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Abstract—Many security protocols rely on authentication of
communicating entities and encryption of exchanged data. Tra-
ditionally, authentication and encryption have been separate
processes, however, there are combined solutions, referred to
as authenticated-encryption (AE). The payment card industry is
revising its protocol specifications and considering AE, however,
there has been uncertainty around performance and feasibility on
traditional issued smart cards and when loaded as applications on
security chips pre-installed within devices. It is difficult to predict
and compare performance using results from generic CPUs, as
typical smart card chips used in payment, have slow CPUs yet fast
crypto-coprocessors, and their performance may be constrained
by secured application programming interfaces. This report is
based on a practical investigation, commissioned by a standards
body, that compared secure platform level (MULTOS) and low-
level native implementations of AE on crypto-coprocessor smart
cards. The study also suggests a technology independent bench-
mark (TIGA) for a CPU with crypto-coprocessor. This paper
extends on work first published in ICONS17/EMBEDDED2017;
now describing an additional native mode implementation ona
modern secured smart card chip, introducing a more precise tim-
ing measurement, and further analysing the utility of TIGA. The
work has proved the feasibility of implementing various modes
of authenticated encryption on appropriate smart card chips
with crypto-coprocessors and has provided precise measurement
results for comparison. The work has also identified a means to
predict the performance of other processors and platforms not
included within the practical experiments.

Keywords–Authenticated encryption; EMV; OCB; ETM; CCM;
smart card.

I. I NTRODUCTION

This text describes an extended version of an ICONS
2017 conference paper [1], which measured and compared
Authenticated Encryption (AE) modes on a secured smart
card platform and a native mode implementation on a legacy
smart card chip. In this paper we also consider the native
mode implementation on a third and more modern smart card
chip of the type used within the MULTOS platform. The
new results give a more relevant assessment of AE mode
comparative performance and allow analysis of the Technology
Independent Gain Assessment (TIGA) proposed in [1]. We
start by considering the background to the original study.

The EMVCo organisation [5] developed the Europay, Mas-
tercard and Visa (EMV) standards [4] that affect billions of
payment smart cards. The cards use secured microcontroller
chips, designed to be strongly tamper-resistant and indepen-
dently evaluated to Common Criteria (CC) [3] levels of at

least Evaluation Assurance Level (EAL) 4+. Despite strong
defensive capabilities, the chips lag behind the state-of-the-art
in CPU performance and memory sizes. However, despite these
limitations the chips excel in cryptographic operations asthey
incorporate relatively high-speed crypto-coprocessor hardware.
The EMVCo organisation is reviewing the use of Authenti-
cated Encryption (AE) [11] for future payment card processing.
There are a number of potential modes and those originally of
interest included Offset Codebook (OCB) [16], Galois Counter
Mode (GCM) [21], Counter with Cipher Block Chaining Mes-
sage Authentication Code (CCM) [20] and Encrypt-then-MAC
(ETM) [11]. Note that a MAC in this context is a cryptographic
Message Authentication Code, computed over the payload
data, and used to verify its integrity and the authenticity of
its source. Within this study, GCM was eventually substituted
for OCB3 as the former required binary field multiplication,
which was not supported by the available crypto-coprocessors.
There have been previous studies of AE performance, however,
they have generally focussed on more powerful generic CPUs,
without dedicated crypto-coprocessors. As a starting point we
take the study by Krovetz and Rogaway [15], which shows
that OCB performance is faster (for the given test conditions)
than alternatives; however, there are several reasons why these
results cannot be immediately accepted as relevant for EMV
protocols:

• The command messages in traditional smart cards are
small; the data field restricted to 255 bytes; larger
payloads accommodated by multiple messages.

• The results do not adequately address the case of a
slow CPU with a relatively fast crypto-coprocessor.

• Support for Associated Data is not required.
• Smart cards have very restricted memory sizes with

different write speeds for Random Access Memory
(RAM) and Non-Volatile Memory (NVM).

• Conventional smart card interfaces are quite slow and
so protocols can be communication limited rather than
processing limited.

In order to gain a better appreciation of the compara-
tive performance of AE on realistic smart card platforms,
a practical study was initiated, considering first a secure
platform implementation (MULTOS) [18] and then a native
mode equivalent. In the original study, described in [1] the
choice of native mode implementation was compromised by
restrictive choice of chip and development tools, however,this
extended study overcomes these restrictions.
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This report describes the experimental requirements in
Section II and then gives an overview of the AE modes in
Section III. The platform and native results are presented
and discussed in Sections IV and V respectively. Section VI
discusses how implementation security may affect performance
measurements, and Section VII considers communication lim-
itations. Conclusions and suggestions for future work are
presented in Section VIII.

II. EXPERIMENTAL REQUIREMENTS

The study investigated comparative performance of AE
modes implemented in both a secured smart card application
platform (representative of a pre-deployed device), and as
native code on a smart card chip. The selected platform was
a MULTOS ML3 card, using the Infineon SLE78 chip [8],
which can be CC EAL4+ certified, and includes good defences
against physical, side-channel [13][14] and fault attacks. The
original native mode implementation used a Samsung 16-bit
smart card chip (S3CC9E8) [24], and as the crypto-coprocessor
did not support AES, its performance comparisons used
3DES/DES [6]. The S3CC9E8 is a secured microcontroller
with physical attack protection, fault sensors and some side-
channel countermeasures, however, it would normally require
added defensive measures in software; this is discussed further
in Section VI. The extended study was able to add a native
mode implementation on the SLE78 chip supporting both AES
and 3DES/DES variants. The AE modes considered in detail
were OCB (OCB2 and OCB3), CCM and ETM; with some
GCM experiments.

The EMV protocol would normally have a preliminary
Diffie Hellman key and nonce exchange, however, this was not
modelled as would be common to all AE modes and so would
not affect performance comparison. Associated Data is not
needed in the EMV protocol. Communicated data is required
to fit within one or more standard Application Data Protocol
Units (APDU) [9], and with the exception of OCB modes,
all APDU payloads that are not multiples of the encryption
block-size are padded prior to encryption. The memory in
smart card chips is very restricted and protocol/algorithm
execution is expected to place very limited demands on it,
leaving maximum space for OS and applications. For our tests,
a working assumption was that 80-90% of the memory was
unavailable. The RAM in smart cards is usually much faster
for writing than the NVM and so critical objects/buffers are
implemented in a RAM. Our application was limited to no
more than 10% of the available RAM (so if 8k, we could
have 800 bytes). The application was restricted to no more
than 10% of the available code/data space (so if a 64k flash
device then 6.4kbytes was allowed). Some implementations
benefit from trading NVM space for speed using pre-computed
tables, which is not well suited to smart cards, but up to 10%
of the NVM space was assumed available for this. In general
the imposed memory restrictions proved not to be a problem
for the implemented AE modes.

Test software was in ‘C’, so it could be adapted and directly
comparable for both MULTOS and native implementations.
There is a single test application that incorporates all theAE
modes plus test utilities that measure various core functions.
The interface is based on APDU commands and responses,
with the payload data consisting of blocks of plaintext or
ciphertext. For message timing precision, commands were run

Figure 1. OCB with Incomplete Blocks [Rogaway]

at least 1024 times before response, in order to compensate for
measurement tolerance. Communication delay was removed
(via calibration) from the test results, although it is reconsid-
ered in Section VII. We will now continue the discussion by
providing an overview of the AE modes.

III. OVERVIEW OF AUTHENTICATED ENCRYPTION
MODES

Offset Codebook mode is defined as mechanism 1 in
ISO/IEC 19772 [11] and is also described in RFC 7253 [16].
The principles of operation are also well presented on Phil
Rogaway’s website [22]. For convenience, we will summarise
the basic operations of OCB2 here. In Figure 1, an initialisation
vector is first computed and then the plaintext message is split
into blocks (M1-3, M* in example), all but the last block must
be the size of the block cipher, so for AES128 we have 128
bit blocks. They are then encrypted (with modification from
the input vector) to produce ciphertext blocks. The complete
output is the sequence of C1-3, C* plus an extra value T. Note
that because of a requirement to recompute the intialisation
vector, this AE is most optimum for a 64 block message
sequence and least optimum for a single block message.

CCM is mechanism 3 in ISO/IEC19772 [11] and described
in NIST SP800-38C [20] and [25]. Figure 2 overviews CCM
operation. Whilst the simplified diagram just shows a nonce/-
counter input to the stages of the MAC calculation, the generic
standard description also specifies some flag/length bit fields.

ETM scheme (see Figure 3) is mechanism 5 in ISO/IEC
19772 [11], and is a conventional approach with separate
encryption and MAC processes. It does not support Associated
Data, although this is not required for the study. The encryption
stage uses block encryption in counter mode with key K,
followed by a MAC computation on the cipher text using
a different key (K’) to that used for encryption. According
to ISO/IEC 19772 [11] the MAC algorithm is selected from
the ISO/IEC 9797 standards [12], in which there are six
different MAC options, all of which have numerous variants.
The selected options for the tests are listed below.

• MAC Algorithm: 1 (usually referred to as CBC-MAC)

• Padding Method: 1 (zeros)

• Final Iteration: 1 (same as other iterations)

• Output Transformation: 1 (unity = no change)

• Truncation: - (left most 64 bits)
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Figure 2. CCM Overview (simplified)

Figure 3. Encrypt then MAC

GCM (see Figure 4) mode of operation is mechanism 6 in
ISO/IEC 19772 [11] and also described in NIST SP800-38D
[21] and [23]. The performance of this mode could not be very
usefully compared using the traditional crypto-coprocessors
used for the study as GCM requires support for multiplication
over Galois Field GF (2128) with the hash key H, which is the
encryption of all zeros under EK .

A. Workload Estimation

Table I gives an indication of the underlying workload for
each mode when processing the representative test message
sizes (as advised by the commissioning standards body).

TABLE I. ALGORITHM WORKLOAD PER MODE

Bytes Blks Msgs OCB GCM CCM ETM
E Init E Mul E E

8 1 1 3 1 2 2 3 2
16 1 1 3 1 2 2 3 2
20 2 1 4 1 3 3 5 4
32 2 1 4 1 3 3 5 4
40 3 1 5 1 4 4 7 6
64 4 1 6 1 5 5 9 8
128 8 1 10 1 9 9 17 16
192 12 1 14 1 13 13 25 24

Figure 4. GCM Overview (simplified)

TABLE II. MULTOS BENCHMARK MEASUREMENTS (ms)

Function Primitive Application Used
RAM NVM RAM NVM

Block Encrypt 3.3 6.4 3.3
Block Xor 0.73 3.94 3.21 15.84 0.73
Block Shift 1.24 2.7 1.24
Block Copy 0.36 0.65 0.36
GF Multiply 199 199

IV. PLATFORM MODE RESULTS

For security, certification and reliability reasons, it is not
normal to have native code access to a smart card or similar
security chip once deployed. Instead the chip may offer a
secure platform where added functionality is constrained to a
tightly controlled application layer, using APIs to accesssecu-
rity capabilities. The MULTOS card is such a secure platform
whereby the application execution language is abstracted from
the underlying hardware (see [19]), offering high standards of
security, but making it difficult to predict performance of the
core AE functionality. The results of initial benchmark tests
are shown in Table II. It should be noted that these results
are derived from the response of test commands sent to the
smart card; with the tests including some control, data set-up
and results extraction. Therefore the results should only be
considered as rough estimates compared to the more accurate
results from the method used in the extended study, and
described later in this paper.

The time measured for a block encrypt with a 128-bit
key was 3.3ms (confirmed by MULTOS as matching in-house
results). The underlying chip crypto-engine is much faster, and
the speed disparity is due to software reliability and security
measures. The 3.3ms is only valid when writing encrypted
data to RAM, as NVM increases the time to 6.4ms (although
reading from NVM is fast); so the outputs of all functions were
written to RAM. In all cases where a primitive was available,it
was considerably quicker than any equivalent implemented at
the application layer, although considerably slower than what
might be imagined from a low-level native implementation

GCM requires a finite field multiply, but such a function
did not exist as a MULTOS primitive and so was provided in a
simple implementation similar toAlgorithm 1 in the standard
[17]. Multiplying a single block takes 199ms, even when
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using primitivesmultosBlockShiftRight and MultosBlockXor.
Other implementations are described in the standard, although
they make use of time/memory trade-offs, which is not a
strength for a memory limited smart card. For the initial tests,
all the modes and the extra test utilities were built into a
single application with the following memory requirements.

• Code Size (NVM): 5701 bytes
• Static Data (NVM): 498 bytes
• Session Data (RAM): 113 bytes

All the sizes are well within the realistic and practical
design targets defined at the start of the project. For a single
mode application the code size would be considerably less,
and the static data is mainly internally stored test-vectors that
would not normally be present. The session data could be
reduced, if required.

A. Initial Tests and Optimisation

Following the MULTOS benchmark tests, the GCM mode
was removed from the study (on request of the commissioning
standards body) and more attention given to OCB (version 2)
optimisation; and later OCB3 was also added. GCM requires
specialist hardware support that was not available from the
crypto-coprocessors in the test chips, whereas the other AE
modes could be implemented in a straightforward manner.
OCB2 was initially implemented from the published example
code (see Figure 5) that was critically dependent on a function
called two times().

Figure 5. Published Example Code fortwo times()

This was replaced with a version (with less shifts) more
suited to the MULTOS Platform (see Figure 6), which had a
marked improvement on performance.

Figure 6. MULTOS Code fortwo times()

Given the resulting speed-up (four/five times on larger
messages) from improving OCB2 code, it was decided to also
implement OCB3 based on the pseudo code and test vectors
in RFC7253 [15].

1) OCB3 Memory considerations: At the beginning of the
OCB3 encrypt pseudo code, a number of bit arrays need to
be set-up, see Figure 7, noting that ‘’ is used to indicate
subscript in the pseudo code and thatdouble() is the same
as thetwo times() function used in OCB2. The array Li to
use in block processing, varies per message block using index
L [ntz(i)]. L i: If we allow for processing 64 blocks of 128

Figure 7. OCB3 Key-dependent Variable Set-up

Figure 8. OCB3 Nonce and Pre-encrypt Variables

bits then it might appear that we need 64 of the Li arrays.
However, thentz(i) index means we only need 6 (26 = 64)
L i arrays, as well as L*, L $ and L 0. Therefore we need 9
blocks (144 bytes), rather than 67 blocks; which is well within
our target RAM limit.

ntz(): Another memory requirement arises from the ntz()
function. Bit/byte manipulations at the MULTOS application
layer are slow and so it is quicker to implement the function as
a look up table. For a maximum 64 block message we require
a 64 byte array that can be precomputed and stored in NVM.
This small amount of memory is easily accommodated within
a smart card.

2) OCB3 Functional Aspects: OCB3 defines a hash func-
tion for use with Associated Data, however, this is not needed
in the EMV experiments. OCB3 has a preparation stage where
key and nonce related data is readied prior to processing mes-
sage blocks. The key data was described earlier (computation is
relatively straight forward) and nonce related data is illustrated
in Figure 8. This is mostly straightforward apart from the
innocuous looking line showing the calculation ofOffset 0.
The variablebottom will have a value between 0 and 63; and
it is effectively used as a bit-wise left shift. As discovered
previously, application level bit-shifts are inefficient on the
MULTOS test platform, however, the primitivesmultosBlock-
ShiftLeft/Right are much quicker. Unfortunately, the primitives
require a fixed constant value for the number of places to shift.
Although the operation is only carried out once per message it
could adversely affect efficiency, especially of small messages
and so effort was directed towards optimisation. The first step
was to splitbottom into a number of byte shifts plus a smaller
number (up to seven) bit shifts. Byte shifts are easy as we
can just change the array index. The bit-shifts were used in
a switch/case to reach primitive calls with the appropriate
number of shifts. More code was needed, but the overall code
space requirements are small.

B. MULTOS Platform Results

The results from testing OCB2, CCM, ETM and OCB3 are
shown in Table III.

From the MULTOS results we can see OCB2 is the
quickest mode for message sizes beyond 32bytes. OCB3’s
initial processing makes it slower than OCB2, and OCB3 only
overtakes ETM for messages larger than 128 bytes. CCM is
always a little slower than ETM due to the extra encryption
block, and both are less efficient when working on input data
that requires padding.
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TABLE III. MULTOS PLATFORM RESULTS (ms)

Bytes OCB2 CCM ETM OCB3
8 16.59 17.78 14.27 28.66

16 16.61 17.22 13.70 29.27
20 22.17 25.73 22.21 34.40
32 22.17 25.16 21.62 35.00
40 27.72 33.67 30.15 40.12
64 33.35 41.09 37.57 46.42

128 55.77 72.91 69.38 69.21
192 78.17 104.73 101.22 92.06

Figure 9. AE Comparative Performance on MULTOS Platform

Although OCB2 seems the faster option for the MULTOS
platform (for messages 32+bytes) the relative difference in
processing time is not enormous. OCB2 benefited from some
optimisation, however, there is little scope for improvement
in ETM and CCM as much of their time is spent encrypt-
ing, which is only possible via a MULTOS API call. The
MULTOS platform (and platforms in general) add abstraction
between the application layer and the underlying hardware,
and so there is considerable uncertainty that the comparative
results of Table III would be similar in a native mode smart
card implementation. Furthermore, the absolute performance
times on the MULTOS platform, would be expected to be
at least one order of magnitude slower than a simple native
implementation. Therefore, the AE modes were next tested on
a hardware emulator for an older, but still relevant 16-bit smart
card chip (Samsung S3CC9E8).

V. NATIVE MODE

During the original study, obtaining a native mode hard-
ware emulator for a ”real” smart card with crypto-coprocessor
(for use in academic research) was not possible and only the
S3CC9E8 emulator/chip was suitable and used in payment
cards; although because it did not support AES, substitute
16 byte block encryption functions were needed. To ensure
that comparative performance results would be relevant to
standards, the commissioning standards body was consulted
on the substitutes. The AES 16byte data block was considered
as a pair of 8byte data blocks (M1 and M2) to be coded
with DES or triple DES (TDES), i.e., TDES(M1)||(M2) or
DES(M1)||(M2). Clearly these functions were for performance
evaluation only, although TDES(M1)||TDES(M2) was also
coded as a more secure, but overly co-processor intensive alter-
native. Following some initial experiments, TDES(M1)||(M2)
was used as the AES replacement in the original study. In the

TABLE IV. TDES MASKED MODE AE TIMES (ms)

Bytes OCB2 CCM ETM OCB3
8 3.04 2.16 1.53 5.75

16 3.07 2.12 1.49 5.81
20 4.19 3.48 2.85 6.73
32 4.24 3.43 2.80 6.81
40 5.37 4.77 4.15 7.76
64 6.57 6.04 5.42 8.81

128 11.23 11.28 10.65 12.82
192 15.89 16.51 15.89 16.82

follow-on study it was possible to port the native test code
to a SLE78 chip that was able to support AES as well as
TDES(M1)||(M2).

A. Initial Implementation (S3CC98) and Measurement

This stage was focussed on porting the MULTOS code
to the native emulator and generating early raw results for
functional checking. They derive from non-optimised code,
simply replacing the MULTOS primitive calls with equivalents.
The performance of the AE modes (including OCB3) was
measured in a similar way to the MULTOS work. The first
tests used the dual TDES(M1)||TDES(M2) block encryption
option (hardest to compute) and the results are in Table IV.

From these initial native results, we observe that the pro-
cessing time for a single message was under 17ms, regardless
of the AE mode. Although the block ciphers were of course
different, the overall native execution times were significantly
faster than those from the MULTOS experiments, even without
optimisation. ETM was the best option for single APDU mes-
sages, although in absolute terms there was not much to choose
between any of the modes. For smaller messages, ETM and
CCM still seemed to have the advantage over the OCB modes.
Common to both native and MULTOS implementations, ETM
is always a little better than CCM and OCB3 does not seem
to improve on OCB2.

B. Optimisations

The original source code used within the initial tests was
very similar to the MULTOS code. The scope for optimisation
on the MULTOS platform was limited as core functions were
most efficiently carried out using platform primitives thatwere
abstracted from the underlying hardware. Native mode pro-
gramming generally offers more opportunity for optimisation
as there is less hardware abstraction. Only speed optimisation
was considered in this part of the study as all versions of the
native code were well within our target memory bounds.

Data Block Copy and XOR: The algorithm modes make
use of simple byte manipulation functions including XOR and
Copy. In the MULTOS implementation these functions were
provided by MULTOS primitives, which in the native code
were initially replaced by simple equivalents that assumed
variable sized fields and handled data byte-by-byte. However,
within the authentication modes, very few operations use
variable sized fields, with the majority working on 16 byte
memory blocks. Knowing the field size, means that we can
avoid loop counters, and by ensuring that the blocks are aligned
on 4-byte boundaries we can perform operations on unsigned
long integer types rather than bytes. Referring to Table V we
see that as a result, BlockXor and BlockCopy have almost
doubled in speed, which has also improved the overall block
cipher performance. Note that functional calls are still used at
this stage rather than in-line code.
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TABLE V. OPTIMISATION OF CORE FUNCTION EXECUTION (ms)

Function Original Optimised
Block Xor 0.161 0.071
Block Copy 0.114 0.064
ECB TDES|| TDES + mask 0.608 0.381
Fixed Block Shift Left 0.330 0.073

TABLE VI. OPTIMISED CORE PERFORMANCE BENCHMARKS (ms)

Functionality Time
FixBlockXor 0.071
FixBlockCopy 0.064
FixBlockShiftLeft 0.073
DES(M1)||M2 0.128
DES(M1)||DES(M2) 0.141
DES(M1)||DES(M2) + mask XOR 0.146
DES(M1)||DES(M2) + mask XOR + key clear 0.154
TDES(M1)||M2 0.140
TDES(M1)||TDES(M2) 0.163
TDES(M1)||TDES(M2) + mask XOR 0.169
TDES(M1)||TDES(M2) + mask XOR + key clear 0.178

Block Shifts: The OCB modes use Copy and XOR op-
erations, but also rely on the functiontwo times() (discussed
earlier), which in turn makes use of a function for shifting
the contents of a block to the left. The function from the
first tests,BlockShiftLeft() was a direct replacement for the
MULTOS primitive that supported variable shifts on variable
sized blocks, referred to by pointer parameters. However, in
practice,two times() can be constrained to always use shifts of
one place in a 16 byte global variable block. It was therefore
possible to create a simplerFixBlockShiftLeft() function to
use instead. The resulting speed improvement for the shift
functions was very significant, as shown in Table V.

Further Refinement: When implementing the block ci-
pher functions, further optimisation removed calls to corefunc-
tions involving variable length arguments, and in some cases
replaced them with simple in-line code. The block encryption
function no longer called the core functions, but had faster
in-line equivalents. The different block functions are handled
by compile-time switches. Note that when using a crypto-
coprocessor an input may be masked to reduce side-channel
leakage and so a dummy mask was included in the test modes.
An option was also added to clear the keys after use, however,
this was not used in the main measurements. The extended
set of benchmarked measurements is shown in Table VI,
however, now that operations are speed optimised the absolute
figures are significantly influenced by the measurement test
command handling. It is more useful to consider the relative
measurements, e.g., by subtracting the FixBlockCopy time
from the others.

C. Native Mode Results (S3CC98)

Following the additional optimisations, the message tests
were repeated for the substitute block cipher function
TDES(M1)||M2. The functions are clearly intended to assess
performance, rather than to ensure security of the data. The
results are provided in Table VII and shown graphically in
Figure 10.

D. Observations on the S3CC98 Native Tests

Considering Table VI we have significantly improved the
performance of core functions. We can also use these resultsto
estimate the achievable raw speed of the crypto-coprocessor,
by cancelling out the software manipulations. For both DES

TABLE VII. S3CC98 TDES(M1)||M2 AE TIMES (ms)

Bytes OCB2 CCM ETM OCB3
8 0.54 0.34 0.27 0.83

16 0.57 0.30 0.23 0.79
20 0.65 0.50 0.43 0.92
32 0.70 0.45 0.38 0.91
40 0.79 0.64 0.57 1.07
64 0.95 0.75 0.68 1.16

128 1.46 1.35 1.28 1.65
192 1.96 1.95 1.88 2.14

Figure 10. Optimised S3CC98 TDES(M1)||M2 AE Times (ms)

and TDES operations we set-up the same keys (two are
redundant for DES, but help our timing comparison), wrote
in the input data once and read out the result once. The
DES crypto-engine overwrites its input data with its output
and so for TDES the CPU does not need to move data
between the sequence of DES executions; it just refers to a
different pre-stored key for each execution. Therefore, ifwe
look at the times for an equivalent DES and TDES operation
the difference should be the time taken for the extra DES
executions. This time is largely dependent on the hardware
although the execution has to be started and checked for
completion by the CPU. We can estimate the core DES run
time td using the following example, wheret(f ) is the time to
execute functionf.

2td = t(TDES(M1)||M2)− t(DES(M1)||M2)

= 0.140− 0.128

= 0.012ms

(1)

There were two extra DES runs in the TDES version so
we might suppose that each was about 6us. We can check this
by calculating the following.

4td = t(TDES(M1)||TDES(M2))

− t(DES(M1)||DES(M2))

= 0.163− 0.141

= 0.022ms

(2)

The four extra DES runs take 22us, about 5.5us each; which
is close to our earlier estimate. We can also see from Table
VI that the dummy XOR on a 16byte block using in-line code
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TABLE VIII. SLE78 BASIC PERFORMANCE BENCHMARKS (ms)

Functionality Time
FixBlockXor 0.006
FixBlockCopy 0.004
FixBlockShiftLeft 0.006
AES 0.041
TDES(M1)||M2 0.027

TABLE IX. SLE78 Native AES AE TIMES (ms)

Bytes OCB2 CCM ETM OCB3
8 0.19 0.14 0.10 0.28

16 0.19 0.14 0.10 0.27
20 0.25 0.22 0.18 0.33
32 0.25 0.21 0.17 0.32
40 0.30 0.30 0.24 0.38
64 0.36 0.37 0.31 0.42

128 0.58 0.67 0.60 0.63
192 0.81 0.97 0.89 0.82

takes about the same time, 5-6us. The key-clear, which is a 24
byte write, takes about 8-9us, so a 16byte block copy should
be in a similar 5-6us range. The optimisations improved the
speed of all AE modes.

E. Extended Implementation (SLE78) and Measurement

The optimised C code for the S3CC98 implementation
was ported to the SLE78 chip. The code was modified to
run the AES block cipher, although the capability to run
TDES(M1)||(M2) was retained. To avoid a run-time switch
between the block cipher modes (which might affect perfor-
mance) the test card was loaded with two separate applications.
Before considering the AE mode tests, some basic benchmark
tests were carried out as shown in Table VIII. The measure-
ments for XOR, copy ands shift are on the limit of accuracy
for the test system, even running the command iterations over
4000 times, however, when comparing the results from Table
VI, it is clear that the SLE78 is roughly an order of magnitude
faster than the S3CC98 on basic processing. This result is not
unexpected as the SLE78 has a much newer and faster chip
and CPU than the S3CC98. The performance of the block
ciphers is mainly due to the crypto-coprocessors rather than
the CPUs and here the speed-up is not quite so large. Based
on the approximate test command figures, the SLE78 can carry
out the TDES(M1)||(M2) operation roughly five times faster
than the S3CC98; and indeed 1.5 times faster than it can run
the AES block cipher. The latter is due to AES being not quite
so well optimised for hardware implementation as DES. If we
refer back to the MULTOS results of Table II we can see
that for the same SLE78 chip the MULTOS platform speed is
approaching two orders of magnitude slower than is possible
in native mode. This is the price to pay for a high security
implementation compared to simple functional capability.

The AE mode tests were carried out on the SLE78, first
using AES and then the TDES(M1)||(M2) block ciphers. The
results are shown in Table IX and Table X; and graphically
in Figure 11 and Figure 12. The most notable observations
from the figures are that although the absolute timing is very
different, the result patterns for the MULTOS implementation
and the native SLE78 AES implementation have strong sim-
ilarities, as do the two TDES native implementations. In the
next section we will investigate if the result behaviours can
be predicted in a chip and platform independent manner from
simple benchmark tests.

TABLE X. SLE78 Native TDES(M1)||M2 AE TIMES (ms)

Bytes OCB2 CCM ETM OCB3
8 0.15 0.11 0.08 0.24

16 0.15 0.10 0.07 0.23
20 0.20 0.15 0.13 0.28
32 0.20 0.14 0.12 0.27
40 0.24 0.19 0.17 0.32
64 0.29 0.23 0.21 0.35

128 0.46 0.41 0.38 0.50
192 0.63 0.59 0.56 0.65

Figure 11. SLE78 Native AES AE TIMES (ms)

F. Technology Independent Gain Assessment

When considering the implementation of security algo-
rithms and protocols on limited processors, assumptions are
often made about their feasibility based on the resource
intensity of the primitives with respect to the speed of the
CPU. Anticipation of performance can affect the design from
the outset, for example, avoiding best practice standardised
algorithms in favour of simpler approaches based on hashes
and XOR operations. These assumptions can be invalid if
the processor can execute primitives, such as block ciphers,
relatively rapidly, as in the case of a crypto-coprocessor.In fact

Figure 12. SLE78 Native TDES(M1)||M2 AE TIMES (ms)
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Figure 13. Measurement Equipment

in the latter case, our studies have shown that the performance
results can be markedly distorted compared to a conventional
CPU, so in predicting protocol performance we need some
benchmark of how much distortion there will be. In the original
study we proposed the use of the Technology Independent Gain
Assessment (TIGA) for any CPU with a crypto-coprocessor;
expressed as the percentage of the block encryption that can
be completed by the crypto-coprocessor in the time it would
take the CPU to compute a block XOR. For example a CPU
with no co-processor would have a TIGA of 0% whereas
equality of XOR and block cipher time time would give a
TIGA of 100%. The general idea is that TIGA is estimated
for a target platform by measuring the XOR and block cipher
speeds, so performance can be reasonably predicted prior toa
full protocol implementation.

The question is then how and where to measure the block
cipher and XOR speeds? In the case of the MULTOS platform,
knowing the raw chip-level performance is of little use as
the functions are accessed through a high-level API, which
includes the security protection overheads. In this case the
only option was to compute TIGA at the application/API level,
which produced a rough estimate value of 22%. With a variety
of low-level test commands we were eventually able to estab-
lish precise measurements for the S3CC98 equating to TIGA
values for DES and 3DES of 100% and 33% respectively.
Although it should be noted that even with low-level code
development, functionality is often accessed via simple system
calls and drivers; which detract from the maximum raw speed
of the hardware. Speed would be further compromised by low
level software security protection measures.

In the original study, we had little option, but to compare
the performance of the MULTOS AES implementation with
that of TDES(M1)||(M2) on the S3CC98 chips, but now
we have the native mode SLE78 results to make a proper
comparison. The SLE78 exhibits two TIGA values depending
on whether we use the intended block cipher (AES) or the
substitute version TDES(M1)||(M2).

The benchmark measurements of the original work were
not considered precise enough, by the author, to draw any
solid conclusions on the usefulness of using TIGA and so a
new method was designed and applied to all the test cards.

Figure 14. Improved Measurement Method

TABLE XI. TIGA Benchmarks (ms)

Platform XOR AES TDES TIGA
MULTOS SLE78 0.4695 5.3854 8.72%
Native SLE78 0.0038 0.0390 9.84%
Native SLE78 0.0038 0.0.0251 15.34%
Native S3CC98 0.0191 0.0966 19.80%

In the new method the timing measurements are obtained
via an oscilloscope probing the smart card I/O line. The
experimental equipment is shown in Figure 13, including the
S3CC98 hardware emulator as well as one of the test cards.
The sampling oscilloscope was a LeCroy LT264M, with a
350MHz bandwidth and sample speed of up to 1GS/s, although
a much simpler scope would have been adequate. The PCB
shown connected via the oscilloscope probe, is just a breakout
board used for smart card experiments, and although it is
configured for side-channel power leakage experiments, we
only monitored the I/O line in this case.

One of the measurement scope traces is shown in Figure
14. The arrows have been added to clarify the measurement
period, which is from the first transition of the I/O line (the
start of the test command transition), to the first transition of
the card response. The test command was run with a single
iteration cycle giving a period P1 and then with an ’N’ iteration
cycle (typically 1000+) giving a period PN. The measurement
was then calculated as (PN-P1)/(N-1) and thus excluded much
of the fixed overhead inherent in the test command process.

These new results are presented in Table XI along with
the respective TIGA calculations. Note that the TDES column
implies TDES(M1)||M2.

If we consider the AES results from Table XI we see
that despite more than two orders of magnitude difference in
performance, the MULTOS platform and the native SLE78
have very similar TIGA values, in the range of 8-10%. When
we refer to Figure 9 and Figure 11 we also see a very similar
shape to the AE data measurements. Turning our attention to
the TDES versions, we see they have higher gain that AES, and
despite presenting a comparison of two very different chips,
with a three fold difference in absolute performance, their
TIGA values are quite close, in the 15-20% range. Referring
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to Figure 10 and Figure 12 we can see a similar shape to
the AE data measurements. These results are encouraging and
would suggest that the TIGA value is a reasonable estimator
of performance on a crypto-coprocessor device, regardlessof
the level of access or API.

Although we are not always comparing like-with-like due
to access restrictions, TIGA is a means to make a benchmark
comparison. A high value would suggest that a designer could
use block encryptions as readily as XORs and so algorithm
optimisation and performance would be quite different to
conventional (non crypto-coprocessor) CPUs.

At this point it should be recalled that cards/chips of
interest are security sensitive and likely to be attacked. Fortu-
nately countermeasures are quite well understood by the card
industry, but they can potentially impact on performance, and
so in the next section we consider how our results might be
affected.

VI. I MPLEMENTATION SECURITY AND PERFORMANCE

Payment cards safeguard financial transactions of signifi-
cant value and so are required to strongly resist a wide range
of attacks. EMV cards rely on the protection of various stored
assets including cryptographic keys, account details and PINs,
as well as on the integrity of critical functionality Adhering to
information security best practice guidelines for design,(e.g.,
for algorithms, keys and random number generation) is not at
all sufficient as many of the attacks target the implementation
rather than the design. In smart cards, the attack resistance will
be provided by a mix of hardware and software measures and
so there is potential for performance impact. We can consider
such attacks under the following three categories.

• Physical

• Fault

• Side-Channel

A. Physical Attack Resistance

Physical attack generally requires considerable expertise,
equipment and time. It may for example involve decapsulat-
ing a chip, hardware reverse engineering, probing buses and
memories and modifying tracks. However, smart card chips
have numerous defences against such intrusions, including:

• Passive and active shields - to prevent access to a
working chip

• Encrypted buses and memories - to impede direct
probing

• Light sensors - to detect decapsulation

• Scrambled circuit layout - to make hardware reverse
engineering difficult

Both the chips used in this study incorporate these protec-
tive measures, and because they are inherent in the hardware
we do not need to degrade our performance test results.

B. Fault Attack Resistance

Fault attacks are active, in that they use means to disrupt
the normal operation of the target device (chip); but without
damaging it. The faults can, for example, be generated from
voltage glitches, radiation pulses and operating the target
outside of its operational specification. Under fault conditions

the chip may reveal all kinds of information that it would not
do when working normally and there are some very elegant
attacks including extraction of RSA keys [2]. The hardware
sensors in traditional tamper-resistant smart cards (likethe
S3CC9E8) are intended to detect the likely means of fault
insertion and prevent a response useful to the attacker; so
there may be no significant added overhead for the software.
A sophisticated attack might possibly bypass the sensors,
however, by adopting openly peer-reviewed algorithms and
using diversified card keys, we remove motivation for such
effort. Added countermeasures could be to verify a result or
to run an algorithm twice and only output a response if the
result is valid/consistent, however, both strategies relyon the
correct outcomes of flag tests and loop counts. It is therefore
good practice to add defensive coding of loop and flag tests,
at the cost of some additional processing overhead,

The SLE78 chip works very differently to a traditional
smart card chip as it has two CPUs working in tandem and a
fault is detected if their processing does not agree. This isan
innovative and effective approach, which would make it very
difficult to succeed with a fault attack. As the protection is
inherent in the chip hardware it should not noticeably impact
our test results.

C. Side-Channel Attack Resistance

Side-channel leakage implies the leakage of sensitive infor-
mation (especially keys) via an unintentional channel. This can
take the form of key/data-dependent timing variations, power
supply fluctuations or electromagnetic emissions. Analysis
techniques are well known (see [13] [14]) and can be very
powerful against unprotected implementations, includingbest-
practice algorithm designs such as AES. Fortunately, modern
smart cards are well protected against such attacks, with
a range of countermeasures that mainly impede statistical
averaging of signals (used to detect signals in noise) or reduce
the source generation of the leakage. Attack countermeasures
include:

• Power smoothing

• Noise insertion

• Randomisation of execution

• Timing equalisation

• Dual-rail logic (or Dual CPUs)

The SLE78 chip used in the MULTOS card and for
the latter native mode experiments, has a sophisticated dual
processing arrangement known as “Integrity Guard” that is
believed to be effective at suppressing leakage at source, and
this coupled with the Common Criteria certified MULTOS
secured OS would suggest that no significant further perfor-
mance degradation would be incurred from application level
countermeasures. However, the native mode SLE78 results
show us that the MULTOS protective measures have already
cost two orders of magnitude in performance compared to the
raw chip performance.

The S3CC9E8 used in the native implementation is a
traditional secured microcontroller chip with a single CPU
and so it will include some noise smoothing and execution
randomisation, but will not suppress the leakage signals at
source. Given the age of the chip one would expect some
extra side-channel leakage protection to be required from the
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software, which will have a performance impact. Our tests
already included a dummy XOR to represent masking the
data used in the crypto-coprocessor, however, for this typeof
chip more help would be needed. One technique used for fast,
but perhaps “leaky” crypro-processors is to run the algorithm
multiple times, so that an attacker does not know which run
used the correct data rather than a dummy pattern. Clearly
if you hide your data in a 10 algorithm sequence, you would
expect to lose an order of magnitude in performance. Hamming
weight equalisation is another technique (used in non-secured
CPUs) that seeks to reduce information leakage by ensuring
that for each bit transition there is a complementary transition;
so as a ‘1’ changes to ‘0’ there is also a ‘0’ changing to
‘1’. In principle this should reduce leakage, however, due to
electrical, timing and physical layout factors, register bits do
not contribute equally to leakage, so the reduction is inferior to
hardware measures and may not justify the effort. In a practical
implementation this could for example be a 16-bit processor
where the lower 8-bits of a register handle the normal data and
the upper 8-bits handle the complementary data. This alone
is not sufficient as it is necessary to also clear the registers
before and after use and so rather than a two-fold reduction
in performance, at least an order of magnitude should be
anticipated.

D. Observations

It is likely that physical and fault attack protection can
be handled by the smart card hardware without significantly
degrading performance. For the MULTOS card based on the
SLE78 we have sophisticated hardware coupled to an OS de-
signed for the highest levels of security, and Common Criteria
evaluation checks for strong protection against side-channel
leakage. For the native implementation in the S3CC9E8 we
would anticipate additional side-channel countermeasures in
software and if we consider the techniques in the earlier section
then even for restricted/tuned functionality, losing at least an
order of magnitude in performance should be expected.

The motivation for a side-channel attack just to capture
the EMV session keys is questionable, however, discovery of
the keys might expose other assets or assist with sophisticated
attack strategies. Therefore, it would be prudent to consider an
order of magnitude speed degradation when considering the
results in Table VII; although processing would still be fast,
with the worst case time for a 192 byte payload being just over
21ms for the slowest mode. However, to know whether this
processing is fast enough, or the bottleneck for the protocol,
we need to also consider the communication speed via the
smart card to Point of Sale (POS) interface.

VII. C OMMUNICATION EFFECTS ONPERFORMANCE

Performance tests of AE, normally just focus on the
processing aspects, as communication in an Internet-connected
world is generally fast enough (e.g., 25-100Mbps) to cause
negligible delay. However, for payment card use of AE we
are dealing with interfaces that may bemuch slower and
so transactions might hit communication limits before card
processing limits.

A. Payment Card Interfaces

The interfaces for payment cards fall into two main cate-
gories. The contact interface is the oldest and has dominated

TABLE XII. CARD INTERFACE TRANSMISSION TIMES (ms)

Bytes Contact (bits/s) Contactless (bits/s)
13441 78125 312500 106000 424000

8 4.76 0.82 0.20 0.60 0.15
16 9.52 1.64 0.41 1.21 0.30
20 11.90 2.05 0.51 1.51 0.38
32 19.05 3.28 0.82 2.42 0.60
40 23.81 4.10 1.02 3.02 0.75
64 28.09 6.55 1.64 4.83 1.21

128 76.19 13.11 3.28 9.66 2.42
192 114.28 19.66 4.92 14.49 3.62

payment card transactions using Chip & PIN, however, many
cards now support the contactless interface for touch and pay
(no PIN). Within the standards (contact [9] and contactless
[10]) a range of interface speeds are defined, however, this
does not mean the fastest modes are supported in all deployed
cards, or POS terminals. Table XII shows an example range of
transmission speeds and an estimation of the time to transmit
the data associated with the different sized test messages.
Note that the working interface speed is negotiated and agreed
between the smart card and the POS terminal as part of the
pre-transaction protocol and by varying clock speed as well
as divider parameters the full range would be closer to 9600
- 38400 bits/s. For example the contact rates in Table XII are
computed in accordance with standards, as a clock frequency
(5 MHz) f c divided by factorD (372, 512 and 512 respectively)
and multiplied by a factorF (1, 8 and 32 respectively).

The speed range is very wide especially in the contact case,
as the default rates maintain compatibility with very old cards
and POS terminals. The command processing and transmission
can be considered as separate activities; and whichever takes
longer is considered the bottleneck limit. Recalling the MUL-
TOS platform performance (Table III) we have a processing
limited solution. There are some message/mode combinations
that are communications limited, but only when running at
the lowest default speed, which is impractically slow. If we
now recall the raw native mode results (Table VII), then
in practice we have a communications limited solution. At
the fastest interface speeds this may not be quite the case,
however, we would not normally assume that the fastest rates
would be available from cards and POS terminals; and so
the 78,125 bps and 106,000 bps for contact and contactless
interfaces respectively would be more reasonable expectations.
The future outlook is that the communication rates will get
faster and the contact interface will eventually be displaced by
contactless, which suggests that transactions will be processing
limited. EMV implementations in mobile phones will of course
have access to much faster wireless technologies such as
802.11ac that can run at 1.3 Gbits/s, however, the scope of
this study is restricted to conventional smart card devices.

VIII. C ONCLUSION AND FUTURE WORK

The study investigated AE modes on existing available
smart chips/platforms using conventional crypto-coprocessors.
GCM was not analysed in detail as themultH function (or
parts of it) would need to be implemented within more spe-
cialist crypto-coprocessor hardware. All the other AE modes
considered, were feasible both in terms of speed and memory
usage. The S3CC98 native mode implementation was much
faster than the MULTOS platform and in the final tests all
the modes for all single APDU test message sizes took no
more than 2.14ms. The SLE78 native mode implementation
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was faster again with no AES AE mode taking more than
0.97ms and the slowest TDES(M1)||(M2)mode being 0.63ms.

The new results differ markedly from comparisons that
have focussed on general processors, larger message sizes
and the inclusion of Associated Data. For both native
TDES(M1)||(M2) implementations, ETM/CCM modes were
quicker than OCB for the single APDU test messages, although
OCB modes would be expected to claw back the advantage
for multi-APDU messages. In the SLE78 native AES imple-
mentation, OCB2 overtook ETM for message sizes around 64
bytes and upward. In all the implementations, and for a single
APDU, ETM was always slightly ahead of CCM and OCB2
led OCB3.

One of the most interesting observations is that the MUL-
TOS platform and native SLE78 AES performance results
have very similar distributions, even though their absolute
magnitudes differ by two magnitudes. Furthermore the two
TDES(M1)||(M2) implementations also have very similar dis-
tributions albeit on very different chip platforms and withan
absolute performance difference of more than three times.

At first glance, the results may seem counter-intuitive due
to the extra encryptions required in ETM/CCM compared
to OCB2/OCB3, however, they arise because the chip has
significant crypto-coprocessor gain. The native measurements
show that the core DES encryption time is comparable with
a 16 byte block XOR, executed by the CPU. We suggested a
new benchmark, the Technology Independent Gain Assessment
(TIGA) for CPUs with crypto-coprocessors; as the percentage
of the block encryption that can be completed by the crypto-
coprocessor in the time it would take the CPU to compute
a block XOR. We improved on our bench marking from the
original study, by introducing a new method of measurement
via an oscilloscope and a simple calculation to remove test
command overheads. Using the new method we calculated
that the MULTOS platform and SLE78 native AES had quite
similar TIGA values of 8.72% and 9.84% respectively. The
TIGA values for the S3CC98 and SLE78 TDES(M1)||(M2)
were not too dissimilar at 15.34% and 19.80% respectively.
These pairs of results account for the similarity in the related
pairs of figures illustrating the data result distributions. The
new TIGA measure could be valuable when comparing and
predicting protocol implementation performance on various
platform types, as may increasingly be the case in Internet
of Things implementations.

The performance gain from the crypto-coprocessor can be
eroded if more time is spent conditioning the data into and out
of it. Such processing may be required for security protection,
(to mask data and/or to reduce leakage), although it should be
noted that any part of an algorithm running in the CPU may
also require similar protection.

The processing time comparison was independent of the
communications interface speed, however, both affect the over-
all protocol performance. The MULTOS platform is primarily
processing limited, whereas the simple native implementation
is mainly communications limited. If we degrade the S3CC98
native performance by an order of magnitude in anticipation
of overheads to reduce side-channel leakage (e.g., repeated
operations or hamming weight equalisation in software) then
we approach the optimum around the 78,125bps rate; any
lower than this and the protocol performance will degrade due
to communication delays.

The crypto-coprocessor gain, coupled with small message
sizes, means that there is not much to choose between OCB2,
OCB3, ETM and CCM performance. It might be argued that
ETM could be chosen for speed and efficiency of small-
/medium messages or OCB if medium/large messages are the
norm. It is also possible for GCM to be usable in future if
supported by a specialist co-processor, however, it is unlikely
to be much quicker than the other modes. As performance is
unlikely to be a great differentiator for the AE modes, an option
could be to standardise an AE framework around a default
mode and define a negotiation process for a card and POS
terminal to agree alternative AE modes. This would provide
a useful mechanism if vulnerabilities were discovered in any
particular AE mode, as well as a means for interworking and
migration of smart cards and POS terminals having different
capabilities.

A. Future Work

It would be interesting to implement the AE modes in a
similar manner on other secured microcontrollers with crypto-
coprocessors (although this may be difficult due to publication
restrictions required by device vendors). In the first instance
this should help prove the generality of the results, but also
provide further evidence on the usefulness of the TIGA
benchmark, which is easily determined on any processor. It
is hoped that a secured smart card microcontroller chip could
become available (for academic research) offering native mode
programming and crypto-coprocessor support for GCM, so that
a full-set of AE mode results could be generated and published.
A Java Card platform has become available that would permit
direct comparison with the MULTOS platform, as both are
based on the SLE78 secured microcontroller.
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