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Abstract—This work presents one of the products of the
Confiance.ai research program which addresses an end-to-end
method for engineering trustworthy ML-based systems. The
proposed methodology revisits software and systems engineering
as it encompasses all development phases of the system while
integrating the specificities related to the development of ML-
based components within the system. The method leverages vastly
researched and deployed standard procedures from design to
validation and maintenance in order to provide rigor, structure
and traceability when developing ML-models.
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I. INTRODUCTION

Any technology, even Artificial Intelligence (AI), is de-
veloped to provide a service fulfilling some needs. In our
context, an AI-based system is defined as a system that
incorporates software-based AI components. AI-based critical
systems, which can have severe consequences in case of failure,
are considered to be "high risk" under the EU AI Act [1].
These systems can for example represent safety components of
regulated products which are required to undergo a third-party
conformity assessment. Examples of such systems can be found
in the fields of transportation, healthcare, defense, and security
in general. The deployment of such systems is contingent upon
their demonstrated capacity to deliver the anticipated service in
a secure manner, while meeting user expectations with regard
to quality and continuity of service. Furthermore, users might
consider as negative any surprising or unexpected actions from
the system.

In order to characterize such systems with a view to
quality assurance, [2] proposed considering several dimensions:
the artifact type dimension, the process dimension, and the
trustworthiness characteristics attributes that are relevant to
software product or system quality. In addition, software quality
is at the center of the SQuaRE (Systems and Software Quality
Requirements and Evaluation) series of standards, and the
specific nature of AI is addressed more specifically in order to
offer a quality model for AI systems. Consequently, the design
of AI-based critical systems necessitates the demonstration of
their trustworthiness, as asserted by [3].

Trustworthy AI is based on three components [4], which
should be met throughout the system’s entire life cycle: firstly,
it should be lawful, in that it complies with all applicable
laws and regulations; secondly, it should be ethical, ensuring
adherence to ethical principles and values; and thirdly, it should

be robust, both from a technical and social perspective since,
even with good intentions, AI systems can cause unintentional
harm. Thus, to support the industrial design of such systems,
there is a requirement for Trustworthy AI Engineering, a
new discipline that is an evolving multi-disciplinary field.
The aim of this discipline is to ensure that an AI-based
critical system (in the safety, mission and business domains)
is valid, explainable, resilient, safe, secure, compliant with
respect to regulation, standardization, and responsible practices
(ethical and sustainable). When dealing with critical systems,
several additional constraints must be considered. In the context
of system design, there is a need to optimize processes,
provide justification, replicate where possible, and implement
improvements. However, it is also essential to ensure that
the system meets the appropriate level of trustworthiness [5].
This includes robustness (defined as the ability of a system to
withstand errors during execution and to cope with erroneous
input), cyber-security, and dependability (including reliability,
availability, maintainability, and safety properties), among
others.

Thus, in the following, we will first remind the today context
of AI regulation and standardization as "trustworthiness is
the ability to meet stakeholders’ expectations in a verifiable
way". Then, we present an end-to-end methodology to support
"Trustworthy AI Engineering", which encompasses the entire
lifecycle of AI-based systems, from Operational Design Domain
(ODD) specification to maintenance. This methodology covers
data engineering, algorithm design, development, deployment
and monitoring. This systematic approach involves organizing
multi-disciplinary and fragmented approaches to trusted AI
and applying a continuous workflow approach. Measures to
improve AI trustworthiness must be taken at every stage, such
as data sanitisation, robust algorithms, anomaly monitoring and
risk auditing.

II. REGULATION AND STANDARDIZATION

Ensuring safety, reliability, availability and maintainability,
means AI systems must perform and continue to perform
as intended under sufficient conditions. Hazard analysis and
risk assessment are tailored to the unique characteristics of
AI. These include potential critical errors in training data or
knowledge representation, and the ability of the AI model
to generalize to unseen, operational data. The performance
requirements on the AI algorithm are often driven by safety
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Figure 1. From ethics to the end-to-end methodology through regulation and standards

objectives to limit its worst credible approximation error to a
given acceptable threshold.

However, trustworthiness is tightly related to accountability:
accountability can be considered as a factor of trust or as
an alternative to trust. Then, in [6], dependability is used to
represent the overall quality measure of a system based on
four sub-attributes including security, safety, reliability, and
maintainability. Thereafter, security and dependability became
key attributes for computer-based system trust [7].

In 2019, the U.S. National Artificial Intelligence Research
and Development Strategic Plan [8] emphasized that: "standard
metrics are needed to define quantifiable measures in order
to characterize AI technologies". More recently, [9] noted
that “significant work is needed to establish what appropri-
ate metrics should be to assess system performance across
attributes for responsible AI and across profiles for particular
applications/contexts.”.

Governments are responding with regulations typically
associated to human rights. In 2024, the European Union
adopted the AI Act. These regulations set high-level, long-
term requirements, sometimes building on recommendations
from organizations like UNESCO [10] and the OECD [11],
[12], or from High-Level Expert Groups (HLEG) [4].

These high-level requirements require to be operationalized
for companies and developers. As shown in figure 1, standards
and regulation frameworks define more detailed requirements
but remain focused on what to do rather than how to do it,
leaving the choice of a tooled end to end methodology to use
for the development of AIs fulfilling these requirements.

The Assessment List for Trustworthy AI considers 7 pillars
of trustworthiness: 1) human agency and autonomy, 2) technical
robustness and safety, 3) privacy and data governance, 4)
transparency, 5) diversity, non discrimination and fairness, 6)
societal and environmental well-being, 7) accountability. This

List is one of the basis of the AI Act [1] which requires
companies to take measures to ensure that their products
developed or deployed in the European Union are safe and
comply with ethical principles.

In the aeronautic domain, EASA [13] proposes a model of
trustworthiness based on: the characterization of the Machine
Learning (ML) application (high-level function/task, concept of
operations, functional analysis, classification of the ML appli-
cation), safety assessment, information security management,
and ethics-based assessment (which includes the 7 pillars of
the ALTAI [14]).

The Fraunhofer [15] offered an analysis of the standard [16,
Under development] on management system for AI, stating
compliance to the standard can contribute to ensuring AI
trustworthiness since it encompasses the pillars of the ALTAI,
provided that a third-party verification has been performed and
along with an adapted quality management system.

In the same period, the NIST produced an analysis of
the components of trust [17] and highlighted several top
level aspects for the design of a trustworthiness model,
that should encompass the user experience, the perceived
technical trustworthiness, the pertinence of each trustworthiness
characteristic in the user’s specific context of use...

Moreover, ETSI set-up in 2019 an Industry Specification
Group on Securing AI (ISG SAI) from attack to resilience [18]
providing existing and potential mitigation against threats for
AI-based systems.

Robust security measures must protect AI systems from
cyberattacks, data breaches, and unauthorized manipulation.
These measures should include advanced threat detection and
mitigation strategies and resilience mechanisms to operate
securely in hostile environments. Cybersecurity should be
embedded in the system and data pipelines. The lines between
security and safety are not always clear when it comes to AI.
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Incorrect outputs can be caused by malicious actions or natural
events.

Ethical engineering focuses on the need for fairness, trans-
parency, and accountability in AI. This involves ensuring
that algorithms are unbiased, produce explainable results, and
adhere to societal and legal values. The engineering of such
systems requires ongoing review by engineers, ethicists and
domain experts.

However, it is imperative to recognize that the transfer of AI
technology, particularly Machine Learning (ML), must align
with specific standards and processes to ensure the successful
transformation of research outcomes into industrial products
that are fit for the intended purpose and meet customer needs.
For instance, as data collection and analysis are pivotal for
the development of any ML-based system, it is essential
to prioritize the data quality. This necessitates adherence to
compliance regulations (such as data privacy). Concurrently,
operational requirements encompassing the maintenance must
be addressed. Consequently, it is evident that the development
and implementation of AI/ML systems is a multifaceted process
involving both technical and business aspects, from problem
conception to delivery to customers. Consequently, the devel-
opment and operation of AI-based critical systems necessitates
the utilization of an end-to-end tool-based AI engineering
methodology, which will be subsequently delineated.

III. THE END-TO-END METHODOLOGY

The version of the methodology presented herein has been
produced as a result of the work within the Confiance.ai
program [19] [20], [21] and the associated roadmap is nourished
by industrial needs and the evolution of the state-of-the-art [22].
Namely, several industrial projects and research initiatives have
derived from Confiance.ai, generating the emergence of an
ecosystem for the engineering of trustworthy AI for critical
systems. The proposed end-to-end methodology addresses the
following challenges [23]:
• How can AI/ML models be designed to satisfy trustworthy

attributes (explainability, robustness, accuracy, etc.)?
• How can these models allow a clear understanding of their

behavior in the operational domain?
• How can AI/ML models be implemented and embedded on

hardware, by making them fit to the target without discarding
their trustworthy properties?

• Which data engineering methods should be applied to
manage large volumes of data and account for the evolving
operational domain?

• What kinds of verification, validation, and certification
processes should be considered when dealing with AI/ML-
based systems?
By addressing these challenges, the end-to-end methodology

aims to answer the research question: How to ensure the relia-
bility and trustworthiness of AI-based safety-critical systems?
It is based on the premise that the development of ML-based
critical systems should be structured with a trustworthiness
imperative from the design phase, thereby providing precise
requirements for integration, verification, and validation, as well

as for proper deployment and maintenance [24]. It is a multi-
domain collaboration that leverages concepts and procedures
coming from different fields into the agnostic proposal of
engineering trustworthy ML-based critical systems. The result is
the formalization, through a common language, of the structure
and workflow for all actors involved in the process of designing
trustworthy ML-based critical systems, i.e. data engineers,
systems engineers, safety engineers, software engineers, among
many others.

The method addresses as a whole both the system engineer-
ing layer and the ML algorithm engineering layer. The system
layer accounts for all underlying phases that should design
and specify to further along verify and validate the overall
system’s objective and performance as carried out in classic
systems engineering. The ML layer then covers all phases
related to the ML component that inherit system requirements
to then refined requirements specific to the ML-components to
be developed. This process aims to ensure the compliance of
the AI/ML components with the overall system requirements
and intended purpose.

Developing ML-based systems can be visualized as a "W-
shaped" life-cycle (see figure 2). This W-shape can be split
into two parts. For AI systems, "intended goal"/"intended
purpose" and "intended domain of use" are very high-level
requirements that have to be translated into "engineering terms".
The engineered "intended domain of use" is called Operational
Design Domain (ODD). The ODD is the operational conditions
for which an AI system is specified, designed, verified, assessed,
operated, and disposed. ML engineering life-cycle begins
with defining AI/ML algorithm requirements refined from
system specification. This ML specification step includes the
characterization of the ODD.

This engineering activity is a critical step that changes
the way AI researchers and engineers work. It involves a
detailed description of all possible operating conditions, called
the system operating environment, to enable data collection
and knowledge representation. The reliability of the AI-
based system depends on the correctness and completeness of
this description, particularly for rare events or combinations
of conditions that could be unsafe. A system’s validity is
established by its intended use. The ODD description is
developed using a combination of top-down and bottom-up
approaches. ODD aligns data and functional intent, i.e. the
data used for training and the resulting ML model(s) with their
intended use, covering a wide range of conditions.

Data engineering is key. It involves the identification,
collection, preprocessing and extraction of features from large
datasets. These datasets are essential for designing and verifying
ML models. This phase often involves advanced techniques.
These techniques improve the representativeness, completeness
and relevance of the dataset (minimizing the simulation-to-
reality gap). Rigorous quality controls, guided by Data Quality
Requirements (DQRs), ensure data inputs are accurate and
consistent. During model design, engineers select appropriate
learning algorithms and improve model architectures through
training and evaluation cycles. Optimization strategies balance
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Figure 2. High-level view of the end-to-end methodology.

computational efficiency and performance.
The second "V" of the "W-shaped" life-cycle includes the

implementation engineering processes performed on the target
platform (e.g., specific hardware embedded in a ground or
aerial vehicle). Validation and verification activities are driven
by key trustworthiness properties, specified in low-level ML
requirements. Validation activities ensure the correctness and
completeness of ML requirements by verifying, analyzing and
tracing them back to higher-level requirements. Verification
activities include simulating extensively, testing edge/corner
robustness, scenario-based testing, analyzing the ML model
explainability and ODD coverage analysis. The first level of
verification ends with a selected AI model, which meets all its
requirements in the development (learning) environment and
serves as a design specification, ready for implementation into
software and/or complex electronic hardware elements in the
second level of verification. figure 3 shows a high-level view
of the verification phase of an ML-based automated feature
and the interaction with specification and validation phases.

MLOps, or Machine Learning Operations, and AM/ML
Engineering, while closely related, serve distinct roles within
the machine learning lifecycle. MLOps focuses on the opera-
tionalization of machine learning models, ensuring that they
are deployed efficiently and maintained effectively in produc-
tion environments. In contrast, ML Engineering is primarily
concerned with the development and the maintenance of an AI-
based system. Thus MLOps emphasizes the operational aspects
of machine learning, while ML/AI Engineering is centered
on the overall lifecycle of the system covering all system
engineering concerns (from specification to maintenance) which
includes MLOps. MLOps involves collaboration between data

scientists, ML engineers, and IT operations teams when
AI/ML Engineering involves system ad software engineers,
data scientists, safety and cyber-security engineers. The end-to-
end methodology (see figure 2) supports all AI/ML engineering
activities where MLOps covers ML algorithm engineering and
data engineering.

IV. TRUSTWORTHINESS ATTRIBUTES AND ASSESSMENT

Trustworthiness is fundamental for the successful devel-
opment and adoption of AI-based critical systems. Thus,
trustworthiness assessment [25] can be defined as the process
of evaluating and determining the level of trustworthiness
of a given characteristic, such as robustness [26], accuracy,
reliability [20], or effectiveness, in the context of AI systems
engineering.

Nevertheless, it is very misleading to only judge how good
an AI system is based on how accurate it is. It is also difficult
to test and check the quality of software in the traditional
way, and it is even difficult to measure test coverage at
all. Trust and trustworthiness are complex, and so one of
the main issues we face is to establish objective attributes
such as accountability, accuracy, controllability, correctness,
data quality, reliability, resilience, robustness, safety, security,
transparency, explainability, fairness, privacy, and compliance
with regulatory actors. We need to map these attributes onto
the AI processes and its lifecycle and provide methods and
tools to assess them. This highlights the importance of quality
requirements, which are non-functional requirements and are
particularly challenging in AI systems, although many of them
can be considered in any critical system. Furthermore, this can
also include risk and process considerations. The attributes
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Figure 3. Verification Phase: verification of the ML-based automated feature of the system.

and values for these requirements depend on things like how
important the application is, what the AI system is used for, how
it will be used, and the people involved. So, in some situations,
some attributes may be more important than others, and new
attributes may be added to the list [27]. Clear specifications of
the non-functional requirements will help clarify these conflicts
and can also encourage innovation that solves some of these
conflicts, allowing us to fulfill more of them at the same time.

Thus by leveraging system engineering best-practices, ML
development workflows, and testing procedures, the end-
to-end methodology ensures that trustworthiness attributes
are embedded in every stage of the AI system life-cycle,
from conception to maintenance. The Confiance.ai framework
focuses on the following attributes:

• Robustness. Robust AI systems should be resilient to various
perturbations (ie: variations in input data and operating
conditions). This requires :
– Adversarial robustness, ensuring the system is not easily

manipulable by adversarial attacks.
– OOD Robustness (Out-Of Distribution), the system must

generalize well across different environment and be trained
on diverse datasets.

– Model monitoring, ensuring a continuous evaluation of
the AI models, to detect performance degradation.

Two types of strategies for robustness by design can be
distinguished: empirical robustness and formal robustness.
– Empirical methods emphasize on uncertainty quantifica-

tion and adversarial robustness of ML Models, like the
adversarial training method.

– Formal methods aim to design neural networks with exact

robustness guarantee such that, under some constraints on
the norm of the perturbation added to the input, the class
of the input remains the same for the ML Model. Lipschitz
method is one example of formal methods advocated as
enablers for robustness by design.

• Explainability, Interpretability and Comprehensibility.
Trustworthy AI should be transparent and its decisions should
be interpretable where
– Explainability deals with the capability to provide the

human with relevant information on how an AI application
is coming to its result.

– Interpretability relates to the capability of an element
representation (an object, a relation, a property...) to be
associated with the mental model of a human being. It is
a basic requirement for an explanation.

– Comprehensibility refers to the capability of an element
representation (an object, a relation, a property...) to be
understood by a person according to its level of expertise
or background knowledge.

This requires:
– Post-hoc explainability tools, to provide insights into

model decisions.
– Model simplification strategies to enhance interpretability.
– Human-in-the-loop validation to ensure AI decisions align

with expert knowledge.
There is a profusion of methods, tools, and solutions available,
each with its own set of advantages, drawbacks, and trade-
offs [28]. The many different approaches show how tricky
it is to make sure that AI and machine learning models
can explain their predictions and decisions. Choosing the
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right way to make models explainable is a technical and
strategic decision. It depends on the unique needs and limits
of the people it will be used by, the specific example it
will be used for, and the wider situation in which the AI
system will be used. What works for a medical diagnosis
model may not work for the aeronautic domain, and what
regulators expect can be very different from what end-users
or business stakeholders expect. The Confiance.ai program
provides a "Methodological Guideline for Explainability"
(https://catalog.confiance.ai/) which is designed to be a
complete guide to help people use AI. It will explain why
explainability is important, highlight the many available
methods, and offer guidance on selecting the most suitable
approach based on the specific situation.

• Fairness and Bias Mitigation. AI models should be free
from discriminatory biases. This involves:
– Bias detection and correction techniques, in the data

processing and model training phases.
– Regulatory alignment with fairness standards (eg: GDPR,

AI Act).
• Safety and Security. An AI-based system must meet

rigorous safety and security requirements:
– Safety analysis and certification based on standards.
– Cybersecurity counter-measures, integrated on the AI

pipeline.
The end-to-end methodology integrates those attributes

throughout the AI system life-cycle, namely in:
• Operational Design Domain (ODD) definition

– Define the operational boundaries where the AI system is
expected to function reliably.

– Establish clear environmental constraints for the AI-
system’s development.

The ODD is a description of measurable foreseeable op-
erating conditions within which a system/component shall
operate. A traceability property shall be assured between the
different levels of ODD (system, subsystem or component).

• Systems Engineering
– Ensure AI system-level requirements are defined in align-

ment with overall system objectives.
– Align AI-based system requirements with preexisting

system engineering standards and certification guidelines.
• Data Engineering

– Rely on a robust data pipeline to guarantee data integrity,
consistency, and traceability across the engineering cycle.

– Implement bias mitigation strategies at the data collection
and processing stages.

– Use adaptive data augmentation strategies to improve data
diversity and model generalization to distribution shifts
and operational scenarios.

• ML Algorithm Engineering
– Use ML robustness techniques, designed to handle pertur-

bation and adversarial outputs.
– Incorporate explanability techniques to have understand-

able decisions.

– Apply Uncertainty quantification techniques to asses the
model’s confidence.

• Verification and Validation
– Perform extensive simulation-based testing to asses per-

formances under edge cases.
In addition, measuring how trustworthy AI systems are is

tricky. The ideas behind them are complicated, the characteris-
tics they produce are different, and you can’t always compare
them. The Confiance.ai program proposes an innovative way
to measure trustworthiness using (max,+) algebra [29] based
on a complete hierarchical model that brings together different
properties, such as how strong, effective, dependable, easy to
use and human agency, and human oversight) into a single
assessment method. This offers advantages over traditional
weighted averaging methods by better handling extreme values
and preserving sensitivity to critical indicators, while main-
taining sensitivity to critical indicators to provide detailed,
understandable assessments of AI-based system trustworthiness.

V. CONCLUSION AND FUTURE WORKS

The Confiance.ai program has evolved since its kick-off in
2021, with a first year dedicated to covering the academic and
industrial state of the art related to ML-based system design.
Subsequent years (2022-2023) were dedicated to the accurate
characterization of industrial use cases, the development and
evaluation of technological components to address specific
aspects of reliability, and the construction of an end-to-end
method revisiting all stages of the engineering cycle for the
design, integration, and evaluation of ML components. The
last year (2024) encompasses the evaluation of this end-to-end
method, the completion and dissemination of key results, and
the guarantee of their continuation and sustainability under the
aegis of a new research initiative currently under construction.
To facilitate the adoption of the tool-based methodology by
industry, several implementations of the 2023 version have
been carried out on use cases.

These experiments have demonstrated the importance of
integrating diverse tools and methods to address expectations
regarding trusted ownership, as illustrated by the following
two examples: In a use case involving autonomous driving,
the analysis of dataset diversity reveals a limited presence of
night-time images, prompting the generation of synthetic night-
time data. This data exhibits a ’domain gap’ and undergoes
"domain adaptation" prior to integration into the model training
data. These tools, instrumental in the construction of data
sets, will also be reused in the supervision stage of the use
case. In an aeronautical use case called LARD for "Landing
Approach Runway Detection" [30] and represented figure 4, a
data quality supervision module is incorporated to consolidate
the confidence score of an ML model (see figure 4). In this
example, local image quality estimators (e.g. level of blur,
brightness) are taken into account in the detection zone of
the landing strip that is being detected. The combination
of these indicators with the other indicators intrinsic to the
model facilitates the establishment of a level of confidence for
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Figure 4. Example of the implementation of a supervision tool on the LARD use-case

the system component. In addition to providing a numerical
value, this implementation serves as a tool to facilitate the
interpretation of model and data errors.

The Confiance.ai program is opening up two major outcomes
to the community as a "digital common good". First, it provides
a body of knowledge describing an end-to-end method of AI
engineering. This makes it possible to characterize and qualify
the trustworthiness of a data-driven AI system and integrate
it into industrial products and services. Second, this method
is applicable to any sector of activity. A catalog of developed
and/or mature technological components to increase the level
of trust in AI integrated into critical systems.

The Body of Knowledge (BoK) is one of the main outcomes
because it provides access to a navigable version of this
end-to-end’ methodology that covers the activities structuring
the engineering cycle of a critical system based on ML
(https://bok.Confiance.ai/). This compendium of expertise from
multiple disciplines is a corpus that articulates the system level
with the model and data levels in the engineering process.
It is continuously updated and expanded and is expected to
continue beyond the program. The content provided in the body
of knowledge is structured with an end-to-end engineering
method in mind and can be navigated through different roles in
this process, namely through the field of application of different
engineering profiles: These roles include, but are not limited
to, the following: machine learning (ML) algorithm engineer,
data engineer, embedded software engineer, IVVQ (Integration,
Validation, Verification and Qualification) engineer or system
engineer.

The following simplified high-level view of the BoK is pre-
sented as a gateway to the end-to-end method for engineering
trustworthy ML-based systems.The body of knowledge presents
the stages of the methodology, from operational analysis and
specification of the function of the system that one wishes
to automate through the use of ML technology, to verifica-

tion/validation/qualification, including the development and
implementation of the ML model. The navigation through each
stage and according to each role facilitates the visualization
of the activities, sub-activities and workflow to be carried
out when developing a reliable ML-based system.This corpus
is thus a compendium of expertise from multiple disciplines
because it links the system level with the model and data
levels in the engineering process.It is continuously updated
and expanded, and this is planned beyond the program.

The catalog (https://catalog.Confiance.ai/) is a web applica-
tion that allows users to consult the results of the Confiance.ai
program. It employs filtering and search functions (sorting,
categories, etc.) to facilitate navigation through the various
results, which can be either documents or software. Results
categorized as ’documentary’ are exclusively of a literary nature,
including reports (studies or benchmarks), state of the art,
doctoral theses or good practice guides.’Software’ results are
components intended to be run directly or through another
application, such as a web application, a library, a plugin or a
binary executable.
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