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Abstract— To improve customer satisfaction is necessary to 

provide services that enable real-time responses to complaints 

for call-center operations. The real-time parsing of complaint 

documents is more important for the real-time responses. 

Using the Open Source Software (OSS) syntactic parser 

SyntaxNet as a vehicle, a high-speed method using FPGA and 

OpenCL to achieve throughput of 700 words/s (required for 

real-time processing) is proposed. According to the results of 

the SyntaxNet analysis, matrix size (which changes 

dynamically according to the progress of the analysis) was 

found to be a performance determining factor. The proposed 

method was evaluated using public data, and the evaluation 

results confirmed throughput of 661 words/s, which almost met 

the requirement. As a result, the prospect of realization of a 

real-time complaint document analysis service for call centers 

was obtained. 
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I.  INTRODUCTION 

For all companies, customer complaints point out 
problems with products and services of companies, and they 
provide important information for developing products and 
services with higher quality. In general, a complaint from a 
customer is first classified and extracted from a large amount 
of inquiry information. The content of the complaint is then 
analyzed, and countermeasures are investigated by customer-
complaint analysis. Parsing is the most-important process for 
classification and analysis of complaints. The result of 
parsing is the input for a series of analysis processes such as 
grasping meaning, classifying sentences, and summarizing 
contents [1]. Referring to the “three-second rule”, [2] that is 
the rule of the response time of a web site, the parsing 
complaint sentences part takes at least one second of the 
entire complaint-classification process (taking three seconds). 
Since the size of the complaint text is unknown, the text size 
is assumed as a general text size. The general text size of 
English-language news articles and magazine articles is an 
average of 500 words and 900 words, respectively [3]. If a 
general article is assumed as a news article or a magazine 
article, so general text size is assumed 700 words length, that 
is taken between 500 words of a news article and 900 words 
of a magazine article. The required processing throughput 
would be 700 words/s to process one document per second. 
Therefore, the goal of this study is to increase the processing 
throughput of the syntactic parser to 700 words/s. 

Most of the appreciation of syntactic parser, immediate  

TABLE I. SYNTACTIC PARSER 
COMPLISON

 
 
processing is required at an edge computer. Processing at the 
edge computer requires a hardware accelerator with low 
power consumption and excellent processing capability. 
Among hardware accelerators, a Field-Programmable Gate 
Array (FPGA) is known to have low power consumption and 
high power efficiency. As a logic circuit, an FPGA enables 
offload processing, so it is structurally power efficient. This 
study’s purpose is to speed up OSS application SyntaxNet by 
FPGA, and to check offload feasibility. 

The contributions of this study are that after probing 
SyntaxNet, we found that most of the SyntaxNet execution 
time is spent on matrix multiplication  in Section II, to 
address that issue, a method for matrix multiplication with a 
high-speed external device FPGA, is proposed  in Section III, 
and by evaluating the SyntaxNet execution performance, it is 
shown that SyntaxNet with FPGA can process a general 
sentence in about 1 second in Section IV, then the execution 
time was shortened and SyntaxNet was accelerated. 
 

II. STATE OF THE ART 

SyntaxNet [4] is an open-source syntax analyzer 
announced by Google in 2016. To clarify the position of 
SyntaxNet used in this study as a parser, it was compared 
with other parsers, namely, Cabocha [10] and KNP [11] [12] 
as parsers dedicated to Japanese and Stanford CoreNLP [13] 
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and SyntaxNet as parsers widely used for other languages. 
The features and performances of those parsers are compared 
with SyntaxNet in TABLE I. Processing speed was 
calculated by measuring execution time ourselves.  The other 
parameters are based on previously reported research. In 
terms of processing speed, Cabocha surpassed the other 
parsers with throughput of 105K words/s, KNP achieved 105 
words/s,  Stanford CoreNLP achieved 145 words/s, and 
SyntaxNet before speedup achieved 307 words/s. However, 
Stanford CoreNLP uses 8 threads, while the others use one 
thread. Accuracy of Cabocha is about 4% lower than the 
other parsers. KNP Stanford CoreNLP, and SyntaxNet all 
achieve accuracy of over 93% and show similar values for 
processing speed and accuracy. For Japanese, Cabocha and 
KNP are often used, but it looks like they are properly used 
according to accuracy and function. Stanford CoreNLP is 
popular for English and other languages, but SyntaxNet uses 
the same syntax rules as Stanford CoreNLP, and it surpasses 
the others in terms of number of supported languages and 
performance, so it may be used in the future. Therefore, we 
think that our study’s speeding up SyntaxNet is relatively 
fast and the study is effective. 

III. SYNTAXNET 

The SyntaxNet uses a transition-based algorithm [5] for 
syntactic parsing and a neural network for the decision 
process. SyntaxNet is overviewed in Figure 1. Parsey 
McParseface, a model running on SyntaxNet has 
demonstrated an analysis accuracy of 97.52% [4]. The 
interior of SyntaxNet is largely divided into a part that 
executes a transition-based algorithm (written in C ++) and a 
part that uses python and tensorflow (written in C ++) to 
execute judgments the next processing by using a neural 
network.  
The transition-based algorithm is a kind of parsing 

algorithm that uses a state machine, stack, and buffer to parse 
sentences. First, a sentence is input to the sentence buffer, 
stack one word to stack at a time from the first word of the 
sentence, make a judgement on the top two words of stack, 
and one of the three actions is selected as a result of the 
 

 
Figure 1. SyntaxNet algorithm 

judgment. This judgement and action are repeated after all 
the words disappear from the stack. After disappearing all 
words, an action sequence and dependency relationship of 
words is appeared. The process is completed with the result 
of the relationship of their words. In the Figure, the 
transition-based part performs other jobs except judgment. 

Information concerning the top-two words on the stack is 
sent to the neural network that performs only the judgment 
job, and the result of judgment is sent to the transition-based 
part. According to the result of execution-time analysis of 
SyntaxNet by Intel Vtune™ Amplifier, the tensorflow 
matrix-multiplication library Eigen [6] GEneral Block Panel 
(GEBP) uses 73% of the processing time, as shown by the 
pie chart in Figure 2. Since the GEBP is used for matrix 
multiplication, then matrix multiplication uses for 73% of the 
total processing time. In consideration of those results, the 
aim of the present study was to speed up matrix 
multiplication by the FPGA and improve the execution 
performance of SyntaxNet to 700 words/s. 

IV. PROPOSAL 

OpenCL [7] is chosen for implementing logics on the 
FPGA and for activating FPGA from the host computer. 
OpenCL is a framework for implementing multithreading, 
and its specification is managed by Khronos Group Inc. Intel 
uses OpenCL as a framework for implementing FPGAs [8]. 
OpenCL was chosen for the reason explained below. 

The development costs for offloading to the FPGA are 
shared between design cost for the logic circuit and system 
for starting up the FPGA, and these two costs must be 
minimized. When OpenCL is used, the logic-circuit design 
can be created in a shorter period of time than the Hardware 
Description Language (HDL) design by compiling a C 
program to be run on the FPGA. The system design has been 
implemented so it does not have any costs. From the above 
consideration, it is considered that the development costs can 
be reduced by using OpenCL on FPGA.  

Then we consider how to call the FPGA from host 
computer. It would be efficient to call the FPGA from Eigen. 
But Eigen is programmed as allowing multi-threaded 
operation. If the FPGA is called form Eigen, multiple calling 
would happen to one FPGA. Therefore, it is good place to 
call where the point calling Eigen routine currently. 
 

 
Figure 2. SyntaxNet Execution time analysis 
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Figure 3. Matrix multiplication algorithm 

 
Another consideration, since data cannot be aligned in 

the program, Direct Memory Access (DMA) transfer to the 
FPGA is impossible with non-aligned data. A separate DMA 
buffer is added for DMA, and a memory-copy routine is 
added to copy data to the DMA buffer. 

To minimize FPGA development cost, matrix-
multiplication open-source sample code written in OpenCL 
was chosen for FPGA logic program, and the code was 
modified for turning the code performance. The routine for 
matrix multiplication is overviewed in Figure 3. Matrix 
multiplication is described by a triple loop [9]. The outer 
double loop specifies the position where the result, and the 
innermost loop calculates the inner-product of each data. In 
the OpenCL sample code, parallel processing of the 
innermost loop and the other row are performed. The high-
speed internal memory size on FPGA is limited by FPGA 
chip size, then all matrix-data are placed on low-speed 
external DRAM, and partial data are copied to internal 
memory before performing partial matrix multiplication.  
Performances of the matrix multiplication on FPGA has 
different values depend on row and column size.  Figures 4 
and 5 show the performance of maximum and minimum data 
sizes used by SyntaxNet. According to Figure 4, 
performance of the FPGA did not change for any submatrix  
shape at minimum data size. Increasing the degree of 
parallelism increases the number of invalid area of matrix 
multiplication, but it does not improve matrix multiplication 
performance. On the other hand, according to Figure 5, the 
performance of the FPGA is almost constant at maximum 
data size even if the size of the column changes,  
 

 
Figure 4. FPGA matrix multiplication performance 

(minimum) 

TABLE II MEASUREMENT CONDITIONS 

 
 
but the performance increases in proportion to the size of 
row. Since the column side size is parallelized as much as 
possible when OpenCL is executed, the circuit configuration 
can only be slightly changed, and these circuits have the 
same performance. Even so, since row size is a parameter 
expressing how many elements are calculated in parallel, it is 
thought that doubling the number of submatrix rows doubles 
computation performance. Submatrix size above 64×64 
could not be configured due to lack of FPGA resources, so 
64×64 was considered to be the maximum. If execution time 
for each matrix size is focused on, it is clear that minimum 
matrix size takes about 6 ms, and maximum size takes about 
150 ms. For that reason, maximum matrix size of 64×64 was 
taken as the parameter of the matrix-multiplication kernel. 

V. EVALUATION 

Using the study up to the previous section, On the basis 
of the results presented in Figures 4 and 5, a matrix 
multiplication implemented on OpenCL on FPGA, and the 
performance of SyntaxNet of the implementation was 
evaluated and verified. The measurement conditions are 
listed in TABLE II. 
A Nallatech 385A board uses the FPGA to improve 

performance. First, total execution time of SyntaxNet using 
FPGA matrix multiplication was measured three times and 
the average was taken. 
The word throughput (which is taken as the performance  

 

 
Figure 5. FPGA matrix multiplication performance 

(minimum) 
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Figure 6. SyntaxNet performance ( execution time ) 

 
measure of SyntaxNet) is shown in Figure 6. For comparison, 
the performance achieved with one Central Processing Unit 
(CPU) thread is also shown. In terms of word throughput, 
processing time is decreased. The CPU processed 307 
words/s, FPGA offload processed 661 words/s, and the 
performance ratio of above two was 2.15 times. As a result, 
661 words/s was achieved which was almost the target 
performance 700 words/s, and then 700 words were 
processed in 1.05 seconds. As a result, the FPGA achieved 
661 words/s, compared to the target of 700 words/s, and it 
could process 700-word article in 1.05 seconds. 

A breakdown of the execution time of SyntaxNet based 
on the above-described measurements and analysis, and the 
performance ratio of CPU and FPGA offloading is given in 
Figure 7. In Figures 7(a) to (d), processing performances of 
CPU 1 thread and FPGA offloading are compared, and the 
performance ratio is shown. Peak performance of matrix 
multiplication measured by FPGA alone and performance of 
matrix multiplication by Eigen processing routine of 1 CPU 
is shown in Figure 7(a). The performance ratio is 8.53 times. 
SyntaxNet uses various matrix sizes for actual matrix 
multiplication. So SyntaxNet effective performance would 
be lower performance than the peak performance.  
The ratio of effective performance due to the matrix size 

decreases by 6.56 times compared to that of Figure 7(b). It is 
necessary to process various sizes of large and small size, 
and processing of small matrix size degrades performance in  
 

 
Figure 7. SyntaxNet execution time breakdown 

FPGA processing. It is necessary to process large and small 
matrix size, and processing of a small-size matrix degrades 
processing performance of the FPGA. As a result, effective 
performance is considered to decrease as a whole. 
Furthermore, memory processing is generated for FPGA 
processing. Therefore, when memory processing   overhead 
is added, the performance ratio drops by 4.15 times 
compared to that shown in Figure 7(c). Then, in 
consideration of this result, the performance ratio becomes 
2.15 times as shown in Figure 7(d) by adding other 
processing time of SntaxNet. Then offloading by FPGA 
cannot be achieved due to such overheads.  It is difficult to 
measure these overhead previously. In consideration of the 
host-side software conditions and offload device 
characteristics, it will be necessary to make predictions. 
 

VI.  DISCUSSION 

Performance improvements are considered in the future. 
One of the methods for speeding up FPGA offloading is 
simultaneously executing DMA transfer and matrix 
multiplication by FPGA. However, as for SyntaxNet, the 
second-layer neural-network matrix multiplication is based 
on the result of matrix multiplication of the first-layer neural 
network. Therefore, the second-layer DMA transfer cannot 
be started until the first layer result is obtained. The second 
and the third layers are the same. Furthermore, a transition-
based calculation is performed after the matrix multiplication 
of the third layer, and the transition-based calculation result 
is used to next neural network calculation. Therefore, in a 
loop that handles sentences, all matrix multiplications 
depending on the result need to be executed serially. 
Therefore, two SyntaxNet calculations of sentences need to 
be performed in parallel to hide the transfer time with the 
matrix multiplication time in FPGA. These calculation 
dependencies are eliminated by inserting irrelevant 
processing. As a result, the DMA transfer time can be hidden. 

The other method for improving the performance of 
SyntaxNet is memory-copy reduction. In the current 
implementation of FPGA offload, the host cannot be used for 
DMA transfer from the array data area of the structure 
prepared by tensorflow because of data alignment. It is 
necessary to copy data to an area that aligned to 64 bytes. To 
eliminate this copy for speedup SyntaxNet, the memory area 
for the array data of the structure prepared by tensorflow 
must be aligned to 64 bytes. It is due to the specification of 
the PCIe bus of DMA transferring to the FPGA. 

However, the FPGA matrix operation code divides 
matrix to submatrix. Then the code can calculate only the 
matrix size which is divisible by submatrix, but the code 
requires that a matrix of a certain size can be processed. 
When using the 64 × 64 submatrix, and matrix column size 
is not divisible by 64, for example, the column is 8, the 
remaining 56 parts should be 0 stuffed.   It is necessary to 
make the matrix multiplication an accurate answer by the 0 
stuffing process to manage. Since the 0 stuffing process 
perform memory copy, it can perform to change memory 
alignment to 64 bytes. In this study, the percentage of 0 
stuffing that did not require 0-bit stuffing was estimated to be 
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less than 5%. In the case of 95%, it needs memory copy 
because of 0 stuffing, then only 5% of memory copy would 
be eliminated by tensorflow modification. Then, it was found 
that this method had little prospect of performance 
improvement. It is thus concluded that the memory copy 
elimination method cannot improve the performance of 
SyntaxNet. 

Another method to improve performance of SyntaxNet is 
implementing kernel code as a systolic array, which is a 
structure of logic circuit that repeats operations such as 
multiplication and addition while moving data. A systolic 
array is known as an efficient multiply-add operation method 
when there are many combinations of operations. The 
systolic array is improved calculation efficiency. 

Especially in recent years, Google applied systolic array 
to matrix-calculation circuits for deep learning such as TPU 
[14]. Circuit logic diagrams of a matrix multiplier using a 
self-designed systolic array are shown in Figures 8 and 9. 

Each arithmetic unit in Figure 8 is a simple one 
consisting of a multiplier and an adder. The arithmetic unit 
multiplies a value (A) sending from the left, and another 
value for multiplication (B) is held by the register. After that, 
the arithmetic unit adds the sent value (S). Each value 
coming from the left is sent to the right (An), and the value 
after addition is sent to the bottom (Sn). This arithmetic unit 
is arranged in two dimensions as shown in Figure 9. Its 
operation consists of four steps as follows. 

(1) Set all the values of matrix B. 
(2) Send the values in the order from the left to the right. 

The transmission one step down is started one cycle later, 
and the pattern is transmitted diagonally in space. 

(3) Send A for the operation and wait for the result to 
appear in the lower buffer. 

(4) Repeat (1) to (3) with the next data. 
Data movement and calculation are performed at the 

same time by such operation, and multiply-add operation is 
efficient. We attempted to create this systolic array using 
OpenCL. The proposed systolic array circuit was created on 
the basis of OpenCL. In particular, a systolic-array code was 
written with OpenCL as the hardware shown in Figure 9, and 
the code looked like working. Then, the circuit ran on FPGA, 
but its performance was three digits lower than we expect. 

It would happen because the arithmetic unit has a lot of   
 

 
Figure 8. Systolic array arithmetic unit 

 
Figure 9. Systolic array layout 

 
latency because of its floating-point multiplication, then 
OencCL compiler create a lot of processing latency in the 
array.  The latency cannot be changed by changing the 
OpenCL code only. The OpenCL is designed to make 
hardware from an algorithm written in C. However, it is 
difficult to describe hardware itself like the systolic array. 

VII. CONCLUSION 

To automatically classify and analyze customer 
complaints, we investigated whether it is possible to speed 
up the OSS syntax analyzer SyntaxNet with an FPGA, 
implemented FPGA offload, evaluated an actual machine, 
and obtained the following conclusions. We evaluated 
SyntaxNet with FPGA offload, and confirmed that 
SyntaxNet's execution performance was 661 words/s, almost 
achieved the target of 700 words/s, and processed sentences 
of 700 words in general size in about 1 second. The 
execution time of an FPGA offload machine was measured, 
and the measurement results confirmed that (i) the execution 
performance of SyntaxNet was 661 words/s (which almost 
achieved the target of 700 words/s) and (ii) sentences with 
size of 700 words (in general) could be processed in about 1 
second. These results demonstrate that automatic text 
categorization and analysis can be immediately executed on 
a system with a reduced number of servers by speeding it up 
with power-saving FPGA acceleration. This FPGA 
offloading can be applied to all neural networks using matrix 
multiplication. 
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