processing Standards Publications 197
(FIPS197), Nov. 2001.

[12] S. Vaudenay, “Security Flaws Induced by CBC Padding —
Applications to SSL, IPSEC, WTLS....”, Lecture Notes in
Computer Science, Springer, vol. 2332, pp. 534-546, 2002.

[13] S. Tanaka and F. Sato, “A Key Distribution and Rekeying
Framework with Totally Ordered Multicast Protocols”,
Proceedings of the 15th International Conference on
Information Networking, 2001, pp. 831-838.

[14] M. Steiner, G. Tsudik, and M. Waidner, “Diffie-Hellman Key
Distribution Ex-tended to Group Communication”,
Proceedings of the 3rd ACM Conference on Computer and
Communication Security, 1996, pp. 31-37.

[15] C. Becker and U. Wille, “Communication Complexity of
Group Key Distribution”, In 5th ACM Conference on
Computer and Communication Security, 1998, pp. 1-6.

[16] M. Burmester and Y. Desmedt, “A secure and efficient
conference key distribution system”, Advances in Cryptology
- EUROCRYPT’94, 1994.

[17] M. Steiner, G. Tsudik, and M. Waidner, “CLIQUES: A New
Approach to Group Key Agreement”, Proceedings of the 18th
Internal Conference on Distributed Computing Systems,
1998, pp. 380-387.

[18] G. Ateniese, M. Steiner, and G. Tsudik, “New Multiparty
Authentication Services and Key Agreement Protocols”,
IEEE Journal on Selected Areas in Communications, Vol. 18,
No. 4, 2000, pp. 628-639.

[19] Y. Kim, A. Perrig, and G. Tsudik, “Communication-efficient
group key agreement”, 17th International Information
Security Conference, 2001.

[20] H. Kuo-Tsang, C. Jung-Hui, and S. Sung-Shiou, "A Novel
Structure with Dynamic Operation Mode for Symmetric-Key
Block Ciphers", International Journal of Network Security &
Its Applications, Vol. 5, No. 1, p. 19, 2013.

[21] H. Feistel, “Cryptography and Computer Privacy", Scientific
American, Vol. 228, No. 5, pp 15–23, 1973.	

[22] F. Charot, E. Yahya, and C. Wagner, “Efficient Modular-
Pipelined AES Implementation in Counter Mode on
ALTERA FPGA”, (FPL 2003), Lisbon, Portugal, pp. 282-
291, 2003.

[23] S. Mittra, “Iolus: A Framework for Scalable Secure
Multicasting”, Proceedings of the ACMSIGCOMM , 1997,
pp. 277-288.

[24] D. Wallner, E. Harder, and R. Agee, “Key Management for
Multicast: Issues and Architectures”, RFC 2627, 1999.

190

International Journal on Advances in Security, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/security/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

