International Journal on Advances in Security, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/security/

196

Multi-Platform Performance of Authenticated Encryption f or Payment Cards with

Crypto Co-processors

Keith Mayes

Royal Holloway, University of London
Egham, Surrey, UK
Email: keith.mayes@rhul.ac.uk

Abstract—Many security protocols rely on authentication of
communicating entities and encryption of exchanged data. ra-
ditionally, authentication and encryption have been sepaate
processes, however, there are combined solutions, refedeto
as authenticated-encryption (AE). The payment card indusly is
revising its protocol specifications and considering AE, haever,
there has been uncertainty around performance and feasikily on
traditional issued smart cards and when loaded as applicatins on
security chips pre-installed within devices. It is difficuk to predict
and compare performance using results from generic CPUs, as
typical smart card chips used in payment, have slow CPUs yeabt
crypto-coprocessors, and their performance may be constiaed
by secured application programming interfaces. This repot is
based on a practical investigation, commissioned by a staadds
body, that compared secure platform level (MULTOS) and low-
level native implementations of AE on crypto-coprocessor reart
cards. The study also suggests a technology independent lobn
mark (TIGA) for a CPU with crypto-coprocessor. This paper
extends on work first published in ICONS17/EMBEDDED2017;
now describing an additional native mode implementation ona
modern secured smart card chip, introducing a more preciseitn-
ing measurement, and further analysing the utility of TIGA. The
work has proved the feasibility of implementing various modes
of authenticated encryption on appropriate smart card chips
with crypto-coprocessors and has provided precise measurent
results for comparison. The work has also identified a meansot
predict the performance of other processors and platforms ot
included within the practical experiments.

Keywords-Authenticated encryption; EMV; OCB; ETM; CCM;
smart card.

I. INTRODUCTION

least Evaluation Assurance Level (EAL) 4+. Despite strong
defensive capabilities, the chips lag behind the statidwefart

in CPU performance and memory sizes. However, despite these
limitations the chips excel in cryptographic operationshasy
incorporate relatively high-speed crypto-coprocessohvare.

The EMVCo organisation is reviewing the use of Authenti-
cated Encryption (AE) [11] for future payment card procegsi
There are a number of potential modes and those originally of
interest included Offset Codebook (OCB) [16], Galois Ceunt
Mode (GCM) [21], Counter with Cipher Block Chaining Mes-
sage Authentication Code (CCM) [20] and Encrypt-then-MAC
(ETM) [11]. Note that a MAC in this context is a cryptographic
Message Authentication Code, computed over the payload
data, and used to verify its integrity and the authenticity o
its source. Within this study, GCM was eventually substitut
for OCB3 as the former required binary field multiplication,
which was not supported by the available crypto-coproassso
There have been previous studies of AE performance, however
they have generally focussed on more powerful generic CPUs,
without dedicated crypto-coprocessors. As a startingtpae
take the study by Krovetz and Rogaway [15], which shows
that OCB performance is faster (for the given test cond#jon
than alternatives; however, there are several reasonshelse t
results cannot be immediately accepted as relevant for EMV
protocols:

e The command messages in traditional smart cards are

small; the data field restricted to 255 bytes; larger
payloads accommodated by multiple messages.

e The results do not adequately address the case of a
slow CPU with a relatively fast crypto-coprocessor.

This text describes an extended version of an ICONS

Support for Associated Data is not required.

2017 conference paper [1], which measured and compared
Authenticated Encryption (AE) modes on a secured smart
card platform and a native mode implementation on a legacy
smart card chip. In this paper we also consider the native
mode implementation on a third and more modern smart card
chip of the type used within the MULTOS platform. The

new results give a more relevant assessment of AE mode
comparative performance and allow analysis of the Teclyyolo

Independent Gain Assessment (TIGA) proposed in [1]. Wejye performance of AE on realistic smart card platforms,
start by considering the background to the original study. 3 practical study was initiated, considering first a secure
The EMVCo organisation [5] developed the Europay, Mas-platform implementation (MULTOS) [18] and then a native
tercard and Visa (EMV) standards [4] that affect billions of mode equivalent. In the original study, described in [1] the
payment smart cards. The cards use secured microcontrollehoice of native mode implementation was compromised by
chips, designed to be strongly tamper-resistant and indeperestrictive choice of chip and development tools, howetras,

dently evaluated to Common Criteria (CC) [3] levels of atextended study overcomes these restrictions.

Smart cards have very restricted memory sizes with
different write speeds for Random Access Memory
(RAM) and Non-\olatile Memory (NVM).

Conventional smart card interfaces are quite slow and
so protocols can be communication limited rather than
processing limited.

In order to gain a better appreciation of the compara-

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/security/

197
This report describes the experimental requirements in b it}
Section Il and then gives an overview of the AE modes in Actod) - Aeheld) Achefd) Ace(d) Aetned)
Section Ill. The platform and native results are presented ‘ M, ‘ ‘ M, ‘ My ‘ o
and discussed in Sections IV and V respectively. Section VI
discusses how implementation security may affect perfacaa Bed Bea e Bt
measurements, and Section VIl considers communication lim |
itations. Conclusions and suggestions for future work are ;
presented in Section VIII. E E E, E, E,
Il. EXPERIMENTAL REQUIREMENTS pad Final
. . . d d o/ -
The study investigated comparative performance of AE At Tﬂg
modes implemented in both a secured smart card application C C C aal :
platform (representative of a pre-deployed device), and as ‘ ! ‘ ‘ 2 ‘ ‘ 3 ‘ ‘ *[\ '\
fe— T —

native code on a smart card chip. The selected platform was
a MULTOS ML3 card, using the Infineon SLE78 chip [8], Figure 1. OCB with Incomplete Blocks [Rogaway]

which can be CC EAL4+ certified, and includes good defences))

against physical, side-channel [13][14] and fault attadkse at least 1024 times before response, |n.order to compermate f
original native mode implementation used a Samsung 16-biineasurement tolerance. Communication delay was removed
smart card chip (S3CC9ES) [24], and as the crypto-coprocess(Via calibration) from the test results, although it is nesil-

did not support AES, its performance comparisons use@zred_ in Section VII.. We will now continue the discussion by
3DES/DES [6]. The S3CC9ES is a secured microcontrolleProviding an overview of the AE modes.

with physical attack protection, fault sensors and some-sid

channel countermeasures, however, it would normally requi ~ !ll. OVERVIEW OF AUTHENTICATED ENCRYPTION

added defensive measures in software; this is discusstubfur MODES

in Section VI. The extended study was able to add a native Offset Codebook mode is defined as mechanism 1 in
mode implementation on the SLE78 chip supporting both AESSO/IEC 19772 [11] and is also described in RFC 7253 [16].
and 3DES/DES variants. The AE modes considered in detaifhe principles of operation are also well presented on Phil
were OCB (OCB2 and OCB3), CCM and ETM; with some Rogaway’s website [22]. For convenience, we will summarise

GCM experiments. the basic operations of OCB2 here. In Figure 1, an inititiiea

The EMV protocol would normally have a preliminary Vector is first computed and then the plaintext messageits spl
Diffie Hellman key and nonce exchange, however, this was ndhto blocks (M1-3, M* in example), all but the last block must
modelled as would be common to all AE modes and so would€ the size of the block cipher, so for AES128 we have 128
not affect performance comparison. Associated Data is nddit blocks. They are then encrypted (with modification from
needed in the EMV protocol. Communicated data is requiredhe input vector) to produce ciphertext blocks. The congplet
to fit within one or more standard Application Data Protocoloutput is the sequence of C1-3, C* plus an extra value T. Note
Units (APDU) [9], and with the exception of OCB modes, that because of a requirement to recompute the intialisatio
all APDU payloads that are not multiples of the encryptionvector, this AE is most optimum for a 64 block message
block-size are padded prior to encryption. The memory insequence and least optimum for a single block message.
smart card chips is very restricted and protocol/algorithm CCM is mechanism 3 in ISO/IEC19772 [11] and described
execution is expected to place very limited demands on itin NIST SP800-38C [20] and [25]. Figure 2 overviews CCM
leaving maximum space for OS and applications. For our,testeperation. Whilst the simplified diagram just shows a nonce/
a working assumption was that 80-90% of the memory wagounter input to the stages of the MAC calculation, the gener
unavailable. The RAM in smart cards is usually much fastestandard description also specifies some flag/length bitsfiel
for writing than the NVM and so critical objects/buffers are ETM scheme (see Figure 3) is mechanism 5 in ISO/IEC

implemented in a RAM. Our application was limited to no 19772 [11], and is a conventional approach with separate

more than 10% of the available RAM (so if 8k, we could encryption and MAC processes. It does not support Assatiate
have 800 bytes). Th_e application was restrlcted_ fo no morg, .o although this is not required for the study. The ertioyp
than 10% of the available code/data space (so if a 64k flas agé uses block encryption in counter mode with key K

devicg then 6.4I_<bytes was allowed). Some implementatio llowed by a MAC computation on the cipher text using
benefit from trading NVM space for speed using pre-compute different key (K’) to that used for encryption. According

tables, which is not well suited to smart cards, but up to 100? ISO/IEC 19772 [11] the MAC algorithm is selected from
of th_e NVM space was asgumed available for this. In generqﬁe ISO/IEC 9797 standards [12], in which there are six
the |mp_osed memory restrictions proved not to be a prObIerﬁif‘ferent MAC options, all of which have numerous variants.
for the implemented AE modes. The selected options for the tests are listed below.

Test software was in ‘C’, so it could be adapted and directly o
comparable for both MULTOS and native implementations. MAC Algonthm. 1 (usually referred to as CBC-MAC)
There is a single test application that incorporates allAke Padding Method: 1 (zeros)
modes plus test utilities that measure various core funstio e Final Iteration: 1 (same as other iterations)
The interface is based on APDU commands and responses,
with the payload data consisting of blocks of plaintext or })
ciphertext. For message timing precision, commands were ru ® Truncation: - (left most 64 bits)

Output Transformation: 1 (unity = no change)

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/security/

198

| Counter 0 I»—b(incr H Counter 1 }—b(incr }—-l Counter 2 ‘
Ex Ex

D >

¢

mult 4] [mult 4 J— It 4

len(A) || 1en(C) D

It

@

i

/—\
3 |
c

Message

——

Encrypted Data Authentication
Value

Ne | 2

)

Figure 2. CCM Overview (simplified)

Nonce || | Nonce || s Nonce ||
Count 0 ~ Count 1 Count 2

Auth Tag

Figure 4. GCM Overview (simplified)

TABLE Il. MULTOS BENCHMARK MEASUREMENTS (ms)

Function Primitive Application Used
RAM | NVM | RAM | NVM
Block Encrypt 3.3 6.4 3.3
Block Xor 0.73 3.94 321 | 1584 | 0.73
Block Shift 1.24 2.7 1.24
Block Copy 0.36 0.65 0.36
Transform GF Multiply 199 199

&1

IV. PLATFORM MODE RESULTS

For security, certification and reliability reasons, it istn
normal to have native code access to a smart card or similar
security chip once deployed. Instead the chip may offer a
secure platform where added functionality is constraireed t

Truncate
= 64 Isbs

tightly controlled application layer, using APIs to accessu-
W@@m rity capabilities. The MULTOS card is such a secure platform
Value whereby the application execution language is abstracted f
Figure 3. Encrypt then MAC the underlying hardware (see [19]), offering high standarti

security, but making it difficult to predict performance tiet
GCM (see Figure 4) mode of operation is mechanism 6 incore AE functionality. The results of initial benchmark tees

ISO/IEC 19772 [11] and also described in NIST SP800-38Dare shown in Table Il. It should be noted that these results
[21] and [23]. The performance of this mode could not be veryare derived from the response of test commands sent to the
usefully compared using the traditional crypto-coprooess smart card; with the tests including some control, dateupet-
used for the study as GCM requires support for multiplicatio and results extraction. Therefore the results should oely b
over Galois Field GF (28) with the hash key H, which is the considered as rough estimates compared to the more accurate
encryption of all zeros undere results from the method used in the extended study, and

described later in this paper.

N The time measured for a block encrypt with a 128-bit
A. Workload Estimation key was 3.3ms (confirmed by MULTOS as matching in-house
Table | gives an indication of the underlying workload for results). The underlying chip crypto-engine is much fasted

each mode when processing the representative test messdfe speed disparity is due to software reliability and ségur

sizes (as advised by the commissioning standards body). measures. The 3.3ms is only valid when writing encrypted
TABLE |. ALGORITHM WORKLOAD PER MODE data to RAM, as NVM increases the time to 6.4ms (although

reading from NVM is fast); so the outputs of all functions wer

Bytes | Blks | Msgs | OCB GCM CCM [ETM written to RAM. In all cases where a primitive was availalife,
E Init E Mul E E i i i i
was considerably quicker than any equivalent implemented a

8 1 1 3 1 2 2 3 2 . . .

6 T T T T S R 3 > the application layer, although considerably slower tharatw

20 2 1 7] 1]3] 3 5 Z might be imagined from a low-level native implementation

2(2) g i g 1 i i 3 g GCM requires a finite field multiply, but such a function
64 1 1 6§ | 1 | 5] 5 9 8 did not exist as a MULTOS primitive and so was provided in a
128 | 8 1 [10] 119709 17 16 simple implementation similar télgorithm 1 in the standard
192 12 1 14 1 13 13 25 24

[17]. Multiplying a single block takes 199ms, even when

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/security/

199

ENCIPHER (K, zeros(128))

double(L_x)

double(L_$)

double(L_{i—1}) for every integer i > 0

using primitives multosBlockshiftRight and MultosBlockXor. L_
Other implementations are described in the standard,tino Iﬁ—
they make use of time/memory trade-offs, which is not a |~
strength for a memory limited smart card. For the initiatdes
all the modes and the extra test utilities were built into a
single application with the following memory requirements

—_ O A ¥
o n

Figure 7. OCB3 Key-dependent Variable Set-up

° Code Size (NVM)Z 5701 bytes Nonce = nu1n23tr(1T?OGL]{ZN 1110d 1\1]28 ,7; N
® Statl(? Data (NVM): 498 bytes bottom =|Ltzr€2r1101:n(1(Nonc)elt[lezn3(.. 1)2)£|€|]) .
e Session Data (RAM): 113 bytes Ktop = ENCIPHER (K, Nonce[l..1227]] zeros (6))
All the sizes are well within the realistic and practical Stretch = Ktop |[(Ktop[1..64] xor Ktop[9..72])
design targets defined at the start of the project. For aesingl | Qffset_0 = Stretch[l*bottom..128+bottom]
g . . . Checksum_0 = zeros (128)
mode application the code size would be considerably less,
and the static data is mainly internally stored test-vectbat
would not normally be present. The session data could be
reduced, if required. bits then it might appear that we need 64 of the hrrays.
However, thentz(i) index means we only need 6%2 64)
A. Initial Tests and Optimisation L_i arrays, as well as I*, L _$ and L 0. Therefore we need 9

Following the MULTOS benchmark tests, the GCM mode Plocks (144 bytes),.rather than 67 blocks; which is well with
was removed from the study (on request of the commissionin§Ur target RAM limit.
standards body) and more attention given to OCB (version 2) ntz(): Another memory requirement arises from the ntz()
optimisation; and later OCB3 was also added. GCM requirefunction. Bit/byte manipulations at the MULTOS applicatio
specialist hardware support that was not available from théayer are slow and so it is quicker to implement the functisn a
crypto-coprocessors in the test chips, whereas the other A& look up table. For a maximum 64 block message we require
modes could be implemented in a straightforward manner 64 byte array that can be precomputed and stored in NVM.
OCB2 was initially implemented from the published exampleThis small amount of memory is easily accommodated within
code (see Figure 5) that was critically dependent on a fancti a smart card.

called two_times(). 2) OCB3 Functional Aspects:. OCB3 defines a hash func-
tion for use with Associated Data, however, this is not ndede

Figure 8. OCB3 Nonce and Pre-encrypt Variables

Figure 5. Published Example Code fovo_times()

/gl-’é’—.bndshifr—lefr sre <<= 1, XOR 0x87 if carry out in the EMV experiments. OCB3 has a preparation stage where
unsigne 1 H H H H
unsigned char carry=sre[0]>>7: key and nonce related data is read|gd prior to processing mes
/I carry = high bif of sre sage blocks. The key data was described earlier (cpmpuiatlo
ftzlr (i=0; i<sizeof(b‘lock>71; i++) {} relatively straight forward) and nonce related data istiated
st[1]=(sre[i]<<D)|(sre[1+1]>>7); i i e i i
dst[sizeof(block)—1]=(src[sizeof (block)—1]<<I) !n Flgure 8| TkhIS Ils. moitly §tra|ghhtf0r\|/varld .apagﬁfrom the
“(carry +0x87): innocuous looking line showing the calculation Offset_0.
} The variablebottom will have a value between 0 and 63; and

it is effectively used as a bit-wise left shift. As discowére
previously, application level bit-shifts are inefficienh dhe
MULTOS test platform, however, the primitivesultosBlock-

_This was replaced with a version (with less shifts) moregjft| eft/Right are much quicker. Unfortunately, the primitives
suited to the MULTOS Platform (see Figure 6), which had arequire a fixed constant value for the number of places ta. shif

marked improvement on performance.

static void two_times (block dst, block src)

unsigned char carry = src[0] & 0x80;
multosBlockShiftLeft (AES_BLK_SZ, 1, src, src);
if (carry) {src[AES_BLK_SZ — 1] "= 0x87;}

¥

Figure 6. MULTOS Code fotwo_times()

Although the operation is only carried out once per message i
could adversely affect efficiency, especially of small nages
and so effort was directed towards optimisation. The firsp st
was to splitbottom into a number of byte shifts plus a smaller
number (up to seven) bit shifts. Byte shifts are easy as we
can just change the array index. The bit-shifts were used in
a switch/case to reach primitive calls with the appropriate
number of shifts. More code was needed, but the overall code
space requirements are small.

Given the resulting speed-up (four/five times on larger
messages) from improving OCB2 code, it was decided to als§- MULTOS Platform Results

implement OCB3 based on the pseudo code and test vectors The results from testing OCB2, CCM, ETM and OCB3 are
in RFC7253 [15]. shown in Table IlI.

1) OCB3 Memory considerations. At the beginning of the From the MULTOS results we can see OCB2 is the
OCB3 encrypt pseudo code, a number of bit arrays need tquickest mode for message sizes beyond 32bytes. OCB3's
be set-up, see Figure 7, noting that is used to indicate initial processing makes it slower than OCB2, and OCB3 only
subscript in the pseudo code and tlimuble() is the same overtakes ETM for messages larger than 128 bytes. CCM is
as thetwo_times() function used in OCB2. The array_Lto always a little slower than ETM due to the extra encryption
use in block processing, varies per message block using indélock, and both are less efficient when working on input data
L_[ntz(i)]. L_i: If we allow for processing 64 blocks of 128 that requires padding.

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/security/

200
TABLE Ill. MULTOS PLATFORM RESULTS (ms) TABLE IV. TDES MASKED MODE AE TIMES (ms)

Bytes | OCB2 CCM ETM | OCB3 Bytes | OCB2 | CCM ETM | OCB3
8 16.59 17.78 14.27 | 28.66 8 3.04 2.16 1.53 5.75

16 16.61 17.22 13.70 | 29.27 16 3.07 2.12 1.49 5.81
20 22.17 25.73 2221 | 34.40 20 4.19 3.48 2.85 6.73
32 22.17 25.16 21.62 | 35.00 32 4.24 3.43 2.80 6.81
40 27.72 33.67 30.15 | 40.12 40 5.37 4.77 4.15 7.76
64 33.35 41.09 37.57 | 46.42 64 6.57 6.04 5.42 8.81
128 | 55.77 72.91 69.38 | 69.21 128 11.23 | 11.28 | 10.65| 12.82
192 | 78.17 | 104.73 | 101.22 | 92.06 192 15.89 | 16.51 | 1589 | 16.82

follow-on study it was possible to port the native test code
120.00 to a SLE78 chip that was able to support AES as well as
TDES(M1)|(M2).

100.00
A. Initial Implementation (S3CC98) and Measurement
80.00 M Oocs: This stage was focussed on po_rting the MULTOS code
60.00 B oo to thg native emulator and generating early raw results for
4 ' — fl_mctlonal ch_eckmg. They derl\{e _f_rom non—qptlmlsgd code,
40,00 - simply replacing the MULTOS primitive (_:alls vv_|th equivalsn
' OCB3 The performance of the AE modes (including OCB3) was
20.00 [I[Iﬂﬂ measured in a similar way to the MULTOS work. The first
' tests used the dual TDES(MMDES(M2) block encryption
0.00 i option (hardest to compute) and the results are in Table IV.
8 16 20 32 40 64 128 192 From these initial native results, we observe that the pro-

M size (b cessing time for a single message was under 17ms, regardless
essage Size (bytes) of the AE mode. Although the block ciphers were of course
Figure 9. AE Comparative Performance on MULTOS Platform different, the overall native execution times were sigaifitty
faster than those from the MULTOS experiments, even without
Although OCB2 seems the faster option for the MULTOS optimisation. ETM was the best option for single APDU mes-
platform (for messages 32+bytes) the relative differente isages, although in absolute terms there was not much toe€hoos
processing time is not enormous. OCB2 benefited from sombetween any of the modes. For smaller messages, ETM and
optimisation, however, there is little scope for improveme CCM still seemed to have the advantage over the OCB modes.
in ETM and CCM as much of their time is spent encrypt-Common to both native and MULTOS implementations, ETM
ing, which is only possible via a MULTOS API call. The is always a little better than CCM and OCB3 does not seem
MULTOS platform (and platforms in general) add abstractionto improve on OCB2.
between the application layer and the underlying hardware,
and so there is considerable uncertainty that the comparati B. Optimisations
results of Table IIl would be similar in a native mode smart The original source code used within the initial tests was

card implementation. Furthermore, the absolute perfoo®an yery similar to the MULTOS code. The scope for optimisation
times on the MULTOS platform, would be expected to begn the MULTOS platform was limited as core functions were
at least one order of magnitude slower than a simple naftivgost efficiently carried out using platform primitives thvagre
implementation. Therefore, the AE modes were next tested Oghstracted from the underlying hardware. Native mode pro-

card chip (Samsung S3CC9ES). as there is less hardware abstraction. Only speed optionisat
was considered in this part of the study as all versions of the
V. NATIVE MODE native code were well within our target memory bounds.

During the original study, obtaining a native mode hard- Data Block Copy and XOR: The algorithm modes make
ware emulator for a "real” smart card with crypto-coprocess use of simple byte manipulation functions including XOR and
(for use in academic research) was not possible and only th€opy. In the MULTOS implementation these functions were
S3CC9E8 emulator/chip was suitable and used in paymemrovided by MULTOS primitives, which in the native code
cards; although because it did not support AES, substitutevere initially replaced by simple equivalents that assumed
16 byte block encryption functions were needed. To ensurgariable sized fields and handled data byte-by-byte. Howeve
that comparative performance results would be relevant twithin the authentication modes, very few operations use
standards, the commissioning standards body was consultedriable sized fields, with the majority working on 16 byte
on the substitutes. The AES 16byte data block was considerademory blocks. Knowing the field size, means that we can
as a pair of 8byte data blocks (M1 and M2) to be codedavoid loop counters, and by ensuring that the blocks areedig
with DES or triple DES (TDES), i.e., TDES(MjM2) or on 4-byte boundaries we can perform operations on unsigned
DES(M1)|(M2). Clearly these functions were for performancelong integer types rather than bytes. Referring to Table V we
evaluation only, although TDES(MITDES(M2) was also see that as a result, BlockXor and BlockCopy have almost
coded as a more secure, but overly co-processor intensgére al doubled in speed, which has also improved the overall block
native. Following some initial experiments, TDES(N|t}12) cipher performance. Note that functional calls are sti#diat
was used as the AES replacement in the original study. In ththis stage rather than in-line code.

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/security/

201
TABLE V. OPTIMISATION OF CORE FUNCTION EXECUTION (ms) TABLE VII. S3CC98 TDES(M1)|M2 AE TIMES (ms)
Function Original | Optimised Bytes | OCB2 [CCM | ETM | OCB3
Block Xor 0.161 0.071 8 0.54 0.34 | 0.27 0.83
Block Copy 0.114 0.064 16 0.57 0.30 [0.23 0.79
ECB TDES]|| TDES + mask 0.608 0.381 20 0.65 0.50 | 0.43 0.92
Fixed Block Shift Left 0.330 0.073 32 0.70 045 [0.38 0.91

40 0.79 0.64 | 057 1.07
64 0.95 0.75 | 0.68 1.16

TABLE VI. OPTIMISED CORE PERFORMANCE BENCHMARKS (ms) 128 146 | 135] 1.28 1.65
192 1.96 1.95 1.88 2.14

Functionality Time

FixBlockXor 0.071

FixBlockCopy 0.064

FixBlockShiftLeft 0.073 250

DES(MILJ[MZ 0.128

DES(M1)|DES(M2) 0.141

DES(MI) [DES(M2) + mask XOR 0.146

DES(M1)|[DES(M2) + mask XOR + key clear | 0.154 2.00 =

TDES(M1)[|M2 0.140

TDES(M1)[[TDES(M2) 0.163

TDES(M1)[[TDES(M2) + mask XOR 0.169

TDES(M1) [TDES(M2) + mask XOR + key cleail 0.178 150 .

. Oocs2
£ =
Block Shifts: The OCB modes use Copy and XOR op- E 10 CcCcM

erations, but also rely on the functiawo_times() (discussed 3
earlier), which in turn makes use of a function for shifting _Jo'ol:K!
the contents of a block to the left. The function from the 0.50
first tests,BlockShiftLeft() was a direct replacement for the
MULTOS primitive that supported variable shifts on varbl
sized blocks, referred to by pointer parameters. However, i 0.00 e
practice two_times() can be constrained to always use shifts of 8 16 20 32 40 64 128 192

one place in a 16 byte global variable block. It was therefore
possible to create a simpldfixBlockshiftLeft() function to
use instead. The resulting speed improvement for the shift Figure 10. Optimised S3CC98 TDES(MMI2 AE Times (ms)
functions was very significant, as shown in Table V.

Further Refinement: When implementing the block ci-
pher functions, further optimisation removed calls to dore-
tions involving variable length arguments, and in some €ase
replaced them with simple in-line code. The block encryptio

Message Size (bytes)

and TDES operations we set-up the same keys (two are
redundant for DES, but help our timing comparison), wrote

in the input data once and read out the result once. The
DES crypto-engine overwrites its input data with its output

. , and so for TDES the CPU does not need to move data
fun_ctlon no longer called_ the core funct|0n_s, but had faSte‘between the sequence of DES executions; it just refers to a
in-line equivalents. The different block functions are dled jic o0y pre-stored key for each execution. Thereforayéf

by compile-time switches. Note that when using a crypto—lOPk at the times for an equivalent DES and TDES operation

coprocessor an input may be mask_ed to red_uce S'de'Cham{ﬁe difference should be the time taken for the extra DES
leakage and so a dummy mask was included in the test modeg).(

An option was also added to clear the keys after use, howeve(,;1
this was not used in the main measurements. The extend%
i

ecutions. This time is largely dependent on the hardware
hough the execution has to be started and checked for
mpletion by the CPU. We can estimate the core DES run
me tq using the following example, whettéf) is the time to
xecute functiorf.

set of benchmarked measurements is shown in Table V

however, now that operations are speed optimised the g@bsolu

figures are significantly influenced by the measurement test
command handling. It is more useful to consider the relative
measurements, e.g., by subtracting the FixBlockCopy time 2ty = t(TDES(M1)||M2) —t(DES(M1)||M2)

from the others. — 0.140 — 0.128 (1)

C. Native Mode Results (S3CC98) = 0.012ms

Following the additional optimisations, the message tests There were two extra DES runs in the TDES version so

were repeated for the substitute block cipher functionve might suppose that each was about 6us. We can check this
TDES(M1)|M2. The functions are clearly intended to assessyy calculating the following.
performance, rather than to ensure security of the data. The

results are provided in Table VIl and shown graphically in 4tg = (TDES(M1)|[[TDES(M?2))
Figure 10. — (DES(M1)||DES(M2)) o
=0.163 — 0.141

D. Observations on the S3CC98 Native Tests

Considering Table VI we have significantly improved the
performance of core functions. We can also use these résults The four extra DES runs take 22us, about 5.5us each; which
estimate the achievable raw speed of the crypto-coprogessds close to our earlier estimate. We can also see from Table
by cancelling out the software manipulations. For both DESVI that the dummy XOR on a 16byte block using in-line code

=0.022ms

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/security/

202
TABLE VIII. SLE78 BASIC PERFORMANCE BENCHMARKS (ms) TABLE X. SLE78 Native TDES(M1))M2 AE TIMES (ms)

Functionality Time Bytes | OCB2 [CCM | ETM | OCB3

FixBlockXor 0.006 8 0.15 0.11 0.08 0.24
FixBlockCopy 0.004 16 0.15 0.10 [0.07 0.23
FixBlockShiftLeft | 0.006 20 0.20 0.15 [0.13 0.28

AES 0.041 32 0.20 0.14 | 0.12 0.27
TDES(M1)[M2 0.027 40 0.24 0.19 0.17 0.32

64 0.29 0.23 0.21 0.35

128 0.46 0.41 0.38 0.50

TABLE IX. SLE78 Native AES AE TIMES (ms) 192 0.63 0.59 0.56 0.65

Byfes | OCB2 | CCM | ETM | OCB3
8| 019| 014 010| 028

16 | 019] 014 010 027 120
20 | 025| 022 048] 033
32| 025| 021 017] 032
40 | 030 | 030 | 024 038 100

64 | 036 | 037 | 031] 042
128 | 058] 067 | 060 063
192 | 081] 097] 089] 082 050 i
takes about the same time, 5-6us. The key-clear, whichisa24 ~ _ 00ce2
byte write, takes about 8-9us, so a 16byte block copy should £ I a co
be in a similar 5-6us range. The optimisations improved the mEM
speed of all AE modes. 040 mocss
E. Extended Implementation (SLE78) and Measurement 020
The optimised C code for the S3CC98 implementation
was ported to the SLE78 chip. The code was modified to 000 S
run the AES block cipher, although the capability to run & 16 2 % 4o 6 1B 1%
TDES(M1)|(M2) was retained. To avoid a run-time switch Message Size (bytes)
between the block cipher modes (which might affect perfor-
mance) the test card was loaded with two separate applisatio Figure 11. SLE78 Native AES AE TIMES (ms)

Before considering the AE mode tests, some basic benchma .

tests were carriedg out as shown in Table VIII. The measure[éf Technology Independent Gain Assessment

ments for XOR, copy ands shift are on the limit of accuracy ~When considering the implementation of security algo-
for the test system, even running the command iterations oveithms and protocols on limited processors, assumptioas ar
4000 times, however, when comparing the results from Tableften made about their feasibility based on the resource
VI, it is clear that the SLE78 is roughly an order of magnitudeintensity of the primitives with respect to the speed of the
faster than the S3CC98 on basic processing. This resulitis Nn@PU. Anticipation of performance can affect the design from
unexpected as the SLE78 has a much newer and faster chige outset, for example, avoiding best practice standeddis
and CPU than the S3CC98. The performance of the blockilgorithms in favour of simpler approaches based on hashes
ciphers is mainly due to the crypto-coprocessors rathan thaand XOR operations. These assumptions can be invalid if
the CPUs and here the speed-up is not quite so large. Baséte processor can execute primitives, such as block ciphers
on the approximate test command figures, the SLE78 can carrglatively rapidly, as in the case of a crypto-coprocedsdact

out the TDES(M1))(M2) operation roughly five times faster

than the S3CC98; and indeed 1.5 times faster than it can run 070

the AES block cipher. The latter is due to AES being not quite

so well optimised for hardware implementation as DES. If we 080 I

refer back to the MULTOS results of Table Il we can see

that for the same SLE78 chip the MULTOS platform speed is 050

approaching two orders of magnitude slower than is possible -

in native mode. This is the price to pay for a high security 00

implementation compared to simple functional capability. - 28332
The AE mode tests were carried out on the SLE78, first E o 2EN

using AES and then the TDES(MI(M2) block ciphers. The B 0GB

results are shown in Table IX and Table X; and graphically 0.20

in Figure 11 and Figure 12. The most notable observations

from the figures are that although the absolute timing is very 0.10

different, the result patterns for the MULTOS implemerdati

and the native SLE78 AES implementation have strong sim- 0.00 LA

ilarities, as do the two TDES native implementations. In the 8 1B 2 2 4 & 1B 12

next section we will investigate if the result behaviours ca .

be predicted in a chip and platform independent manner from Vessage Size (oyes)

simple benchmark tests. Figure 12. SLE78 Native TDES(MIM2 AE TIMES (ms)

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/security/

203

1-fug-17 CURSORS
19:39:06

18 ms
050 v
Dkl

moce

fimp 1 itude

Ref + DiFF
CUrsars
PERlTD? Track OFF m
At BA.GEEE ms kg 14.377 He

v oc

v oC 18 M5/s
VODE 100814V SLOW TRIGGER
v oc

i 0 HORMAL

Figure 13. Measurement Equipment Figure 14. Improved Measurement Method

in the latter case, our studies have shown that the perfarenan TABLE XI. TIGA Benchmarks (ms)
results can be mgrkedly distorted compared to a conventiona S R AES T TDES —TiGA
CPU, so in predicting protocol performance we need some MULTOS SLE78 | 04695 =a385d T B72%
benchmark of how much distortion there will be. In the oralin Native SLE78 0.0038 | 0.0390 9.84%
study we proposed the use of the Technology Independent Gain Nafive SLE78 | 0.0038 0.0.0251 | 15.34%
Native S3CC98 0.0191 0.0966 | 19.80%

Assessment (TIGA) for any CPU with a crypto-coprocessor;
expressed as the percentage of the block encryption that can
be completed by the crypto-coprocessor in the time it wouldn the new method the timing measurements are obtained
take the CPU to compute a block XOR. For example a CPWia an oscilloscope probing the smart card 1/O line. The
with no co-processor would have a TIGA of 0% whereasexperimental equipment is shown in Figure 13, including the
equality of XOR and block cipher time time would give a S3CC98 hardware emulator as well as one of the test cards.
TIGA of 100%. The general idea is that TIGA is estimated The sampling oscilloscope was a LeCroy LT264M, with a
for a target platform by measuring the XOR and block cipher350MHz bandwidth and sample speed of up to 1GS/s, although
speeds, so performance can be reasonably predicted pror t&@ much simpler scope would have been adequate. The PCB
full protocol implementation. shown connected via the oscilloscope probe, is just a brgako
Roard used for smart card experiments, and although it is

The question is then how and where to measure the bIOCconfi ured for side-channel power leakage experiments, we
cipher and XOR speeds? In the case of the MULTOS platform 9 P 9 P '

knowing the raw chip-level performance is of little use aSOnIy monitored the 1/O line in this case.] o

the functions are accessed through a high-level API, which One of the measurement scope traces Is shown in Figure
includes the security protection overheads. In this cage thl4. The arrows have been added to clarify the measurement
only option was to compute TIGA at the application/API level period, which is from the first transition of the I/O line (the
which produced a rough estimate value of 22%. With a varietyptart of the test command transition), to the first transitd

of low-level test commands we were eventually able to estabthe card response. The test command was run with a single
lish precise measurements for the S3CC98 equating to TIGAeration cycle giving a period P1 and then with an "N’ itéoat
values for DES and 3DES of 100% and 33% respectivelycycle (typically 1000+) giving a period PN. The measurement
Although it should be noted that even with low-level codewas then calculated as (PN-P1)/(N-1) and thus excluded much
development, functionality is often accessed via simpiesy of the fixed overhead inherent in the test command process.
calls and drivers; which detract from the maximum raw speed These new results are presented in Table Xl along with
of the hardware. Speed would be further compromised by lowhe respective TIGA calculations. Note that the TDES column
level software security protection measures. implies TDES(M1)|M2.

In the original study, we had little option, but to compare
the performance of the MULTOS AES implementation with |+ \we consider the AES results from Table Xl we see

that of TDES(M1)|(M2) on the S3CC98 chips, but NOW ha; despite more than two orders of magnitude difference in
we have the native mode SLE78 results to make a prop&ferformance, the MULTOS platform and the native SLE78
comparison. The SLE78 exhibits two TIGA values depending,, e very similar TIGA values, in the range of 8-10%. When
on whether we use the intended block cipher (AES) or th&ye refer to Figure 9 and Figure 11 we also see a very similar
substitute version TDES(MIM2). shape to the AE data measurements. Turning our attention to
The benchmark measurements of the original work werghe TDES versions, we see they have higher gain that AES, and
not considered precise enough, by the author, to draw angespite presenting a comparison of two very different chips
solid conclusions on the usefulness of using TIGA and so avith a three fold difference in absolute performance, their
new method was designed and applied to all the test card3IGA values are quite close, in the 15-20% range. Referring

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/security/

204

to Figure 10 and Figure 12 we can see a similar shape tthe chip may reveal all kinds of information that it would not
the AE data measurements. These results are encouraging ashal when working normally and there are some very elegant
would suggest that the TIGA value is a reasonable estimatattacks including extraction of RSA keys [2]. The hardware
of performance on a crypto-coprocessor device, regardiess sensors in traditional tamper-resistant smart cards (lile
the level of access or API. S3CC9ES8) are intended to detect the likely means of fault

Although we are not always comparing like-with-like due insertion and prevent a response useful to the attacker; so
to access restrictions, TIGA is a means to make a benchmatRere may be no significant added overhead for the software.
comparison. A high value would suggest that a designer coul@® Sophisticated attack might possibly bypass the sensors,
use block encryptions as readily as XORs and so algorithriowever, by adopting openly peer-reviewed algorithms and

optimisation and performance would be quite different toUsing diversified card keys, we remove motivation for such
conventional (non crypto-coprocessor) CPUS. effort. Added countermeasures could be to verify a result or

to run an algorithm twice and only output a response if the
result is valid/consistent, however, both strategies oglythe
correct outcomes of flag tests and loop counts. It is theeefor
bood practice to add defensive coding of loop and flag tests,
éalt the cost of some additional processing overhead,

At this point it should be recalled that cards/chips of
interest are security sensitive and likely to be attackexditu-
nately countermeasures are quite well understood by the cal
industry, but they can potentially impact on performancel a
so in the next section we consider how our results might b

affected. The SLE78 chip works very differently to a traditional
smart card chip as it has two CPUs working in tandem and a
VI. |IMPLEMENTATION SECURITY AND PERFORMANCE fault is detected if their processing does not agree. Thamnis

. ; : .. nnovative and effective approach, which would make it very
Payment cards safeguard financial transactions of signif ifficult to succeed with a fault attack. As the protection is

cant value and so are required to strongly resist a wide ran . : . i .
of attacks. EMV cards rely on the protection of various sﬂorquﬁretrgsntt rlgstntes chip hardware it should not noticeably impac

assets including cryptographic keys, account details dNg,P
as well as on the integrity of critical functionality Adheg to C. SdeChannd Attack Resistance
information security best practice guidelines for designg.,) T o

for algorithms, keys and random number generation) is not at Side-channel leakage implies the leakage of sensitive-info
all sufficient as many of the attacks target the implememmati Mation (especially keys) via an unintentional channelsTain
rather than the design. In smart cards, the attack resistaiic ~ take the form of key/data-dependent timing variations, gow
be provided by a mix of hardware and software measures ar@Mpply fluctuations or electromagnetic emissions. Analysi
so there is potential for performance impact. We can considdechniques are well known (see [13] [14]) and can be very

such attacks under the following three categories. powerful against unprotected implementations, includiegt-
. practice algorithm designs such as AES. Fortunately, moder
e Physical smart cards are well protected against such attacks, with
e Fault a range of countermeasures that mainly impede statistical
e Side-Channel averaging of signals (used to detect signals in noise) araed
the source generation of the leakage. Attack countermegsur
A. Physical Attack Resistance include:

Physical attack generally requires considerable exgertis e Power smoothing
equipment and time. It may for example involve decapsulat- Noise insertion
ing a chip, hardware reverse engineering, probing buses and . .
memories and modifying tracks. However, smart card chips Randomisation of execution
have numerous defences against such intrusions, including e Timing equalisation

e Passive and active shields - to prevent access to a ® Dual-rail logic (or Dual CPUs)

working chip The SLE78 chip used in the MULTOS card and for
e Encrypted buses and memories - to impede directhe latter native mode experiments, has a sophisticatetl dua
probing processing arrangement known as “Integrity Guard” that is

believed to be effective at suppressing leakage at sounck, a
L this coupled with the Common Criteria certified MULTOS
e Scrambled circuit layout - to make hardware reversesgcreq OS would suggest that no significant further perfor-
engineering difficult mance degradation would be incurred from application level
Both the chips used in this study incorporate these protegsountermeasures. However, the native mode SLE78 results
tive measures, and because they are inherent in the hardwasleow us that the MULTOS protective measures have already
we do not need to degrade our performance test results. cost two orders of magnitude in performance compared to the
raw chip performance.

B. Fault Attack Resistance The S3CCO9ES8 used in the native implementation is a
Fault attacks are active, in that they use means to disruptaditional secured microcontroller chip with a single CPU
the normal operation of the target device (chip); but withou and so it will include some noise smoothing and execution
damaging it. The faults can, for example, be generated fromandomisation, but will not suppress the leakage signals at
voltage glitches, radiation pulses and operating the targesource. Given the age of the chip one would expect some
outside of its operational specification. Under fault ctiodss extra side-channel leakage protection to be required fitwen t

e Light sensors - to detect decapsulation

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/security/

205
TABLE XII. CARD INTERFACE TRANSMISSION TIMES (ms)

software, which will have a performance impact. Our tests

already included a dummy XOR to represent masking the e | e O [omactess (Do)
data used in the crypto-coprocessor, however, for this tfpe 8 176 | 082 020 0.60 0.15
chip more help would be needed. One technique used for fast, 16 952 | 164 0.41 1.21 0.30
but perhaps “leaky” crypro-processors is to run the albarit AU NI 0 5 T)
multiple times, so that an attacker does not know which run 20 23811 4.10 102 302 075
used the correct data rather than a dummy pattern. Clearly 64 | 2809 655 1.64 4.83 121
if you hide your data in a 10 algorithm sequence, you would 128 | 7619 1311] 328| 966] 242

192 | 114.28 | 19.66 4.92 14.49 3.62

expect to lose an order of magnitude in performance. Hamming
weight equalisation is another technique (used in nonfséecu
CPUs) that seeks to reduce information leakage by ensuringgyment card transactions using Chip & PIN, however, many
that for each bit transition there is a complementary ttansi ~ cards now support the contactless interface for touch agd pa
so as a ‘1’ changes to ‘0’ there is also a ‘0’ changing to(no PIN). Within the standards (contact [9] and contactless
‘1'. In principle this should reduce leakage, however, doe t [10]) a range of interface speeds are defined, however, this
electrical, timing and physical layout factors, registésllo ~ does not mean the fastest modes are supported in all deployed
not contribute equally to leakage, so the reduction is infégp cards, or POS terminals. Table XII shows an example range of
hardware measures and may not justify the effort. In a prakti transmission speeds and an estimation of the time to transmi
implementation this could for example be a 16-bit processothe data associated with the different sized test messages.
where the lower 8-bits of a register handle the normal datia anNote that the working interface speed is negotiated andeagre
the upper 8-bits handle the complementary data. This aloneetween the smart card and the POS terminal as part of the
is not sufficient as it is necessary to also clear the registerPre-transaction protocol and by varying clock speed as well

before and after use and so rather than a two-fold reductio@s divider parameters the full range would be closer to 9600
in performance, at least an order of magnitude should be 38400 bits/s. For example the contact rates in Table XII are

anticipated. computed in accordance with standards, as a clock frequency
(5 MHz) f divided by factoiD (372, 512 and 512 respectively)
D. Observations and multiplied by a factoF (1, 8 and 32 respectively).

It is likely that physical and fault attack protection can The speed range is very wide especially in the contact case,
be handled by the smart card hardware without significantlyas the default rates maintain compatibility with very olddsa
degrading performance. For the MULTOS card based on thand POS terminals. The command processing and transmission
SLE78 we have sophisticated hardware coupled to an OS dean be considered as separate activities; and whicheves tak
signed for the highest levels of security, and Common Gaiter longer is considered the bottleneck limit. Recalling the MU
evaluation checks for strong protection against sidedsbn TOS platform performance (Table 1lI) we have a processing
leakage. For the native implementation in the S3CC9E8 wdimited solution. There are some message/mode combirgation
would anticipate additional side-channel countermeasime that are communications limited, but only when running at
software and if we consider the techniques in the earlidisec the lowest default speed, which is impractically slow. If we
then even for restricted/tuned functionality, losing aislean now recall the raw native mode results (Table VII), then
order of magnitude in performance should be expected. in practice we have a communications limited solution. At

The motivation for a side-channel attack just to capturdh® fastest interface speeds this may not be quite the case,
the EMV session keys is questionable, however, discovery growever, we V_/ould not normally assume that th_e fastest rates
the keys might expose other assets or assist with sophiaica Would be available from cards and POS terminals; and so
attack strategies. Therefore, it would be prudent to cemsig the 78,125 bps and 106,000 bps for contact and contactless
order of magnitude speed degradation when considering tr{gterfaces respectively would be more reasonable expeasat
results in Table VII; although processing would still betfas e future outlook is that the communication rates will get
with the worst case time for a 192 byte payload being just ovefaSter and the contact interface will eventually be dispthby
21ms for the slowest mode. However, to know whether thiontactless, which suggests that transactions will begssing
processing is fast enough, or the bottleneck for the prduocollmlted. EMV implementations in mobile phones will of coars

we need to also consider the communication speed via th@2ve access to much faster wireless technologies such as
smart card to Point of Sale (POS) interface. 802.11ac that can run at 1.3 Gbits/s, however, the scope of

this study is restricted to conventional smart card devices
VIl. COMMUNICATION EFFECTS ONPERFORMANCE
Performance tests of AE, normally just focus on the VIIl. CONCLUSION AND FUTURE WORK

processing aspects, as communication in an Internet-cteuhe The study investigated AE modes on existing available
world is generally fast enough (e.g., 25-100Mbps) to causgmart chips/platforms using conventional crypto-copssoes.
negligible delay. However, for payment card use of AE weGCM was not analysed in detail as thaultH function (or
are dealing with interfaces that may lmuch slower and parts of it) would need to be implemented within more spe-
so transactions might hit communication limits before cardgjgjist crypto-coprocessor hardware. All the other AE n®de

processing limits. considered, were feasible both in terms of speed and memory
usage. The S3CC98 native mode implementation was much
A. Payment Card Interfaces faster than the MULTOS platform and in the final tests all

The interfaces for payment cards fall into two main cate-the modes for all single APDU test message sizes took no
gories. The contact interface is the oldest and has dongnatenore than 2.14ms. The SLE78 native mode implementation

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/security/

206

was faster again with no AES AE mode taking more than The crypto-coprocessor gain, coupled with small message
0.97ms and the slowest TDES(M{M2)mode being 0.63ms. sizes, means that there is not much to choose between OCB2,

The new results differ markedly from comparisons thatOCB3, ETM and CCM performance. It might be argued that
have focussed on general processors, larger message sifeEM could be chosen for speed and efficiency of small-
and the inclusion of Associated Data. For both nativemedium messages or OCB if medium/large messages are the
TDES(M1)|(M2) implementations, ETM/CCM modes were horm. It is also poss_lblle for GCM to be usable |_n_futur§> if
quicker than OCB for the single APDU test messages, althoughupported by a specialist co-processor, however, it ikelyli
OCB modes would be expected to claw back the advantag® Pe much quicker than the other modes. As performance is
for multi-APDU messages. In the SLE78 native AES imple-unlikely to be a great differentiator for the AE modes, anampt
mentation, OCB2 overtook ETM for message sizes around 640uld be to standardise an AE framework around a default
bytes and upward. In all the implementations, and for a singlmode and define a negotiation process for a card and POS

APDU, ETM was always slightly ahead of CCM and OCB2 terminal to agree alternative AE modes. This would provide

led OCBS3.

One of the most interesting observations is that the MuLP
TOS platform and native SLE78 AES performance results!
have very similar distributions, even though their absolut
magnitudes differ by two magnitudes. Furthermore the two

a useful mechanism if vulnerabilities were discovered ig an
articular AE mode, as well as a means for interworking and
igration of smart cards and POS terminals having different
capabilities.

TDES(M1)|(M2) implementations also have very similar dis- A Future WWork

tributions albeit on very different chip platforms and wih

It would be interesting to implement the AE modes in a

absolute performance difference of more than three times. similar manner on other secured microcontrollers with twyp

At first glance, the results may seem counter-intuitive duecoprocessors (although this may be difficult due to pubibcat
to the extra encryptions required in ETM/CCM comparedrestrictions required by device vendors). In the first insta
to OCB2/OCB3, however, they arise because the chip halis should help prove the generality of the results, bub als
significant crypto-coprocessor gain. The native measungne provide further evidence on the usefulness of the TIGA
show that the core DES encryption time is comparable witenchmark, which is easily determined on any processor. It
a 16 byte block XOR, executed by the CPU. We suggested & hoped that a secured smart card microcontroller chipdcoul
new benchmark, the Technology Independent Gain Assessmegcome available (for academic research) offering natiodem
(TIGA) for CPUs with crypto-coprocessors; as the percemtagProgramming and crypto-coprocessor support for GCM, sb tha
of the block encryption that can be completed by the cryptoa full-set of AE mode results could be generated and puldishe
coprocessor in the time it would take the CPU to compute® Java Card platform has become available that would permit
a block XOR. We improved on our bench marking from thedirect comparison with the MULTOS platform, as both are
original study, by introducing a new method of measuremenbased on the SLE78 secured microcontroller.

via an oscilloscope and a simple calculation to remove test
command overheads. Using the new method we calculated
that the MULTOS platform and SLE78 native AES had quite

ACKNOWLEDGMENT

The author would like to thank EMVCo for its support and

similar TIGA values of 8.72% and 9.84% respectively. Theguidance’ and Sean Ke”y (Of Roya| H0||Oway) for his valued

TIGA values for the S3CC98 and SLE78 TDES(MIY2)
were not too dissimilar at 15.34% and 19.80% respectively.
These pairs of results account for the similarity in the tegla
pairs of figures illustrating the data result distributioi$ie 1]
new TIGA measure could be valuable when comparing and
predicting protocol implementation performance on vasiou 2]
platform types, as may increasingly be the case in Internet
of Things implementations.

The performance gain from the crypto-coprocessor can be3]
eroded if more time is spent conditioning the data into antd ou
of it. Such processing may be required for security prodecti
(to mask data and/or to reduce leakage), although it shaald b (4]
noted that any part of an algorithm running in the CPU may]
also require similar protection. (6]

The processing time comparison was independent of the
communications interface speed, however, both affectle o
all protocol performance. The MULTOS platform is primarily [7]
processing limited, whereas the simple native implemantat
is mainly communications limited. If we degrade the S3CC98
native performance by an order of magnitude in anticipation g]
of overheads to reduce side-channel leakage (e.g., r«ibeateI
operations or hamming weight equalisation in softwarepthe 9]
we approach the optimum around the 78,125bps rate; any
lower than this and the protocol performance will degrade du 1o
to communication delays.

practical assistance.

REFERENCES

K. Mayes, “Performance of Authenticated Encryption féayment
Cards with Crypto Co-processors,” Rroc of ICONSL7, pp. 1-9, 2017.

D. Boneh, R. Demillo, and R. Lipton, “On the importanceabfecking
computations,” inAdvances in Cryptography - Eurocrypt 97, volume
1233, pp. 37-51, Springer Verlag, 2013.

CC, "Common criteria for information technology sedyrevaluation
partl: Introduction and general model,” version 3.1 radefsSeptember
2012.

EMV, “Books 1-4,” Version 4.3, 2011.
EMVCo, http://www.emvco.com/ [retrieved: NovembeQ17].

FIPS, “Federal information Processing Standards,
Data Encryption Standard (DES), publication 46-3"
http://csrc.nist.gov/publications/fips/fips46-3/fipsalpdf [retrieved:

November, 2017].

FIPS, “Federal Information Processing Standards, Amoing
the Advanced Encryption Standard (AES), Publication 197.
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS . @it [retrieved:
November, 2017].

Infineon, "SLE78CAFX4000P(M) short product overview/11.12,
2012.

ISO/IEC, “7816 identification cards - integrated cirig) cards with
contacts,” parts 1-4, 1999.

ISO/IEC, “14443 identification cards - contactlessegrated circuit
cards - proximity cards,” parts 1-4, 2008.

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 10 no 3 & 4, year 2017, http.//www.iariajournals.org/security/

[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]

[20]

[21]
[22]
[23]
[24]

[25]

ISO/IEC, *“19772 Information technology - Security teiques -
Authenticated encryption,” 2009.

ISO/IEC, “9797 Information technology - Security tedfues - Mes-
sage Authentication Codes (MACs),” parts 1-3, 2011.

P. Kocher, “Timing attacks on implementations of diffiellman RSA
DSS and other systems,” iAdvances in Cryptology - CRYPTO ’'96
Proceedings LNCS, volume 1109, pp. 104-113 Springer Verlag, 1996.

P. Kocher, J. Jaffe, and B. Jun, “Differential power lggss,” in
Advances in Cryptology - Crypto 99 Proceedings LNCS, volume 1666,
pp. 388-397, Springer Verlag, 1999.

T. Krovetz and P. Rogaway, “The software performancauthenticated
encryption modes, fast software encryption, RFC 7253,F8& 2011
Proceedings, pp. 306-327, Springer verlag, 2011.

T. Krovetz and P. Rogaway, “The OCB authenticated-gotion
algorithm, IETF RFC 7253, May 2014.

D. McGrew and J. Viega, “The galois/counter
mode of operaton (GCM),” parts 1-3, May 2005,
http://citeseerx.ist.psu.edu/viewdoc/download?dBi£11.694.695&
rep=repl&type=pdf [retrieved: November, 2017].

MULTOS, http://www.multos.com/ [retrieved: Novemb&017].

MULTOS, “The MULTOS developer’s reference manual,” \@ADOC-
TEC-006 v1.49, 2013.

NIST, “Recommendation for block cipher modes of operat The
CCM mode for authentication and confidentiality, SP800-38@ay
2004.

NIST, “Recommendation for block cipher modes of opierat Galois/-
counter mode (GCM) and GMAC, SP800-38D,” November 2007.
P. Rogaway, “OCB mode,” http://web.cs.ucdavis.edgaway/och/
[retrieved: November, 2017].

J. Salowey, A. Choudhury, and D. McGrew, "AES galois ct@n mode
(GCM) cipher suites for TLS, IETF RFC 5288,” August 2008.
Samsung, “S3CC9E4/8: 16-bit CMOS microcontroller fonart card
user's manual,” rev 0, 2004.

D. Whiting, R. Housley, and N. Ferguson, "Counter witBC-MAC
(CCM), IETF RFC 3610,” September 2003.

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

207

