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Abstract—One of the most prominent courses of action in the
tourist sector is the development of predictors to anticipate the
flow of incoming and outgoing tourists of a region. To do so, most
of the existing approaches usually take tourist-related flows as the
only primary input to perform the prediction. The present work
assesses the suitability of composing a deep-learning predictor
that fuses touristic displacements with data extracted from a
general-purpose human-mobility dataset. The proposal has been
tested in the Region of Murcia, a Spanish administrative area with
a lively tourist sector. Results show that our approach achieves
up to 46% Root Mean Square Error (RMSE) reduction with
respect to a baseline only relying on tourist data.

Keywords-tourist mobility ; deep neural networks , human mobility
flows ; time series forecasting

I. INTRODUCTION

The tourism sector has undergone extensive research aimed at
devising intelligent solutions to enhance both business processes
and customer experiences in multiple platforms, such as online
social networks [1]. This integration has facilitated the analysis
of tourist mobility behavior. Consequently, forecasting tourists’
flows holds significant implications in areas such as tourism
marketing or services, empowering tourism institutions and
stakeholders to more efficiently manage their resources [2][3].

However, the advancement of prediction algorithms to
forecast tourist flows (e.g., the volume of incoming or outgoing
tourist trips within a geographical area such as a city) typically
depends on a univariate approach, where the target flow
serves as the primary input for the predictor [4][5]. Yet, the
utilization of alternative forms of human mobility data as
exogenous variables to enhance prediction accuracy has not
been thoroughly investigated.

The primary objective of this study is to evaluate the viability
of enhancing a tourist-flow prediction model with human
movement data obtained from sources that document regular
and daily movements within a specific geographical area. This
concept is rooted in the notion that daily human movements
towards a region could offer an alternative yet supplementary
perspective on its tourist flows. For instance, a significant
increase in inbound tourists to a city attributed to a social event
might be preceded by a decrease in commuter journeys towards
that region several hours before the event begins. Anticipating

such a decline could be leveraged by a predictive model to
enhance the accuracy of forecasting future tourist visitation
patterns.

In order to evaluate our approach, we have used several
instances of a model comprising a stack of convolutional and
recurrent neural network layers for time series forecasting in
order to anticipate different types of touristic flows towards the
Region of Murcia (RM), a Spanish Administrative area in Spain
with an active tourist industry. In that sense, the predictor is
feed with different subflows extracted from an open nationwide
human-mobility dataset to anticipate the overall number of
incoming tourists towards RM several weeks ahead.

The salient contribution of this work is the fusion of different
datasets that allows the development of a touristic mobility
predictor that merges the regular and tourist movement of a
geographical region so as to forecast its incoming touristic flow.
The key benefit of this multi-flow approach is that it allows
a much more accurate estimation of the tourists arriving to a
region than an approach solely relying on tourist-related flows
for several time horizons.

The remainder of the paper is structured as follows. Section
2 summarizes the most relevant current approaches for human
mobility prediction in the touristic sector. Then, Section 3
describes the use-case setting of our study. In Section 4, the
most important results of the deployed palette of predictors
are described and evaluated. Lastly, Section 5 summarizes the
main conclusions and potential future research lines motivated
by this work.

II. RELATED WORK

In recent years, there has been a large interest in harnessing
methodologies to fuse data from heterogeneous sources so as
to forecast tourist movements, thus enhancing tourism planning
and management through the utilization of multivariate datasets.
One approach has been based on the usage of tourist flows
from one region to improve the prediction accuracy in another
area. For instance, Zhu et al. [6] examined tourist flows from
six countries to forecast tourist arrivals in Singapore, proposing
a pairwise modeling approach to account for interdependence
among countries within the same geographic region. Analyzing
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flows from 1995 to 2013 and predicting up to 20 quarters
ahead, they demonstrated improvements in Mean Absolute
Percentage Error (MAPE) and Root Mean Square Error
(RMSE) by incorporating pairwise flows compared to models
treating flows independently, particularly evident in annual
predictions. A similar approach was followed by Yang et
al. [7] investigated the combination of spatial and temporal
tourist flow datasets in China, contrasting univariate models like
ARIMA with multivariate space-time autoregressive moving
average (STARMA) models. Their study, spanning tourist
mobility data from 29 Chinese regions between 1987 and 2016,
showcased enhanced accuracy of STARMA models, especially
in neighboring regions with strong spatial correlations.

Another line of research has focused on the integration of
datasources not directly related to human mobility to enhance
the prediction performance. As a matter of fact, Zhang et
al. [8] integrated tourism flow volumes with various Search
Intensity Indicators (SII) from Google Trends to refine the
accuracy of Machine Learning and Deep Learning models in
forecasting tourist arrivals in Hong Kong over different time
horizons. A similar approach was adopted for predicting tourist
demand in Macau, China, by Law et al. [9], who evaluated
diverse Deep Learning models, particularly those employing
attention mechanisms, surpassing conventional ML techniques
like Support Vector Regression. Besides, De-Jesus et al. [10]
made use of data reporting the evolution of the COVID-19
pandemic in the Philippines to enhance the prediction of
inbound tourist to that country confirming that integrating
such type of data improved the model accuracy.

The novel aspect of our current work lies in the nature of data
used to enhance tourist mobility prediction. Unlike previous
approaches relying on web-based indicators, or COVID-19 data
as exogenous variables, we leverage direct human movement
data extracted from an open and general-purpose feed specific
to the geographical area of interest.

III. USE-CASE SETTING

The focal point of our investigation has been the Region of
Murcia (RM), an autonomous community in Spain situated in
the southeast of the country (see Figure 1). This area boasts
a population of approximately 1.5 million people and covers
an expanse of 11,313 km2. In terms of tourism, this region
welcomed over 1,300,000 visitors in 2022, marking a 45%
increase compared to 2021 [11].

A. Datasets

We utilized two distinct mobility datasets, the first encom-
passes tourist mobility within the Region of Murcia (RM),
while the second encompasses total human mobility within the
same region. This way, we had two different views of how
people moved around the target region.

1) Tourist Mobility Dataset (TMD): The flow of tourists
in RM was gathered through the Tourist Mobility Dataset
(TMD) provided by the Tourism Institute of the Region of
Murcia [12] as part of its Smart Region project. This dataset
captures the inbound and outbound movement of tourists in

Figure 1. Location of the Region of Murcia (in yellow) with respect to the
rest of autonomous communities in Spain depicted in red.

RM over a 16-month period spanning from January 1st, 2022,
to April 30th, 2023. These flows are derived from the network
events generated by mobile phones connected to the Telefonica
network, one of the leading carriers in Spain [13]. The data
undergoes anonymization, extrapolation, and aggregation stages
to compute the final tourist flows included in the dataset.

An important aspect of this dataset is its distinction be-
tween the incoming flow of national (residing in Spain) and
international (arriving from other countries) tourists (NT
and IT , respectively), as well as excursionists (NE and IE ,
respectively). The former category comprises individuals who
spend at least one night in the region (e.g., staying in a
hotel, camping, or tourist accommodation), while the latter
encompasses day trippers who visit RM for the day but do not
spend the night away from their primary residence.

The format of the dataset defines the flows on a weekly
basis. In this manner, the mobility of the w-th week of the
year y for a city c is defined as a single tuple,

⟨y, w, c, fm
work, f

a
work, f

n
work, f

m
end, f

a
end, f

n
end⟩

where fm
work, f

a
work and fn

work are the week slices comprising
the overall incoming flows towards c during the morning (m),
afternoon (a) and night (n), respectively, considering all the
working days of the w-th week. Similarly, fm

end, f
a
end and

fn
end provide the same time-sliced flows for the weekend days

(Saturday and Sunday in Spain). Thus, for each combination
of year, week and city (y, w, c) the dataset comprises 4
different tuples, one for each type of touristic flow, 1) national
excursionists NE , 2) national tourists NT , 3) international
excursionists IE and 4) international tourists IT . For the sake
of clarity, Figure 2 shows the number of incoming tourists and
excursionists (regardless its origin) for the 70 weeks covered
by the dataset.

Given the aforementioned flows, we computed 3 aggregated
ones comprising the overall number of tourists T (= NT +IT ),
the overall number of excursionists E (= NE + IE) and the
overall number of visitors A (=T + E).

Next, we composed a timeseries for each flow F ∈
⟨NE ,NT , IE , IT , T , E ,A⟩ covering the 70 weeks under
study with the following format FTM = ⟨fm,1

work → fa,1
work →

fn,1
work → fm,1

end → fa,1
end → fn,1

end → fm,2
work → fa,2

work →
fn,2
work → fm,2

end → fa,2
end → fn,2

end → ... → fm,70
work → fa,70

work →
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Figure 2. General flow of incoming tourists and excursionists to the Region
of Murcia during the period of study considering the tourist mobility dataset.

fn,70
work → fm,70

end → fa,70
end → fn,70

end ⟩ where, for example, fm,i
work

is the record comprising the overall value of the F flow during
the working days’ mornings of the i-th week.

2) General Human Mobility Dataset (GMD): This dataset
was obtained from the nationwide human mobility report
published by the Spanish Ministry of Transportation (SMT) in
January 2022 [14]. It provides information on the number of
trips per hour between 2,735 cities across Spain, covering both
the mainland and insular regions. This dataset can be viewed
as a collection of tuples, each taking the form,

⟨date, hour,morigin,mdest, ntrp, dist⟩

reporting that there was ntrp human trips from the city
morigin to the city mdest and whose distance was dist km
during the indicated date and hour.

As per official reports [15], these mobility data were derived
from Call Detail Records (CDRs) of 13 million users from an
undisclosed mobile carrier. After anonymization, the dataset
was utilized to extrapolate comprehensive mobility patterns
representative of the Spanish population at a national scale,
subsequently released as open data. It is important to note
that this dataset encompasses the movements of individuals
irrespective of their mode of transportation.

Utilizing this dataset, we filtered its flows by retaining
records that satisfy the following two criteria: (1) their
destination mdest is one of the cities in RM, and (2) their
distance dist exceeds a certain threshold δ. The first criterion
captures the inbound flows to RM, while the second criterion
refines these inbound flows based on the distance traveled
by visitors to reach RM. Since the threshold δ defines the
minimum distance, we avoid the fact that some of the resulting
flows include almost all the records of the initial dataset.

Considering the peninsular area of Spain has an approximate
radius of 540km and commuters’ average travel distances range
from 19 to 34 km [16], we employ three distinct δ values:
100, 400, and 800 km. Using these thresholds, we initially
derived a subset of short-distance trips with δ = 100km
(F100

GM ), aiming to capture regular and non-touristic trips
alongside various types of tourist flows to RM. Subsequently,
we constructed a second subset representing medium-distance
trips with δ = 400km (F400

GM ) and a third subset encompassing
long-distance travelers with δ = 800km (F800

GM ). This approach
allowed us to progressively filter out the proportion of regular
and non-touristic trips in each subset by increasing the value
of δ. In that sense, each subflow is defined as a timestamped
sequence Fδ

GM = ⟨fm,1
gm,δ,work → fa,1

gm,δ,work → fn,1
gm,δ,work →

fm,1
gm,δ,end → fa,1

gm,δ,end → fn,1
gm,δ,end → fm,2

gm,δ,work →
fa,2
gm,δ,work → fn,2

gm,δ,work → fm,2
gm,δ,end → fa,2

gm,δ,end →
fn,2
gm,δ,end → ... → fm,70

work → fa,70
gm,δ,work → fn,70

gm,δ,work →
fm,70
gm,δ,end → fa,70

gm,δ,end → fn,70
gm,δ,end⟩ where, for example,

fm,i
gm,δ,work is the record comprising the overall value of the

trips towards RM, covering a distance of at least δ km, during
the morning of the working days of the i-th week according
to the GMD.

Figure 3 shows the time series of the aforementioned
subflows in RM during the same time period considered for
the touristic dataset (2022/01/01-2023/04/30). As observed,
the 3 time series have a very different order of magnitude.
Furthermore, F100

GM exhibits a quite flat pattern throughout
the whole period of study capturing a mostly-stationary travel
behaviour. This is consistent with the fact this GMD flow
is the one that captures more regular and commuting trips
from the three ones. On the contrary, flows F400

GM and F800
GM

comprised sharper peaks during the different holiday seasons
covered in the study. For example, Figure 3 shows a large
increment of incoming trips in both flows during the two
Easter holidays under consideration. This reveals that these
two timeseries captured more seasonal travel patterns and, thus,
more compatible with tourist-related displacements.

As we can see, each GMD subflow provides different point
of view of the human mobility in the Region of Murcia so that
they can be used to study whether the usage of general human
mobility might improve the prediction of a particular flow of
visitors. It is important to remark that the GMD and SMT
represent different mobility flows. However, some redundancy
might ocurre between both datasets as the GMD might comprise
a certain number of touristic trips.

IV. DESCRIPTION OF THE PREDICTOR

The focus of this paper lies on addressing the tourist mobility
prediction challenge, which can be framed as a regression
problem:

Given the weekly time slice w, the number of incoming
tourists and/or excursionists over the past wprev time slices
according to the TMD Fw

TM = ⟨fw, fw−1, .., fw−wprev,S⟩,
and the number of incoming trips based on the GMD within
a distance-threshold δ for the same time lags Fδ,w

GM =

⟨fw
gm,δ, f

w−1
gm,δ, .., f

w−wprev

gm,δ ⟩, Determine a mapping function
P:

P(Fw
TM ,Fδ,w

GM ) → Fw+T
TM

where Fw+T
TM represents the estimated number of tourists

and/or excursionists arriving in RM at the (w+T )th week slice
as per the TMD study, with T denoting the prediction time
horizon (T ≥ 1). Notably, the novelty in this predictive model
lies in its integration of GMD-based trips, supplementing the
information derived solely from the TMD source.

To implement the predictor model, we have used a com-
bination of a Convolutional Neural Network (CNN) with a
Long short-term model (LSTM), resulting in a CNNLSTM
model. As Figure 4 shows, this model firstly compresses
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Figure 3. General flow of incoming tourists and excursionists to the Region of Murcia, considering different distance-based filtering (δ) during the period of
study considering the general human mobility dataset. The violet areas represent the Easter holidays in 2022 and 2023 respectively, the green and blue ones
nation bank holidays and the yellow area the summer period (July and August) in 2022.

Convolution 
1D

Max Pool
1D

Flatten LSTM

FTM
w

FGM
w

wFGMDense

Figure 4. Layer architecture of the CNNLSTM applied in the study.

and extracts the relevant features of the incoming bi-variate
timeseries comprising Fw

TM Fδ,w
GM flows by means of a one-

dimensional convolutional and a max-pool layer. Then, the
resulting sequence is flattened to a 1D vector in order to be
processed by the downstream LSTM and dense layers and
generate the estimated Fw+T

TM flow. In that sense, we opted
to use a CNN instead of applying feature selection prior to
an LSTM because CNNs are capable of efficiently capturing
spatial and local patterns in time series data, which helps
identify complex relationships between the data before being
processed by the LSTM. This approach enables better extraction
of relevant features directly from the time series, eliminating
the need for prior manual feature selection.

V. EVALUATION OF THE PREDICTOR

In this section we evaluate the accuracy of the CNNLSTM
predictor described in the previous section.

A. Metrics

In terms of evaluating the CNNLSTM model, the Mean
Absolute Error (MAE) and the Root Mean Squared Error
(RMSE) [17] stand out as two widely utilized metrics for
assessing accuracy in predicting continuous variables. These
metrics are well-suited for comparing models as they quantify
the average prediction error of the model in the units of the
variable of interest. Their definitions are as follows,

MAE =
1

n

n∑
i=1

|yi − ŷi,|

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi,)2,

where, for our experiment, yi is the real number of touristic
trips, ŷi is the predicted number of trips and n is the number
of observations. Furthermore, we complement these metrics
with the Mean Average Prediction Error (MAPE) metric that
is calculated as follows:

MAPE =
1

n

n∑
i=1

|yi − ŷi
yi

| × 100.

B. Model Hyper-parameters

Table I comprises the configuration of the hyper-parameters
applied in the CNNLSTM model.

C. Evaluation Results

Table II shows the metric values of the CNNLSTM model for
different combination of inputs. In order to properly evaluate
the impact of our approach, the table also shows the results
of a baseline model that is only fed with touristic mobility
data (FTM ). Bearing in mind the description of the predictor
stated in Section IV, this baseline can be defined as a univariate
function P(Fw

TM ) → Fw+T
TM .

As observed in Table II, at least one of the models
enriched with general mobility data outperformed the univariate
alternative for almost all the target flows. For example, in order
to predict the overall flow of visitors to RM (A), the predictor
fed with the GMD flow with a 800km distance threshold
(A, F800

GM ) reduced the MAE from 30,678.195 to 29,311.016
(-5%). A higher improvement is observed in the case of the
national excursionists (NE), in which the RMSE dropped from
15,732.939 in the univariate version to 8,544.438 (-46%) in
the model using the F800

GM flow. Concerning the F400
GM flow, it
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TABLE I
HYPER-PARAMETERS OF THE CNNLSTM MODEL

Hyperparameter Description Value
Filters Features detector 64
Kernel size Filters matrix used to extract the features from the dataset 2
Strides Number of timesteps shifts over the input sequence 4
Activation function Function that decide if a neuron should be (or not) activated Tanh
Batch size Size of batch used for training/forecasting 32
Epochs (+ EarlyStopping) Number of epochs used in training 15000
Optimizer Function that optimises the learning of a artificial intelligence model Adam
Loss function Function used for evaluate the error of the model in each epoch MSE
Learning rate (+ ReduceLROnPlateau) Percentage change with which weights are updated at each iteration 0.003
Train-test split Rate of the dataset used to train and evaluate the models 90% (train), 10% (test)

allowed to improve the accuracy of the prediction of the NE
flow (MAPE from 35.145 to 16.443, -54%) and the T flow
(MAE from 16,909.334 to 15,519.060, -9%).

An important finding of this evaluation is that the most
suitable distance threshold δ to compose the GMD flow varies
depending on the target tourist flow. This makes sense as the
nature of each target flow is quite different. For example, a
400km-δ provided a higher accuracy for the national flows,
NE and NT , whereas the 800km provided the best results
for the international-tourist flow (IT ). Moreover, the 400km
threshold was the best configuration to predict the overall
touristic flow (T ) but the 800km one allowed the best accuracy
for the overall excursionist (E). This dichotomy of distances
for tourists and excursionists explain why the most accurate
model to predict the global flow A depends on the evaluation
metric under consideration as we can see in the first 4 rows
of Table II.

It is important to remark that the predictor actually improved
its accuracy when it incorporated the regular flows filtered with
δ equals to 400 or 800km. However, the F100

GM did not provide
a clear improvement for any of target flows. In that sense, F400

GM

and F800
GM were the two flows exhibiting a higher seasonality

with peaks at certain holiday periods revealing that the weight
of the touristic displacements was quite high in such flows
(Section III-A2). This suggests that the actual improvement of
the predictor occurs when it is enriched with an exogenous
flow comprising latent touristic displacements in a quite strong
manner. That is, when it provides an alternative view of the
touristic flows of RM discarding the regular displacements at
high degree.

Furthermore, Figure 5 shows the RMSE of each model for
each target flow and different values of time horizons T , namely
6, 12, 18, 24, 32 and 48 week slices. Since the TMD defines
6 slices per week (Section III-A1), such time horizons can be
also regarded as 1, 2, 3, 4, 5.3 and 8 weeks. As observed, the
major improvement of the CNNLSTM with GMD flows usually
occurred for large time horizons above 24 slices (4 weeks).
This is specially noticeable in the A (Figure 5a), E (Figure 5b)
and NE (Figure 5d) flows. It is also worth mentioning the fact
that the model enriched with FGM,800 clearly outperformed
the other models for all the time horizons in order to predict
the IT flow. This is consistent with the fact that predictors
enriched with GMD data could learn the latent mobility patterns

TABLE II
ERROR METRICS OF EVALUATED MODELS. THE VALUES IN BOLD INDICATE

THE LOWEST ERROR FOR EACH ⟨TARGET FLOW, METRIC⟩ PAIR.

Target flow Model’s input MAE RMSE MAPE
A A 30678.195 39895.783 13.764
A A, FGM,100 44274.756 58651.799 20.762
A A, FGM,400 29402.056 34364.585 12.206
A A,FGM,800 29311.016 35820.294 11.998
IE IE 3816.539 4983.614 24.589
IE IE , FGM,100 3939.599 5628.872 20.193
IE IE , FGM,400 5980.346 7317.516 37.581
IE IE , FGM,800 4370.739 5344.350 26.865
NE NE 12739.819 15732.936 35.154
NE NE , FGM,100 9769.504 11509.648 25.019
NE NE , FGM,400 6871.259 8544.438 16.443
NE NE , FGM,800 7461.158 9421.957 16.706
E E 15197.112 20773.676 29.911
E E , FGM,100 15496.672 20741.639 33.164
E E , FGM,400 14815.044 17828.300 28.326
E E , FGM,800 11095.700 15434.727 20.736
IT IT 8403.148 10333.727 12.709
IT IT , FGM,100 10044.294 11134.676 15.101
IT IT , FGM,400 10709.579 12664.216 15.613
IT IT , FGM,800 7694.914 8850.736 11.922
NT NT 16799.757 20668.949 14.330
NT NT , FGM,100 21503.516 24611.753 18.729
NT NT , FGM,400 13661.015 18604.120 10.718
NT NT , FGM,800 18360.056 23826.051 14.729
T T 16909.334 22205.017 9.350
T T , FGM,100 27295.051 32113.587 15.807
T T , FGM,400 15519.060 20499.031 8.806
T T , FGM,800 17648.112 24587.760 9.052

from several points of view and, thus, anticipate their long-term
behaviour in a more accurate manner.

Finally, the aforementioned evaluation shows that the usage
of alternative human trips actually improved the prediction of
most of the touristic flows under consideration. However, this
improvement actually occurred when the GMD flow, Fδ

GM ,
comprised seasonal mobility that was compatible with the
touristic activity rather than reporting regular and commuting
trips. Besides, this improvement was most noticeable as long
as the target time horizon increased.

VI. CONCLUSIONS AND FUTURE WORK

The utilization of human mobility data is revolutionizing
the tourism industry, enabling the development of predictive
models to optimize resource allocation for hotel companies.
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(a) Global flow, A. (b) Excursionists, E . (c) Tourists, T .

(d) National Excursionits, NE . (e) International Excursionits, IE . (f) National Tourists, NT .

(g) International Tourists, IT .

Figure 5. RMSE per time horizon for each target flow.

However, many existing models overlook general mobility
patterns beyond tourist flows. In this study, we propose
integrating general mobility data to enhance the accuracy of
tourism flow predictions. Our innovative approach combines
Convolutional Neural Network and Long-Short Term Memory
models, enabling us to forecast tourist flows up to 8 weeks
ahead with increased precision.

Testing our methodology on data collected from the Region
of Murcia (Spain) over a 16-month period demonstrates
significant improvements in accuracy, with error reductions
exceeding 50%. This underscores the potential of integrating
general mobility data into existing predictive models to better
anticipate tourist behaviors.

Two avenues of research can be explored further in subse-
quent stages of this study. Firstly, the integration of additional
contextual data, such as weather conditions, events, and holi-
days could further enhance the predictive accuracy of the tourist
flow model. Secondly, expanding the analysis to encompass
multiple regions would offer a broader understanding of tourist
flows at a national level. This might reveal intricate patterns
and dynamics between different areas, thereby enriching the

comprehensiveness of tourist mobility forecasting.
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