
The Hidden Business Costs of Ignoring Performance Testing - The Silent Budget Killer

Sowmya Chintakindi
Independent Researcher and Sr. Performance Engineer, USA

e-mail: sowmyar909@gmail.com

Abstract—In this era of artificial intelligence and the digital
world, the speed and responsiveness of the application have
become a critical factor in maintaining a competitive edge.
With increasing user expectations of a seamless and high-
performance application, even minor delays can lead to customer
dissatisfaction and may drive them to competitors. This increase
in user expectations made performance testing one of the crucial
aspects of the software development life cycle to evaluate the
application’s speed, reliability, and responsiveness under varying
load conditions. Despite its critical role, organizations often
overlook performance testing until failure strikes, users leave,
and revenue is lost. This paper aims to raise awareness of
the importance of performance testing and the consequences
of ignoring it. Through real-world case studies and industry
insights from practical experience, this paper highlights the
impact of inadequate performance testing on the business. Also,
it explores best practices to make applications scalable, reliable,
and efficient. In a world where every milliseconds matters,
performance testing shouldn’t be an option - it’s a necessity.

Keywords-Performance testing; Reliability; User experience;
Hidden costs.

I. INTRODUCTION

Performance testing is typically positioned at the final
stage after development and functional testing. Due to this, it
frequently receives limited time and attention as teams spend
most of the time in development and validation. The common
assumption is that bypassing performance testing can save
time and accelerate deployment if no significant performance-
related changes are made. However, this will be done at a
hidden cost. The actual cost of this may not be immediate.
Still, the risks accumulate beneath the surface in unexpected
outages, slowness, business loss, and frustrated customers who
may never return. This paper explores the hidden costs of
bypassing performance testing that organizations cannot afford
to ignore and provides some strategies to have seamless and
resilient applications.

This paper starts with research methodology in section 2
and then provides background on performance testing, how
it is performed, and how it helps businesses in section 3.
Section 4 provides some understanding of IT outages, their
causes, effects, and preventive measures. This is followed
by some case studies on applications that were affected by
bypassing performance testing and the loss incurred in section
5. Conclusions are drawn in section 6.

II. RESEARCH METHODOLOGY

This study captured some of the real-time case studies to
analyze the importance of performance testing. This research
highlights that even minor modifications can impact over-
all performance and potentially lead to revenue loss. This

study demonstrated that continuous and thorough performance
validation is essential for maintaining system reliability and
business outcomes.

A. Description and purpose of the paper

This study highlights the importance of implementing per-
formance tests and active monitoring practices from early
development to production deployment. It is designed to
raise awareness, guide organizations, and advocate for a
performance-first mindset to avoid unanticipated business
losses [1].

B. Research questions

1) RQ1: What happens when performance testing is ig-
nored before a release?

Rationale: When performance testing is ignored before
a release, applications will be at risk in production with
slow response times, system crashes under load, and loss of
business. This study aims to bring awareness to how important
it is to have performance tests for the changes made.

2) RQ2: Why do some teams bypass performance testing?
Rationale: Software teams often overlook performance test-

ing. Assuming that there were no changes related to per-
formance, the quality assurance team functionally tested the
software, and no performance-related issues would arise. This
study highlights the most common reason for performance
bottlenecks: bypassing performance testing.

3) RQ3: How do performance-related failures affect cus-
tomer trust and brand reputation? Rationale: When perfor-
mance issues surface, it can cause poor customer experience
and unpredicted revenue loss. Ultimately, this can damage
the company’s reputation and reduce customer trust. This
study identified some industries that were affected due to
performance issues.

4) RQ4: What strategies can be implemented to evaluate
business costs of performance issues? Rationale: Since this
paper highlighted some of the performance issues that affected
some industries, it also mentions the strategies to implement
performance testing for resilient systems.

5) RQ5: What are the gaps between state-of-the-art and
state-of-practice in performance testing? Rationale: This study
helps identify the importance of performance testing and the
impact of ignoring it, which is not found in other scholarly
articles [2][3][4].

C. Limitation of the approach

Though performance testing is critical, it has some limita-
tions. Setting up realistic test environments can be complex.

22Copyright (c) IARIA, 2025. ISBN: 978-1-68558-280-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

PESARO 2025 : The Fifteenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

https://orcid.org/0009-0006-1782-8391

Performance testing can sometimes produce negative results
if the application’s configuration or capacity is not equivalent
to production. Proper planning and analysis may lead to
misinformation and misguided optimizations .

III. PERFORMANCE TESTING

As internet users are increasing, so does the load on
applications. We need performance testing to maintain the ap-
plications to perform efficiently and effectively with minimum
infrastructure.

A. What is performance testing?

UptimeIntelligenceIt is one of the critical processes in the
Software development life cycle that ensures the system is
stable, reliable, and scalable under various load conditions.
This testing simulates user load from routine traffic to sur-
viving extreme stress. This uncovers how the system truly
performs, whether it’s measuring response times or testing
under peak load conditions; performance testing uncovers
hidden bottlenecks, fine-tuning the application, and guarantees
system stability to provide exceptional user experience at every
turn.

B. Evolution of performance testing

In the early 1990s, as the Internet began to gain atten-
tion, performance testing was purely a manual endeavor.
Testers relied on manual approaches to measure application
performance. In 1991, Mercury introduced WinRunner, an
automated GUI testing tool that allows users to record and
replay user activities. This reduced significant reliance on
manual testing.

The demand for faster applications grew as the Internet
boomed, making performance testing more essential. In this
momentum, Mercury developed the first performance testing
tool, LoadRunner, in 1993. This tool helped testers assess
application performance under heavy loads. Since then, per-
formance testing has continuously evolved, with many tools
emerging into the market. The rise of open-source load testing
tools enabled organizations to execute performance testing
more efficiently and cost-effectively.

Performance testing has evolved to integrate seamlessly
with Agile methodology and DevOps to emulate continuous
integration and deployment models. The advent of cloud
platforms has further enabled performance testing to evolve
to provide scalable environments. Today, integration with AI
has enhanced this process to be quicker and more proactive.

C. Performance testing process

Performance testing is a structured process, and its life cycle
includes various phases. Starting with nonfunctional require-
ments gathering, test planning, test case creation, test script
creation, execution, result analysis, and dashboard generation.

1) Non-functional requirements gathering: This process
begins with gathering non-functional requirements such as
expected throughput, critical business transactions, response
times, and anticipated resource utilization. Multiple meetings
are necessary to collect these requirements. Understanding
these from a business and technical perspective helps plan
effective testing activities.

2) Test Plan Creation: The next step in this process is
creating a test plan and test cases. A test plan is a compre-
hensive document summarizing all the requirements gathered
in the first step of the process. Creating these test plans
ensures the effective execution of performance testing. Test
case documents list all the scenarios that need to be tested.

3) Test Script Creation: Tests are created using testing tools
like LoadRunner, JMeter where different test scenarios are
created to simulate user actions virtually and real-time load
conditions.

4) Test Execution: Next is a test environment to execute
performance tests in the lab. This is the crucial step, as this lab
needs to be a production replica to ensure accurate test results.
The execution phase starts once the test scripts are ready. This
step requires active monitoring of applications with monitoring
tools during the test to find bottlenecks or areas of performance
improvement. This is where the test plan will effectively plan
the number of tests and duration of the execution phase.

5) Results Analysis and Report generation: Once the tests
are completed, all the test results are gathered, and a summary
report is generated. In some cases, tests are executed again
after performance improvements.

D. Key performance metrics
Key performance metrics are used to evaluate the applica-

tion’s performance and efficiency during performance testing.
The following are some of the key performance indicators that
are captured during performance testing to assess application
performance and find bottlenecks to enhance the system.

1) Response times: It is the measure of time taken for
a system to respond to a user request. It is calculated by
averaging the response times of all the requests sent during the
test. In some cases, the 90th percentile of the response times
was measured. The 90th percentile response time is calculated
as the average response time corresponding to the fastest 90%
of the requests.

2) User load: It refers to the number of virtual users
simulated with a load-testing tool to access the system under
various real-time conditions. These conditions can include
average load, peak load, stress load, and concurrent user load.

3) System utilization of the server: This refers to the
percentage of system resources like CPU, memory, disk,
and network used during the performance test. It provides
information about how well the system handles the load during
the test.

4) Latency: This refers to the delay between sending a re-
quest to a server and receiving a response from the server. This
latency can be in the system, network, disk, or application.
This metric is measured as time to first buffer, network latency,
or round-trip time.

23Copyright (c) IARIA, 2025. ISBN: 978-1-68558-280-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

PESARO 2025 : The Fifteenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

5) Error rate: It is the measure of the percentage of
failed requests out of the total requests sent during the test.
It is measured as transaction error rate, HTTP error codes,
and Network error rate. The higher the error rate, the more
unreliable the system is.

6) Page loading time: This is the metric measured for web-
based applications. It measures the time taken to load the page,
all the image files, DNS lookup, connection time, and server
processing time during the test.

7) Page size: This is the metric used for web-based appli-
cations. It measures the size of the page, including image files,
HTML, and non-HTML resources.

8) database metrics: These are the metrics obtained from
the database, such as long-running queries, top SQL, dead-
locks, IO, and many more.

E. Behind the scenes of performance testing

Relying on the same number of physical computers to
generate hundreds or thousands of users seems impractical.
Instead, load testing tools can enable this user load simulation
virtually with just a few machines. Figure 1 is the architecture
of a typical load testing environment where virtual users
are simulated and executed performance tests like real-world
scenarios.

Figure 1. Architecture of a typical load testing environment

The load testing tool uses load generator resources to
simulate virtual users to send traffic over the firewall to the
web server or application servers like real users and receive
responses and metrics for further analysis.

F. Business outcome of performance testing

Performance testing not only improves performance of the
application but directly impacts business success.

• Faster response and smooth display, keep users to stay.
• Seamless application increases customer satisfaction and

attracts new users.
• As user engagement increases, business growth acceler-

ates and thus higher revenue.
• Organizations with high performance applications gain a

competitive edge.
• It helps organization to identify bottlenecks early and

prepare for any unplanned application failures.

• Performance testing prevents outages and failures that
damage customer trust.

• It contributes to sustainability by optimizing resource
utilization and energy consumption to create eco-friendly
and cost effective digital solutions.

IV. UNDERSTANDING IT OUTAGES: CAUSES, EFFECTS
AND PREVENTIVE MEASURES

As technology continues to evolve, the reliability on soft-
ware is rapidly growing and organizations continue to face
significant challenges in maintaining up time of the systems.

A. Causes of IT outages

A recent data from Uptime Intelligence, on average, there
are 10 to 20 high-profile IT outages every year that cause
serious or severe financial loss [5].

Another study from Magnita reveals that 68% of the or-
ganizations conduct performance testing, and 55% of them
encounter difficulties due to the unavailability of test envi-
ronments. This indicates that over half of the organizations
may deploy software into production without proper testing
and mainly performance testing to assess the system reliability
under real-world conditions [6].

IT outages can occur from a variety of factors like hard-
ware failures, cyberattacks, software faults, and capacity or
congestion-related issues, which contribute to 22% of IT
outages, according to respondents from Statista. This reveals
that nearly a quarter of the IT outages occurred due to poor
handling of demand, resulting in performance degradation [7].

B. Effects of IT outages

According to survey conducted by uptime, In 2022 alone, a
quarter of respondents reported that their outages are costing
over $1 million, while 45% reported their cost of outages are
between $100,000 and $1 million. This marks a clear trend that
cost of IT outages are steadily increasing, making investments
in IT reliability more critical than ever [5].

According to Splunk, Global 2000 companies lose $400B
annually due to application failures or slower. This includes
direct financial losses from suspended operations and indirect
losses like reputational damage, loosing customers [8]

In February 2017, Google released a report by analyzing
over 900,000 mobile pages to assess mobile page speed perfor-
mance across various industry sectors. The analysis revealed
that for 70% of the pages examined, it took nearly 7 seconds
for the visual content above the fold to display, and more than
10 seconds to fully load all visual content [9].

A significant portion of mobile pages were found to be
excessively large, with 70% over 1MB, 36% over 2MB, and
12% exceeding 4MB. The study also indicated that as page
load time increases from 1 second to 7 seconds, the probability
of a mobile site visitor bouncing increases by 113%[9].

24Copyright (c) IARIA, 2025. ISBN: 978-1-68558-280-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

PESARO 2025 : The Fifteenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

C. Preventive measures with performance testing

Addressing the causes of IT outages necessitates a need to
understand the root causes of outages and the implementation
of robust performance testing. The findings of effects of
IT outages highlights the critical importance of performance
testing in today’s fast pacing digital world. Slower applica-
tions not only frustrate users but also impact organization
financially. Having a proper test environment and regular
performance testing helps identify root causes and reduce
its effects by helping businesses enhance user engagement,
reduce abandonment rates, and ultimately drive better financial
outcomes.

Here are some of the strategies to adapt anticipated and
unforeseen challenges that can achieved with performance
testing.

• Execute performance tests early in development.
– Steps to achieve it.

∗ Have a clear expectations and success criteria such
as acceptable response times.

∗ Choose right test environment which is realistic
and isolated from other Development, QA envi-
ronments.

∗ Simulate real world scenarios using performance
testing tools like LoadRunner or JMeter.

∗ Conduct early profiling in development stage to
catch resource intensive code paths.

∗ Enable continuous monitoring using application
monioring tools like Dynatrace or Prometheus.

∗ Perform regression testing for every code release.
– Outcomes.

∗ Identify potential performance issues before they
occur in production affecting customers.

∗ Reduce the chances of inefficient coding.
∗ Prepare the teams for the unexpected.

• Monitor system utilization.
– Steps to achieve it.

∗ Instrument monitoring tools like Dynatrace,
Grafana, Cloud Watch to monitor system per-
formance metrics like CPU, memory, and disk
utilization.

∗ Enable continuous monitoring and visualize key
performance metrics on dashboard for real time
analysis.

– Outcomes.
∗ Detects performance anomalies and resource bot-

tlenecks.
∗ Reduces unplanned downtime through proactive

monitoring.
∗ Improves observability and reliability.

• Conduct different types of testing based on the load.
– Steps to achieve it.

∗ Identify load patterns in production.
∗ Set performance benchmark goals based on busi-

ness requirements.

∗ Identify the type of test required like stress, en-
durance, spike, and negative-scenario tests.

∗ Execute the load tests using performance testing
tools.

∗ Identify bottlenecks, optimize, and retest until
goals are achieved.

– Outcomes.
∗ Identify weakest components.
∗ Identify the causes of system crashes.
∗ Identify configuration related issues that happen

only under load.
• Execute Chaos testing.

– Steps to achieve it.
∗ Identify mission critical and vulnerable compo-

nents.
∗ Choose right tool like Gremlin to induce perfor-

mance bottlenecks.
∗ Plan for chaos experiments that align with real-

world failure scenarios.
∗ Enable continuous monitoring during the test to

identify the problem pattern.
∗ Fix vulnerabilities and revalidate the fixes through

multiple tests.
– Outcomes.

∗ Identify hidden weaknesses in the system.
∗ Ensures system remain resilient.

• Introduce disaster recovery testing.
– Steps to achieve it.

∗ Identify the mission-critical systems.
∗ Choose disaster recovery test type like full inter-

ruption.
∗ Create and activate the DR plan.
∗ Monitor during disaster recovery, analyze the out-

comes, and improve to reduce the gaps.
– Outcomes.

∗ Ensures that critical systems can be restored dur-
ing crashes.

∗ Create readiness during disasters.
∗ Refines recovery strategies based on test results.

• Cloud auto scaling.
– Steps to achieve it.

∗ Define scaling strategy based on usage metrics
like CPU > 70%.

∗ Enable real-time performance metrics monitoring.
∗ Configure auto scale policies in cloud platforms.
∗ Test scaling up/down based on the usage and

optimize thresholds.
– Outcomes.

∗ Increase uptime during traffic surges.
∗ Uses infrastructure efficiently and reduces costs
∗ Ensure seamless user experience during traffic

surges.
• Automate testing process in continuous delivery.

25Copyright (c) IARIA, 2025. ISBN: 978-1-68558-280-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

PESARO 2025 : The Fifteenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

– Steps to achieve it.
∗ Integrate the process using automation tools to

trigger tests automatically when build is triggered.
∗ Trigger the tests when code deployment job is

triggered.
∗ Monitor the test results and improve the process

based on the trends.
– Outcomes.

∗ Performance degradation is detected automatically
for every release.

V. CASE STUDIES: THE COST OF DOWNTIME

Downtime of service unavailability can be due to mainte-
nance or unexpected failures. Even a few minutes of downtime
can lead to revenue loss and customer dissatisfaction. Here are
some of the real world outages to understand the importance
of robust performance testing in mitigating these outages [10].

A. Case Study 1: Azure Resource Manager exhausts capacity

Azure Resource Manager is the central tool that is used to
deploy, manage and control Azure based resources.

1) Date of the incident: January 21, 2024.
2) Issue: Azure Resource Manager nodes failed on startup

and more resources were consumed by the failed nodes,
exhausting capacity.

3) Root cause: A configuration change gave preview access
to new feature in June 2020 that has a code defect. This made
nodes fail to startup.

4) Effect: Impacted downstream Azure services that rely
on Azure Resource Manager to be unavailable.

5) Downtime: 7 hours.
6) Implications: A configuration change may not seem like

affecting performance. In some cases, these changes can still
have unexpected effects that impacts the performance which
highlights the importance of performance testing in every stage
of development.

7) Strategy to avoid this issue: Implementing negative
scenarios as part of performance testing can help avoid these
issues.

B. Case Study 2: Jira users seeing 503 service unavailable

Atlassian Jira is a tool that provides teams to plan and track
work across different stages of the project.

1) Date of the incident: January 18, 2024.
2) Issue: Users of Atlassian Jira unable to track the status

of their work as they saw 503 service unavailable errors.
3) Root cause: A scheduled database upgrade degraded the

performance.
4) Effect: Caused an increase in back pressure which made

requests to timeout.
5) Downtime: 3.5 hours.
6) Implications: Database upgrades require rigorous perfor-

mance testing with higher load than expected due to potential
changes in the database structure and indexing mechanisms.
These changes, if not thoroughly tested can affect system
performance and sometimes causes system outages.

7) Strategy to avoid this issue: Executing rigorous perfor-
mance testing with all possible critical scenarios can help
in avoiding these issues. This can be achieved with proper
requirements gathering and test plan.

C. Case Study 3: Microsoft 365 outage

Microsoft 365 is a personal or business subscription service
that provides services and apps for personal and business
purposes.

1) Date of the incident: November 25, 2024.
2) Issue: Users saw 503 service unavailable errors while

using Microsoft services.
3) Root cause: A change that surged number of requests

being routed through servers, thereby affecting system perfor-
mance.

4) Effect: Impacted processing capabilities of the infras-
tructure.

5) Downtime: It is not complete downtime but affected
services for 7 hours.

6) Implications: A small change can lead to surge in
incoming traffic, stressing the systems and causing service
disruptions. This incident underscores the importance of load
testing and continuous monitoring to detect bottlenecks from
the traffic patterns. Although it is not complete downtime, even
partial outages can significantly affect user experience.

7) Strategy to avoid this issue: Executing Spike testing
as part of performance testing which replicates these sudden
surge in requests can avoid these issues.

D. Case Study 4: Netflix broadcast disruptions

Netflix faced issues while broadcasting the live streaming of
Jake Paul vs. Mike Tyson boxing event. Although this wasn’t
its first live streaming attempt, it was reported that its the most
streamed event.

1) Date of the incident: December 20, 2024.
2) Issue: Netflix users reported that the service was not

available a head of the live boxing event
3) Root cause: Netflix uses Open Access appliances (OCA)

to store and deliver video content. These OCAs are pre-
loaded with content during non-peak hours, while live streams
happened in real time. These OCAs could not keep up with
surge in traffic.

4) Effect: Received 500,000 reports that users were having
problems streaming the match[11].

5) Downtime: 6 hours.
6) Implications: This disruption emphasize the importance

of performance testing to ensure systems can handle peak load,
quick response times and scale efficiently based on demand.

7) Strategy to avoid this issue: Measuring current produc-
tion load and evaluating the performance of the system with
20% more than peak production volume.

E. Case Study 5: J. Crew website availability dropped

J. Crew is an American clothing retailer that sells clothing,
shoes and accessories.

1) Date of the incident: November 23, 2018.

26Copyright (c) IARIA, 2025. ISBN: 978-1-68558-280-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

PESARO 2025 : The Fifteenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

2) Issue: Shoppers were not able to make purchases and
frequently bumped with "hang on a sec" message.

3) Root cause: Application servers couldn’t keep up with
the load.

4) Effect: J.Crew lost $775,000 due to unsold inventory
5) Downtime: 5 hours.
6) Implications: This case study emphasizes the impor-

tance of executing performance testing to prepare for peak-
season to ensure the system is ready to handle peak load or
scale based on the demand.

7) Strategy to avoid this issue: Environment setup to exe-
cute performance tests before peak season in regular intervals
like holiday readiness tasks with increased load than previous
year can help the systems perform the best during peak season.

VI. CONCLUSION AND FUTURE WORK

In conclusion, since outages can occur anytime when we
least expect, implementing thorough performance testing can
help in minimizing the risk. By implementing performance
testing early in the development, and helps to identify bottle-
neck early. Some of the outages can happen even with rigorous
performance testing, the efforts mentioned in the paper can
help identify the bottlenecks and solutions faster to ensure
uninterrupted services to customers. Performance testing isn’t
just about avoiding downtime, it can ensure systems can
perform flawlessly even under heavy load.

Future work will explore case studies that benefited from
performance testing. More details on types of performance
testing implemented in the case studies, and strategies to
maintain system reliability to 99% will also be researched.

REFERENCES

[1] E. Klotins, T. Gorschek, K. Sundelin, and R. Berntsson Svens-
son, “Towards cost-benefit evaluation for continuous soft-
ware engineering activities.,” Empirical Software Engineering,
vol. 27, p. 157, 2022. DOI: 10.1007/s10664-022-10191-w.

[2] X. Han and T. Yu, “An empirical study on performance bugs
for highly configurable software systems,” ser. ESEM ’16,
New York, NY, USA: Association for Computing Machinery,
2016, ISBN: 9781450344272. DOI: 10.1145/2961111.2962602.

[3] M. R. Woodward and M. A. Hennell, “Strategic benefits of
software test management: A case study,” Journal of Engineer-
ing and Technology Management, vol. 22, no. 1, pp. 113–140,
2005, Research on Social Networks and the Organization of
Research and Development, ISSN: 0923-4748. DOI: https : / /
doi.org/10.1016/j.jengtecman.2004.11.006.

[4] S. Zaman, B. Adams, and A. E. Hassan, “A qualitative study
on performance bugs,” in 2012 9th IEEE Working Conference
on Mining Software Repositories (MSR), 2012, pp. 199–208.
DOI: 10.1109/MSR.2012.6224281.

[5] U. institute, “Annual outages analysis 2023,” Last ac-
cessed: February, 2025, 2023, [Online]. Available: https : / /
datacenter . uptimeinstitute . com / rs / 711 - RIA - 145 / images /
AnnualOutageAnalysis2023.03092023.pdf.

[6] Magnitia, “Software testing statistics – 2023,” Last accessed:
February 20,2025, 2023, [Online]. Available: https://magnitia.
com/blog/software-testing-statistics-2023.

[7] A. Petrosyan, “Most common root causes of it system and
software-related outages worldwide,” Last accessed: February,
2025, 2023, [Online]. Available: https : / /www.statista . com/
statistics/1482105/it- system- software- related- outages- root-
cause/.

[8] Splunk, “The hidden costs of downtime strike below the
surface,” Last accessed: February, 2025, 2024, [Online]. Avail-
able: https://www.splunk.com/en_us/campaigns/the-hidden-
costs-of-downtime.html.

[9] Google, “Find out how you stack up to new industry bench-
marks for mobile page speed,” Last accessed: February, 2025,
2017, [Online]. Available: https : / / think . storage .googleapis .
com/docs/mobile-page-speed-new-industry-benchmarks.pdf.

[10] C. thousand eyes - internt research team, “Internet and cloud
intelligence blog,” Last accessed: February, 2025, 2024, [On-
line]. Available: https: / /www.thousandeyes.com/blog/?cat=
outage-analyses.

[11] J. Yoon, “Thousands report netflix livestream crashes during
mike tyson-jake paul fight,” Last accessed: February, 2025,
2024, [Online]. Available: https://www.nytimes.com/2024/11/
16/business/media/netflix-outage-crash-boxing.html.

27Copyright (c) IARIA, 2025. ISBN: 978-1-68558-280-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

PESARO 2025 : The Fifteenth International Conference on Performance, Safety and Robustness in Complex Systems and Applications

https://doi.org/10.1007/s10664-022-10191-w
https://doi.org/10.1145/2961111.2962602
https://doi.org/https://doi.org/10.1016/j.jengtecman.2004.11.006
https://doi.org/https://doi.org/10.1016/j.jengtecman.2004.11.006
https://doi.org/10.1109/MSR.2012.6224281
https://datacenter.uptimeinstitute.com/rs/711-RIA-145/images/AnnualOutageAnalysis2023.03092023.pdf
https://datacenter.uptimeinstitute.com/rs/711-RIA-145/images/AnnualOutageAnalysis2023.03092023.pdf
https://datacenter.uptimeinstitute.com/rs/711-RIA-145/images/AnnualOutageAnalysis2023.03092023.pdf
https://magnitia.com/blog/software-testing-statistics-2023
https://magnitia.com/blog/software-testing-statistics-2023
https://www.statista.com/statistics/1482105/it-system-software-related-outages-root-cause/
https://www.statista.com/statistics/1482105/it-system-software-related-outages-root-cause/
https://www.statista.com/statistics/1482105/it-system-software-related-outages-root-cause/
https://www.splunk.com/en_us/campaigns/the-hidden-costs-of-downtime.html
https://www.splunk.com/en_us/campaigns/the-hidden-costs-of-downtime.html
https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-benchmarks.pdf
https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-benchmarks.pdf
https://www.thousandeyes.com/blog/?cat=outage-analyses
https://www.thousandeyes.com/blog/?cat=outage-analyses
https://www.nytimes.com/2024/11/16/business/media/netflix-outage-crash-boxing.html
https://www.nytimes.com/2024/11/16/business/media/netflix-outage-crash-boxing.html

	Introduction
	Research Methodology
	Description and purpose of the paper
	Research questions
	RQ1
	RQ2
	RQ3
	RQ4
	RQ5

	Limitation of the approach

	Performance Testing
	What is performance testing?
	Evolution of performance testing
	Performance testing process
	Non-functional requirements gathering
	Test Plan Creation
	Test Script Creation
	Test Execution
	Results Analysis and Report generation

	Key performance metrics
	Response times
	User load
	System utilization of the server
	Latency
	Error rate
	Page loading time
	Page size
	database metrics

	Behind the scenes of performance testing
	Business outcome of performance testing

	Understanding IT outages: Causes, Effects and Preventive measures
	Causes of IT outages
	Effects of IT outages
	Preventive measures with performance testing

	Case Studies: The cost of downtime
	Case Study 1: Azure Resource Manager exhausts capacity
	Date of the incident
	Issue
	Root cause
	Effect
	Downtime
	Implications
	Strategy to avoid this issue

	Case Study 2: Jira users seeing 503 service unavailable
	Date of the incident
	Issue
	Root cause
	Effect
	Downtime
	Implications
	Strategy to avoid this issue

	Case Study 3: Microsoft 365 outage
	Date of the incident
	Issue
	Root cause
	Effect
	Downtime
	Implications
	Strategy to avoid this issue

	Case Study 4: Netflix broadcast disruptions
	Date of the incident
	Issue
	Root cause
	Effect
	Downtime
	Implications
	Strategy to avoid this issue

	Case Study 5: J. Crew website availability dropped
	Date of the incident
	Issue
	Root cause
	Effect
	Downtime
	Implications
	Strategy to avoid this issue

	Conclusion and future work

