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Abstract—Even on state-of-the-art high-performance computing
systems, data-intensive tasks that are running on a lot of nodes
can encounter waiting times when accessing large files. This can
be caused by a bottleneck in the network bandwidth. To this end,
this paper aims to develop a filesystem that utilizes inter-node
communication to more efficiently distribute large files between
nodes and reduce the bandwidth usage on the network. The
presented file system was implemented using the Filesystem in
Userspace interface and the Message Passing Interface. During
evaluation, it showed promising performance compared to a slower
native file system but did not reach the performance level of an
optimized file system. A refined version was able to outperform
the slower native file system with 16 nodes by 8%, achieving a
bandwidth-reduction to latency-increase ratio of approximately
22.

Keywords-data distribution; optimized reading; one-sided com-
munication.

I. INTRODUCTION

With the steady increase of demand for computing power for
use cases both in research and industry and the slowdown of
Moore’s law [1], high-performance computing (HPC) systems
have to increase their number of nodes to keep up. This growing
number of nodes imposes significant challenges on the I/O
performance of large-scale HPC systems [2]. Distributing data,
container files, or software packages to hundreds or thousands
of nodes for a single job can lead to long waiting times before
any processing can even begin [3]. The bottleneck in such
situations is the bandwidth of the storage nodes hosting the
relevant files.

The comparable low available bandwidth originates from
different sources. For instance, large HPC systems are in-
creasingly built by partitioning the overarching system into
different compute islands [4]. A high-speed interconnect
connects all nodes within each island, while the connections
between different compute islands have a comparatively low
bandwidth. Since the overarching software stack does not
necessarily change drastically between the different islands, it
is preferable from an administrative perspective to centrally
manage and export a global software stack to the individual
islands. Therefore, accessing software typically requires going
through an interconnect with a limited bandwidth.

To tackle this issue, we want to develop a mechanism that
reduces the bandwidth usage on the interconnect to the storage
nodes by utilizing inter-node communication. Therefore, access
through the remote software stack is only done once, and
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software distribution to potentially hundreds of nodes is done
via the local, high-speed interconnect. The challenge is to find
an efficient way to distribute the data between the nodes while
reading the file’s content only once. The best way to implement
such a mechanism in a user-friendly way is to include it in a
custom file system. Using the Filesystem in Userspace (FUSE)
interface will allow us to develop and run the file system in
user space, which is necessary with standard user privileges.
We will implement the file system using the Message Passing
Interface (MPI) to facilitate inter-node communication since
it is the most commonly used interface for message passing.
Our file system is supposed to run on the computing nodes,
handling the access of files provided by an existing distributed
file system. Popular examples of distributed file systems are
BeeGFS, Lustre, GPFS.
The main contributions of this work are:
« Presenting multiple designs for a file system to reduce
overall bandwidth usage to the storage nodes
o Implementation of two design approaches using different
communication paradigms
o Benchmarking the implemented file systems with various
configurations
The remainder of the paper is organized as follows: Section
IT presents the used technologies and related work. In Section
II1I, we outline the design of the file system. Section IV is about
evaluating the implemented file system, including methodol-
ogy, results, and discussion. Finally, Section V contains the
conclusion, and we discuss future work.

II. BACKGROUND AND RELATED WORK

To make file systems available in user space, the FUSE
kernel module was incorporated into the Linux kernel with
version 2.6.14 [5], which consists of the kernel module and
the libfuse userspace library. By linking the libfuse library
to a program, a non-privileged user can mount their own file
system by writing their own open/read/write, etc. methods. This
allows the implementation of custom file systems that do not
necessarily require a dedicated storage device but can instead
use forward storage requests to an underlying file system. For
example, Fuse-archive by Google [6] allows the user to mount
different archive file types (.tar, .zip, etc.) and access it like a
regular directory while decompressing the data on the fly.

Rajgarhia and Gehan evaluated the performance of FUSE
using the Java bindings as an example [7]. They found that for
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block sequential output, FUSE adds a lot of overhead when
dealing with small files and a lot of metadata but becomes
quite efficient with larger files. When running the PostMark
benchmark, FUSE added less than 10% compared to native
ext3.

Vangoor et al. also analyzed the performance of FUSE and
its kernel module design in greater detail [8]. According to
Vangoor et al., FUSE can perform with only 5% performance
loss in ideal circumstances, but specific workloads can result
in 83% performance loss. Additionally, a 31% increase in CPU
utilization was measured.

The most commonly used standard for passing messages
between nodes is the Message Passing Interface (MPI). MPI
provides different concepts for communication, such as point-to-
point communication (send, receive), collective communication
(broadcast, gather, allgather), and one-sided communication
(get, put).

The performance of MPI can vary depending on the environ-
ment and implementation that is being used. Hjelm analyzed
the performance of one-sided communication in OpenMPI
[9]. The paper provides an overview of OpenMPI's RMA
implementation and evaluates its performance by benchmarking
the Put, Get, and MPI_Fetch_and_op methods for latency
and bandwidth. The benchmarks showed constant latency for
Put and Get for messages of up to 2!° bytes and a drastic
latency increase for messages larger than 2'° bytes. Analog to
the latency results, the bandwidth performance plateaus with
message sizes larger than 2'° bytes.

There are also alternatives to MPI for message passing and
I/O management. One is Adios2, presented by Godoy et al.
[10]. Adios2 is designed to be an adaptable framework to
manage I/O on various scales, from laptops to supercomputers.
Adios2 provides multiple APIs with its MPI-based low-level
API designed for HPC applications. It realizes both parallel
file I/O and parallel intra/interprocess data staging. Adios2
adopts the Open Systems Interconnection (OSI) standard and
is designed for high modularity.

With the increasing complexity of HPC applications, the
complexity and size of software packages used for these
tasks also increase. Zakaria et al. showed that package
dependencies in HPC have increased dramatically in recent
years [11]. Different well-known software deployment models
are discussed in this paper, including store models like spack,
which is used on Sofja. The authors also present their solution,
Shrinkwarp, which reduces loading times for highly dynamic
applications. The paper focuses more on software distribution
models and package management than improving loading times
by increasing I/O efficiency.

Creating file systems in user space to improve I/O perfor-
mance is not new. There are already several other file systems
with similar goals. For example, FusionFS [12]. FusionFS is
a file system in user space that supports intensive metadata
operation by storing metadata for remote files locally and is
optimized for file writes.

The concept of disaggregation in HPC systems aims to
decouple resources like memory and processing power by

allowing direct memory access over network interfaces. Peng
et al. conducted a study on memory utilization, showing that
90% of all jobs utilized less than 15% of node memory and
90% of the time less than 35% of node memory is used [13].

Above, we presented existing projects that aim to improve
I/O performance. However, none of those focus on enhancing
performance for distributing large files from a few storage
nodes to many compute nodes.

III. DESIGN

Before designing a mechanism to distribute files with our file
system, a decision has to be made on which communication
paradigms MPI offers should be used. The obvious answer
to that might be collective communication since, with the
broadcast operation, distributing data from one node to all
other nodes is very easy and efficient. However, using collec-
tive communication also imposes very difficult to overcome
limitations. In case there are one or more nodes in the job that
don’t access a file that all the other nodes need to access, all
other nodes would get stuck when trying to broadcast the data,
or all nodes would have to be forced to join the broadcast, even
if they don’t need to access the broadcasted data. But even if
all nodes want to access the same file, they would also have
to access the blocks of the file in the same exact order, which
is not something we can expect. Point-to-point communication
can also be very efficient. However, it always needs interaction
from both involved nodes, which means distributing data to a
lot of nodes would have to be organized in a predetermined
way. The complexity of such a mechanism would most likely
scale very severely with a large number of nodes. MPI’s One-
Sided communication methods are known to be less efficient
but allow nodes to access designated parts of the memory of
the other nodes by utilizing remote memory access. With the
MPI_Get method, we can read data from other nodes without
interrupting the process on the target node. Using One-Sided
communication also gives us more flexibility since we don’t
have to synchronize the processes between nodes, simplifying
the mechanism and reducing busy waiting times. For these
reasons, we decided to design a mechanism specifically using
the MPI_Get method.

To fully use the benefits of the MPI_ Get method during file
access, we want to ensure the entire file is already available
to be accessed only using direct memory access between the
nodes. To that end, the file is split into [V parts, with N being
the number of nodes. In the open method of our FUSE file
system, each node reads its assigned part of the file from the
storage nodes. This process is predetermined for all nodes so
each node can create a lookup table to know which node holds
each part of the file (see Listing 1).

When a node calls the read method of our file system to
access a part of the file, it will check which node or nodes
are holding the needed data. If the data is already in the local
buffer the data can just be returned from the buffer, otherwise,
the data has to be obtained from one or more nodes using the
MPI_Get method (see Listing 2). If data was retrieved from
other nodes, it would be written to the file_buffer, and
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def my_open(path):
file_handler = open(path)

file_buffer = MPI_Win_allocate
(file_handler.size, char)

meta_buffer = int[file_handler.size]

meta_buffer = calculate_distribution
(file_handler.size, world_size)

offset, size = calculate_my_range
(file_handler.size , my_rank)

data = read(offset, size)

file_buffer[offset:offet+size]|] = data

return file_handler

Figure 1. Pseudo code for open method

def my_read(file_handler , offset, size):
if (in_buffer(offset, size)):

return file_buffer[offset:offset+size]

targets = get_targets (offset, size)
for target in targets:
t_offset, t_size = caclulate_target_range
(meta_buffer, offset, size)
data = MPI_Get(t_offset, t_size , target)

file_buffer[t_offset:t_offset+t_size] = data

meta_buffer[ offset:offset+size] = my_rank

return file_buffer[offset:offset+size]

Figure 2. Pseudo code for read method

the meta_buffer will also be updated accordingly so that
we don’t have to retrieve the data multiple times.

With this design approach, the bandwidth usage to the
storage nodes is minimized to a workload of just 1- filesize,
instead of N - filesize, since each part of the file is only
read once during the open method. Afterward, the nodes only
communicate with each other to distribute the data. In the
following sections, we will refer to this design as the One-
Sided-Reading (OSR) file system. Additionally to this design
approach, a simple design using a broadcast operation in
the read method was implemented to compare performance
between the two communication paradigms. We will refer
to this implementation as Naive design approach or simple
broadcast approach.

IV. METHODOLOGY

This work’s main focus is read timings, which are important
variables in terms of the scalability of our file systems. To
evaluate the implemented file system’s performance, tests will
be conducted over a range of nodes and file sizes.

The tests were conducted on a smaller tier 3 HPC system.
That means all nodes are shared by default and not exclusively
allocated for each job. The Sofja System consists of 30 Nodes,
with each node providing two AMD EPYC 7763 64-core
processors on two sockets, totaling 128 cores per node and

3840 cores for the whole system. Each node also provides 512
GB of memory. The cluster is split up into two racks and uses
HDR100-InfiniBand fabric. The nodes have access to different
storage systems. The StorNext file system is used to access
the 3 PiB of Home directories. For intense I/O applications,
the dedicated Scratch file system can be used. The Scratch file
system offers more than 500 TiB of storage space, from which
more than 100 TiB are NVMe drives. The Scratch file system
provides much better I/O performance and higher bandwidth
than the Home directories and runs on BeeGFS. The 30 nodes
that will be used for testing also provide local SSDs that
offer temporary storage per job and memory-based storage on
/dev/shm.

Six use cases will be tested by accessing files with
sha256sum: access over the native file system, access over our
One-Sided Reading file system (OSR), copying the file to local
SSDs with the Naive approach before access (Bcast to local),
copying the file to /dev/shm with the Naive approach before
access (Bcast to /dev/shm), accessing the file directly with the
Naive approach (Bcast no copy, possible, since sha256sum
accesses the file sequentially like cp) and access over the
simple FUSE Passthrough. These six use cases will also be
tested with the Home directory as the original source of the
file and the Scratch file system as the source. That results in
twelve total test scenarios.

Each scenario will be tested on all combinations from the
number of nodes and file sizes. With the number of nodes
being: 1, 2, 4, 8, 16, and 24. And file sizes of 1KB, 100KB,
10MB, and 1GB. This means all ten scenarios will be tested
with 24 configurations. Each configuration will be tested ten
times to receive statistically robust result data. Although the
cluster offers 30 nodes, we only tested with up to 24 nodes
since not all nodes are available at all times.

To guarantee the resulting timings are valid, we have to
ensure the accessed files can not be cached on the nodes
between tests since we want to measure the time it takes to
actually read the file from the storage nodes over the network.
The best way to guarantee this would be to drop the page caches
between runs. However, that requires sudoer rights, which we
didn’t have. Thus the random test data was generated for each
individual test, that way the file’s content changes between
each test and thus cannot be accessed from caches. However,
just writing the file to the desired location can cause the file
to be in the page caches of the node that is generating and
writing the file. To ensure this doesn’t affect the measurements,
we will run the benchmarker with one extra node, which only
generates the file but doesn’t run any tests.

All tests are organized into runs. Each run tests one
combination of the number of nodes and file size for all six use
cases on either the Home file system or Scratch file system. For
each test run, three jobs are needed: the One-Sided Reading
file system, the Naive file system, and the Python benchmarker,
which executes test file generation, all tests, and writes the
resulting data into a csv file. When testing on n nodes, the
benchmarker has to be run with n + 1 nodes so that the first
node of the benchmarker job is not included in the n nodes of

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-216-6

16



SCALABILITY 2024 : The First International Conference on Systems Scalability and Expandability

the jobs for the two file systems. The benchmarker generates the
test files using /dev/urandom. The time needed to calculate
the hash sum is measured using MPI’s MPI_Wt ime method.

V. RESULTS

The results of the described benchmarks can be seen in
Figure 3, with more details listed in Table I. First, we look at
the results when accessing the files over the Home directory.
With small files, you can see that the native file system is the
fastest, and the number of nodes doesn’t affect the performance
much. With the 10 MB file, the native file system starts to lose
performance with a steady increase of time needed with more
than four nodes. Between one node (0.1 sec.) and 24 nodes
(0.23 sec.), the native file system is 2.3 times slower. The
effect is more pronounced with the 1 GB file, where it is 2.91
times slower (from 7.35 sec. to 21.41 sec.). During testing with
the 1GB file and 24 nodes, it achieved a throughput of 1.121
GB/s. The three different broadcast use cases also have no
visible loss in performance with the 1KB file but start to lose
performance beginning with the 100KB file and more than four
nodes, where all three perform very similarly. The Naive design
performs similarly with the 10 MB file when copying to local
SSDs or to /dev/shm. When copying to SSDs, the procedure
is 2.85 times slower with 24 nodes (0.4 sec.) compared to
1 node (0.14 sec.). When copying to /dev/shm, it is 3.58
times slower (from 0.12 sec. to 0.43 sec.). When accessing
the file directly, the Naive design starts to be much slower,
with more than eight nodes. That takes 5.69 times longer when
going from 1 node (0.13 sec.) to 24 nodes (0.74 sec.). The
trend is continued for the 1 GB file. From the three broadcast
use cases, copying the to /dev/shm achieves the highest
throughput on 24 nodes with the 1 GB file of 0.689 GB/s,
while accessing the file directly only achieves 0.331 GB/s with
the same configuration. The One-Sided Reading design is the
worst file system with small files and more than two nodes. It
is also the only file system that gets significantly slower with
an increasing number of nodes on the 1KB file. With the 10
MB file, the scaling of this file system is already better than
any of the broadcast use cases. Here, it is 2.56 times slower
when going from 1 node (0.16 sec.) to 24 nodes (0.41 sec.).
With increasing file size the loss in performance decreases,
with the 1 GB file, it is only 1.62 times slower (from 14.28 sec.
to 23.09 sec.). When accessing the 1 GB file with 24 nodes,
the One-Sided Reading file system is much faster than the
three broadcast use cases and only 1.68 sec. or 7.85 % slower
than the native file system, achieving a throughput of 1.039
GB/s. In general, the results for the Passthrough file system
are very similar to the performance of the Home file system.

When we look at the results when using the /dbnscratch
file system, we have slightly different results for our imple-
mented file systems. With just one node, all file systems are
faster than when using home; with 24 nodes, all broadcast
use cases and the One-Sided Reading file system are slower
compared to using home. That is also reflected in increased
multipliers when comparing the performance with one node
against 24 nodes, which can be found in Table I. The Scratch
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Figure 3. Time measurements on Sofja system

TABLE I. RESULT COMPARISON FOR TESTS WITH 1 GB FILE

Time with 1 node  Time with 24 nodes Increase Throughput

(in seconds) (in seconds) with 24 nodes
/home 7.355 21.408 2910 1.121 GB/s
OSR 14.289 23.094 1.617 1.039 GB/s
Bcast to local 11.703 37.161 3.175 0.646 GB/s
Bcast to /dev/shm ~ 9.991 34.826 3.486 0.689 GB/s
Bcast no copy 11.124 72.505 6.518 0.331 GB/s
Passthrough 8.021 19.192 2.393 1.251 GB/s
/dbnscratch 1.772 1.427 0.806 16.819 GB/s
OSR 11.607 29.737 2.562 0.807 GB/s
Beast to local 4.923 40.404 8.207 0.594 GB/s
Beast to /dev/shm  3.625 41.221 11.372 0.582 GB/s
Bcast no copy 6.478 77.450 11.956 0.310 GB/s
Passthrough 5.872 12.426 2.116 1.931 GB/s

file system itself however is much faster than the Home
directory file system, even with a 1 GB file size it even
shows a performance increase when going from 1 to 24 nodes,
achieving a throughput of 16.819 GB/s. The simple Passthrough
file system shows similar performance in the beginning. The
better performance with small files and a few nodes can also
be attributed to the deviations between nodes again. Starting
with the 10 MB file, a significant difference can be observed
compared to the Scratch file system for any number of nodes.

It would be interesting to know how much each factor
actually affects performance. Comparing the overhead caused
by MPI and FUSE would be important to identify where the
file system can be improved. To this end, another test was
conducted with the OSR file system and the Naive file system.
With the OSR file system, the xmp_open method and the
xmp_read method were timed. In the xmp_ read method of
the Naive file system, the time it takes to read the requested
range of bytes was measured, as well as the time it takes to
broadcast the read data. For both file systems, a counter was
added to count how many times the xmp_read method was
called on each node. Using this information we can calculate
the time the operations of the two file systems take in total. For
the OSR file system, we take the average of the xmp_open
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Composition of performance factors (1 GB file, 8 nodes)
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Figure 4. Composition of performance factors for the OSR and Naive file
system

timings over the nodes to get the value for this method. For the
xmp_read method, we take the average over all calls of this
method on all nodes and then multiply this value by the number
of times the method was called on each node. The same is
done for the two timings we take in the xmp_ read method
of the Naive file system. We can use the test results visualized
in Figure 3 to quantify the overhead FUSE introduces. We can
subtract the result for the Scratch file system from the same
result for the Passthrough file system when accessing the file
over the Scratch file system. This difference can be attributed
to the FUSE overhead since the simple Passthrough file system
does not add any features. It only passes the file system calls
through the FUSE kernel module. A more detailed view of
how the FUSE overhead is calculated and what it consists of
can be seen in the following equation.

FUSE-Overhead = time(FUSE Passthrough) — time(native)
= time(FUSE context switches
+ executing FUSE method
+ native FS call)
— time(native FS call)

(D

Together with the result of measuring the time sha256sum
takes to calculate the hash-sum when the file is already in the
memory (0.653 seconds), we can deduct those measurements
from the total time it took to calculate the hash-sum during this
test, and we receive a remaining time, that should be very small
and can be attributed to the fact that we combine different
test results and other smaller factors that we were not able to
measure. The test was conducted by accessing a 1 GB-sized
file on the Scratch file system with eight nodes, as most of the
system’s nodes were occupied by other long-running jobs.

The total time the test took was similar to before: 21.432
seconds for the Naive file system and 26.426 seconds for the
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Figure 5. Timings of OSR file system without metadata buffer compared to
with metadata buffer

OSR file system. Both results are a little bit higher than in
the previous tests; this could be caused by the job mentioned
that was running concurrently. The xmp_open method of
the OSR file system took 3.5 seconds on average over the
nodes. The xmp_read calls took around 0.002 seconds on
average over all nodes with the method to be called 7630 times,
resulting in a total time for the xmp_read method of 16.7112
seconds. The time we calculated for the FUSE overhead is 5.557
seconds. When subtracting these results and the 0.653 seconds
for calculating the hash-sum from the total time, the remaining
time of 0.004 seconds can be attributed to other factors. The
xmp_read method of the Naive file system was also called
7630 times. The average time for reading the range of bytes
was 0.00028, totaling 2.214 seconds. The broadcast operation
took an average of 0.00175 seconds, totaling 13.355 seconds.
Again, the time we calculated for the FUSE overhead is 5.557
seconds. Subtracting those values and the 0.653 seconds for
the hash-sum from the total time, the remaining 0.305 seconds
can be attributed to other factors. These results are visualized
in Figure 4.

Unfortunately, only after these tests did we realize that a lot
of performance was wasted by the very expansive metadata
operations needed for the simple caching mechanism. Before,
the location for every byte was stored in the metadata with the
according node ID. The metadata buffer was used to determine
on which node the needed data was located or if it was already
stored locally. Such a high resolution on the meta resulted in
vast amounts of required operations, especially when working
with large files. To test how much performance was lost, another
small set of tests was run without using a metadata buffer at
all. Instead, the nodes where the requested data is located were
inferred using the same algorithm to split the file and populate
the metadata buffer in the xmp_open method. The results
of these tests, compared to the old results, can be found in
Figure 5. We can see that we save at least 5 seconds without
the meta buffer operations. This means this version of the OSR
file system is more efficient than the native home file system
starting with only eight nodes.
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VI. DISCUSSION

On the Home and Scratch file systems with small file sizes,
the custom file systems are slower than the native file systems.
In the case of the broadcast-based file systems, this is caused
by the MPI overhead, while for the OSR file system, this
is caused by the xmp_open method and the MPI overhead.
Compared to the One-Sided Reading design, the broadcast-
based file systems don’t show any performance loss with an
increasing number of nodes here since the file can probably be
broadcasted with only one operation. In contrast, the One-Sided
Reading design must start transferring data between nodes in
smaller batches. With increasing file sizes, the broadcast-based
file systems get significantly worse with increasing numbers of
nodes. The limiting factor here might be that the nodes must
wait a significant amount of time between broadcast operations
until all nodes have reached the next broadcast operation. That
gets worse with more nodes and adds up with larger files,
requiring a more significant number of broadcast operations.
It is unexpected, though, that accessing the file directly with
the Naive file system is so much slower with large files than
copying the file first. That might be caused by extra waiting time
when waiting for the next broadcast when some nodes need
more time to process the received data inside the sha256sum
algorithm than other nodes. The native Home file system starts
to show its limitations with the 10 MB file already and has
a maximum throughput of slightly above 1 GB/s. While the
One-Sided Reading file system is significantly worse than the
Home file system with a file size of up to 10 MB, it also
reaches a maximum throughput of around 1 GB/s with the 1
GB file (see Table I). But more importantly, the scaling from
one node to 24 nodes for the OSR file system (1.617) is better
than for the Home file system (2.910) when accessing the 1
GB file. The hypothesis is that with just some more nodes (32
or more), the OSR file system might start to be faster than
/home if both trends continue with a more significant number
of nodes. This is likely because the performance of the Home
file system is expected to worsen with an increasing number of
nodes because of the bandwidth bottleneck. In contrast, we can
expect the performance of the OSR file system to continue to
grow linearly as the bandwidth of the communication channels
between the nodes is not limiting the performance at this
scale. It is clear that the MPI overhead limits the Naive design
approach and OSR file system. The simple Passthrough shows
a similar performance to the Home file system. The FUSE
overhead is not so noticeable here since the Home file system’s
latency is already high.

It is also interesting to note that we have some unexpectedly
high results; for example, with 10 MB and two nodes and
with 1 GB and two nodes, the timings for most file systems
are unexpectedly higher even compared to four nodes. That
might be due to 'noisy neighbors’ also stressing the network
and storage nodes. Curiously, the OSR file system does not
seem to be affected by it as much. That might be because it
only reads the test file during the open method and relies on
communication between the nodes afterward, thus not affected

as much by 'noisy neighbors’. However, that is only speculation
and is difficult to verify.

When looking at the results when accessing the file over
the Scratch file system, the results are similar for the FUSE
file systems. The Scratch file system itself proves to be much
faster than Home. That can be due to various aspects, such as
better network bandwidth over a fabric connection, multiple
storage nodes sharing the load, better storage devices, etc. It is
also notable that for all file sizes, the performance gets better
with an increasing amount of nodes, which can probably be
attributed to caching on the storage servers themselves. The
results of the Passthrough file system show the overhead caused
by FUSE, especially with the 1 GB file. The Passthrough file
system is multiple seconds slower than Scratch, caused by the
multiple context switches, as mentioned in Section II. This
performance loss also contributes to the results of the other
custom file systems. We also do not have unexpected spikes,
as we observed when using the Home file system, since 'noisy
neighbors’ have less effect on our jobs when the native file
system does not reach its bandwidth limit as easily.

The small remaining time for both file systems confirms
that our measurements are accurate and that we identified the
most critical performance factors. In the case of the Naive
file system, the MPI overhead is associated with the time the
broadcast operation takes in the xmp_read method (orange
tile). For the OSR file system, the MPI overhead is associated
with the entire time xmp_read method takes (orange tile)
since the file is already entirely in memory, distributed over
the nodes, and all operations in the xmp_read method are
related to remotely accessing the file using MPI. The FUSE
overhead is the same for both file systems since the FUSE
overhead is dependent on the number of file system operations,
which is not influenced by the file system itself. The FUSE
overhead should also be the same for any number of nodes
since the number of file system calls per node is unaffected
by the number of nodes running the job. For both file systems,
the FUSE overhead is significantly less than the time the MPI
commutation takes, while the overhead caused by the MPI
communication will increase with a growing number of nodes.
Since this work aims to develop a file system that scales well
over an increasing number of nodes, we can confidently say
that the MPI communication overhead is the most significant
factor for performance. Limiting the MPI overhead should
be the first priority to improve the performance of the file
system as a whole. This could be done by reducing the number
of times the MPI_Get method is called to a minimum, for
example, by always reading the entire chunk of the file that is
assigned to a node so that each node never has to communicate
with another node more than once. This would increase the
number of times that a read can be covered by the local buffer
and decrease the number of times the MPI_Get method is
called.

After analyzing the results of the performance factor analysis,
we noticed that a significant amount of time spent during the
xmp_read method of the OSR file system is caused by a large
number of metadata operations interacting with the metadata
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buffer. This was mainly due to the very high resolution of the
metadata buffer, keeping track of the location of each byte. To
quantify the resulting performance impact, an updated version
of the file system was implemented without any metadata
buffer, eliminating the metadata operations. Removing the
buffers means we don’t have any caching mechanism, which
imposes a performance loss in most use cases. However, we
wanted to test the performance without the caching mechanism
since we suspected it to be extremely inefficient and impact
the results more than it should. The resulting performance
improvement is significant, with a 5-second improvement for
all test configurations. When comparing the new results to the
performance of the native file systems, the updated version
exceeds the performance of the Home file system with only
eight nodes. This performance gain is expected to grow with
an increasing amount of nodes. The optimized Scratch file
system 1is still much faster. However, we also did not create
a workload that caused a bottleneck for this file system. It
is important to note that the performance difference from the
first version of the OSR file system depends on the size of the
accessed file, not on the number of nodes accessing the file.

VII. CONCLUSION AND FUTURE WORK

In conclusion, an MPI-based FUSE file system is presented
that can use two different methodologies to orchestrate I/O from
multiple nodes. For highly synchronous reading operations, a
broadcast mechanism that could read a 1 GB file using less
than 4% of the bandwidth compared to the baseline is shown.
This entailed a performance penalty of approximately 250%
during the synthetic benchmark. In real-world scenarios, this
performance penalty might decrease if the available bandwidth
is also shared with other users. Therefore, one achieves a
bandwidth-reduction to latency-increase ratio of approximately
8.

The more flexible OSR mechanism reduced the performance
penalty to around 8% while retaining the same bandwidth
reduction, resulting in a bandwidth reduction to latency increase
ratio of approximately 22. The refined version of the OSR
file system improved performance even further. It was able to
reduce latency compared to the baseline while also retaining
the bandwidth reduction.

Future work should focus on testing the OSR file system on
a larger scale. Some technical improvements should also be
made, like developing an efficient caching mechanism, running
the file system multi-threaded on each node, and adding the
capability to handle multiple opened files simultaneously.
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