
Algorithm-Based Master-Worker Model of Fault Tolerance in Time-Evolving
Applications

Md. Mohsin Ali and Peter E. Strazdins
Research School of Computer Science

The Australian National University
Canberra, ACT 0200, Australia

{md.ali, peter.strazdins}@anu.edu.au

Abstract—In order to make the High Performance Com-
puting (HPC) applications fault-tolerant, many application
developers are investigating Algorithm-Based Fault Tolerance
(ABFT) techniques to improve the efficiency of these ap-
plications recovery beyond what existing checkpoint/restart
techniques alone can provide. Unfortunately, the standard
library Message Passing Interface (MPI) used for implementing
this type of application do not have standardized fault tolerance
semantics. This paper presents how the fault tolerance seman-
tics of Fault-Tolerant MPI (FT-MPI) can be used as a part
of ABFT to design and implement a fault-tolerant algorithm
applicable for time-evolving applications which could survive
process failures. The model of the presented technique is a
master-worker scheme which can tolerate the failures of all
worker processes. As an example of time-evolving application,
we consider the upwind scheme of one dimensional advection
equation solution. We focus on communication-level issues, data
prevention techniques, as well as time-evolving control issues.
This paper also highlights a common set of issues including
failure detection, failed process recovery, duplicate message
handling, etc. This contribution will help application develop-
ers to resolve different issues of design and implementation
of fault-tolerant algorithms for more complex time-evolving
applications.

Keywords-fault tolerance; MPI; FT-MPI; process failure;

I. INTRODUCTION

Today’s High Performance Computing (HPC) systems
use hundreds of thousands of processing elements to con-
currently execute millions of threads and this number is
increasing day-by-day. The computational clusters com-
posed of such multiple processing elements called cores are
connected with high-speed networks designed to minimize
the communication costs and maximize reliability, see for
example [1]. A concerted effort is required in order to
exploit the full performance of these new computational
clusters. This performance is critically needed in areas like
climate and environmental research and in physics and
energy research characterized by complex scientific models.
The most common such models use the solution of systems
of partial differential equations in an iterative way. The
time-evolving solution of simple one dimensional advection
equation is a very basic one among them and is discussed
in [2].

Besides exploiting the full performance of such large
clusters, a critical issue is how to deal with hardware and
software faults that lead to process failures. The failure
rate of a system is roughly proportional to the number of
processor elements in that system [3]. For instance, a recent
study shows that in a particular model of the Blue Gene
system located at the Oak Ridge National Laboratory, a
100,000-processor machine experiences a processor failure
every few minutes [4]. Since the size of the HPC systems are
becoming larger, as we mentioned before, the failure rates
of these large systems are increasing day-by-day [5].

The Message Passing Interface (MPI) [6] specification,
which is widely used as a parallel programming paradigm
for HPC, could not deal with one or more process failures at
run-time. Generally, MPI provides two options for handling
failures.

• The first option with error handler
MPI_ERRORS_ARE_FATAL, which is also the
default mode of MPI, is to immediately abort the
application.

• The second option, which uses error handler
MPI_ERRORS_RETURN, is just slightly more flexible;
handing the control back to the user application
without guaranteeing that any further communication
can occur. Its purpose is to mainly give an application
developer the option to perform some local operations
before exiting.

Another important challenge in HPC for dealing with
the issues of fault tolerance is the deficiency of availability
of both theoretical and practical literature to get an idea
about the range of issues during the development of the
fault-tolerant program. Besides this, there is a discrepancy
between the capabilities of current HPC systems and the
most widely used parallel programming paradigm (MPI).
Although the MPI specification proves itself for fully ex-
ploiting the capabilities of the current architectures, it can
not handle the failure of processes similarly. As a result,
one of the main reasons why many researchers prefer Fault-
Tolerant MPI (FT-MPI) [7] as an interface to implement their
applications is because of its capability to handle process

40Copyright (c) IARIA, 2013. ISBN: 978-1-61208-268-4

PESARO 2013 : The Third International Conference on Performance, Safety and Robustness in Complex Systems and Applications

failures in run-time. It is actually an MPI-1 implementation
that extended the MPI communicator states and modified the
MPI communicator construction functions. Details of this
are discussed in Section III.

The contributions of this paper are as follows:
• Design and implement a fault-tolerant algorithm ap-

plicable for time-evolving applications which could
survive process failures.

• The presented model is a master-worker model which
could survive the failure of all workers in the system.

• The failed processes are rebuilt including the recovery
of their data.

• Presenting how the fault tolerance semantics of FT-MPI
can be used for failure recovery as a part of an ABFT
technique.

• This is a very basic model which is currently not
scalable, but there is scope of modifying this model
to make it scalable.

The rest of the paper is organized as follows. Related
research work is discussed in Section II. Section III de-
scribes the semantics and interfaces of FT-MPI that are used
for implementing fault-tolerant MPI applications surviving
process failures. Section IV describes a fault-tolerant ver-
sion of time-evolving solution of one-dimensional advection
equation demonstrating the techniques of detection and
recovery of process failure, recovery of lost data, handling
of duplicate messages, and controlling of iteration after the
failure. Performance comparison of Open MPI with FT-
MPI and experimental results demonstrating failure recovery
performance of FT-MPI is provided in Section V. Finally,
concluding remarks for this paper are given in Section VI.

II. RELATED WORK

A master-worker model of MPI programs that could
recover from process failure by using multiple intercommu-
nicators is proposed in [8]. In this model, the management
of multiple sets of intercommunicators for a single group of
processes is cumbersome in comparison to directly using a
single set of intracommunicators. Moreover, this model is
not used for time-evolving applications.

A fault-tolerant time-evolving program applicable for ring
type communication is proposed in [9]. The focus of this
work is on the run-through stabilization component of the
developing proposal which is being extended to include
flexible recovery strategies of MPI Forum’s Fault Toler-
ance Working Group [10]. The run-through stabilization
component of the proposal provides an application with
the ability to continue running and using MPI even when
one or more processes in the MPI universe fail, but failed
processes become permanently unresponsive to communica-
tions. Moreover, data recovery issues are not considered in
this component. So, this approach will not be applicable for
the systems which require the recovery of the lost data due
to process failure.

An algorithm-based fault tolerance technique using check-
sum for detecting and recovering one error in HPC is pro-
posed in [11]. This is applicable for specific problems like
parallel matrix-matrix multiplication. Other fault-tolerant
algorithms related to matrix operations are available in [12]
and [13].

A floating-point arithmetic coding approach into diskless
checkpointing is proposed in [14] to address the associated
round-off errors. This approach could survive only a small
number of process failures and could not survive all process
failures.

A natural fault-tolerant algorithm for iterative problems is
proposed in [15] where the algorithm computes a new ap-
proximate solution from the data of the non-failed processes
after the failure. The main drawback of this approach is that
the convergence after failure of the processes is no longer
the same as the original method. Moreover, this algorithm
is also not applicable for the case where it needs actual
solution.

An algorithm-based recovery approach for iterative meth-
ods is proposed in [16] where neither a checkpoint nor
a roll-back is necessary for recovering the data of the
failed processes. It demonstrates that, for many iterative
methods, if the parallel data partition scheme satisfies certain
conditions, the iterative methods themselves can maintain
enough inherent redundant information to tolerate failures
in the computation. Under this condition, the computation
can be restarted from where the failure occurs without any
checkpointing. Although this approach is scalable, it cannot
be used for generalized iterative problems.

III. FT-MPI SEMANTICS AND INTERFACES

Since current semantics of MPI could not guarantee fur-
ther communication to occur after a failure, as we mentioned
before, we need to modify its semantics so that it can take
some corrective actions to rebuild the communicator with an
aim to continue the communication after detecting a failure.
FT-MPI is such an MPI-1 implementation, as we mentioned
before, that extended the MPI communicator states and
modified the MPI communicator construction functions.
The modified semantics of FT-MPI include state of the
communicator, state of the process, mode of communicator,
mode of the message, etc. As for example, FT-MPI extends
the MPI communicator states from {valid, invalid}
to a range {FT_OK, FT_DETECTED, FT_RECOVER,
FT_RECOVERED, FT_FAILED}. It can be usually de-
scribed as {OK, PROBLEM, FAILED}, whereas the re-
maining are used for the internal fault recovery algorithm
of FT-MPI. Similarly, typical states of MPI processes called
{OK, FAILED} are replaced by {OK, Unavailable,
Joining, Failed} in FT-MPI.

A communicator in FT-MPI changes its state after detect-
ing a probable error when either

41Copyright (c) IARIA, 2013. ISBN: 978-1-61208-268-4

PESARO 2013 : The Third International Conference on Performance, Safety and Robustness in Complex Systems and Applications

• an MPI process changes its state due to its failure or
anything else, or

• a communication within that communicator fails for
some reason.

For the first case, all communicators that include this process
are changed. Whereas for the second case, not all communi-
cators are forced to be updated. Changing the communicator
state includes rebuilding that communicator in order to
recover from the probable error. A modified version of one
of the communicator functions e.g. MPI_Comm_{create,
split or dup} is used for this rebuild. Depending on
the mode of failure, a newly built communicator can hold
several modes such as SHRINK, BLANK, REBUILD, and
ABORT. In order to keep the data structure contiguous,
the communicator is reduced by SHRINK mode to fill the
rank(s) of failed process(s) by the rank of the following
process(es). So, the ranks of the processes are changed and
forcing the application to recall MPI_COMM_RANK. BLANK
is similar to SHRINK except that the communicator can
contain gaps where there were problems in the processes
during communication. These gaps can be filled later when
necessary, but communicating with a gap causes an invalid
rank error. Moreover, MPI_COMM_RANK returns the total
number of processes including failed one which is no more
valid. The more complex mode is REBUILD, which forces
the creation of new processes to fill all the gaps containing
empty ranks of the communicator. The new processes can be
placed either in the empty ranks, or the communicator can be
shrunk at first and then the remaining processes filled at the
end. The last mode ABORT forces the application to abort
immediately after detecting an error and there is nothing to
do for a user. Example 3 of [17] shows how a communicator
is simply rebuilt and reused when the communicator detects
an error.

The MPI standard does not return additional error codes
and classes except standard ones. But FT-MPI notifies the
process failure once the application attempts to communicate
directly (e.g., point-to-point operations) or indirectly (e.g.,
collective operations) with the failed process through the
return code called MPI_ERROR_OTHER of the function,
and error handler set on the associated communicator. This
return code also makes additional information available via
the attribute caching mechanism including a human readable
form [17]. The first form returns the error information
for a complete communicator in terms of the number of
failures per rank (example 2 of [17]) since last recovery.
The second form returns the failed ranks in the same order
as they happened locally (example 1 of [17]). Using these
information, an application developer can write down a fault-
tolerant program to handle the error from the user level.
Other than this, communications within a communicator is
controlled by a message mode and can be either NOP or
CONT. For NOP, there is nothing to do from the user level

and allows the application to return from any point in the
code to a state where it can take appropriate action as soon
as possible based on the error. On the other hand, with CONT
mode, all communication consisting of unaffected processes
can continue as normal and attempts to communicate with a
failed process reports an error until the communication state
is reset. A sample FT-MPI master-worker code is available in
example 4 of [17], where the communicator mode is BLANK
and the communication message mode is CONT. The master
keeps track of the work allocated and on an error it checks
whether there is any surviving workers remaining or not. If
any of these are available, then it just reallocates the work
to them to continue the computation.

IV. TIME-EVOLVING APPLICATIONS:
ONE-DIMENSIONAL ADVECTION EQUATION SOLUTION

The solution of advection equation is an important subject
in scientific HPC. There are two reasons behind this. Firstly,
advection is a part of important applications of HPC: mete-
orology, climatology, and air pollution. Secondly, many of
the computations done on HPC systems involve the solution
of partial differential equations. Since advection equation
is actually a relatively simple partial differential equation,
it provides a good starting point to study a broad class of
computations performed on supercomputers.

There are broad classes of advection equations ranging
from simple to complex. The one-dimensional advection
equation is the most basic one among them. Algorithms for
solving such basic equations are available in [2], along with
the definition and uses of ghost values. The principle of these
algorithms are like that the original advection values are
divided into parts and then distributed them into a number
of processors, say n processors. Then in each iteration, the
following activities are performed.

• Each processor updates their ghost values by exchang-
ing messages with their left and right neighbors (left of
processor 1 is processor n and right of processor n is
processor 1), see Fig. 1.

• Each processor computes their flux values and update
their advection values according to the type of advec-
tion equation.

Finally, at the end of the iteration, the computed advection
values from each of the processors are combined to generate
the actual advection values.

Let us discuss the fault-tolerant version of this algo-
rithm. Literally, there are many meanings of “fault-tolerant”.
See [8] for details. But in this paper, by fault-tolerant,
we mean tolerance of process failure and this failure may
happen for any reason. We consider a process failure as a
fail-rebuild-working failure, that is, failed processes will be
rebuilt and become available to communications. Since the
data of a failed process is lost, this algorithm also recovers
this lost data.

42Copyright (c) IARIA, 2013. ISBN: 978-1-61208-268-4

PESARO 2013 : The Third International Conference on Performance, Safety and Robustness in Complex Systems and Applications

P1

P2

P3

P4

Pn
· · ·

Figure 1. Communication in non-fault-tolerant advection equation solution.

P1

P2

P3

P4

Pn
· · ·

P0

...

Figure 2. Communication in fault-tolerant advection equation solution.

The model of our fault-tolerant algorithm is master-worker
where communications between a worker to its neighbors
are done through master similar to Fig. 2 when process P0

serves as master. In order to update the ghost values for
each worker by exchanging messages with left and right
neighbors (see Fig. 1), the following activities are performed.

• The master receives messages containing advection
values from all workers and stores them in memory.

• The master calculates left and right ghost values for
each worker from these stored values and send these
calculated values to corresponding workers to update
their ghost values.

Storing these values have additional benefits which are
discussed in Section IV-C. However, it is easily observed
that the total number of communication for updating ghost
values of the workers through master is the same as that of
without master except the increased size of the exchanged
messages. See Fig. 1 and 2 for comparison.

The fault-tolerant algorithm for solving one-dimensional
advection equation is shown in Fig. 3. The main points of
this algorithm are as follows.

• A user-defined error handler is registered on Lines 8
and 9 (details in the algorithm shown in Fig. 8) for
handling error including process failure and rebuilding

Function int main(int argc, char *argv[])

1: /* Initialize MPI */
2: MPI_Comm MCW = MPI_COMM_WORLD;
3: MPI_Errhandler errh;
4: int rc_init = MPI_Init(&argc, &argv);
5: MPI_Comm_rank(MCW, &process_id);
6: MPI_Comm_size(MCW, &procs);
7:

8: MPI_Errhandler_create(recover, &errh);
9: MPI_Errhandler_set(MCW, errh);

10:

11: input_generate_and_distribute();
12:

13: save_values_in_master();
14:

15: /* Main Iteration */
16: for (i = 0; i < MAX_TIME_STEPS; i++) do
17: if (process_id == MASTER) then
18: master_rcv_activity(procs);
19: ghost_iter_activity(procs);
20: master_send_activity(procs);

21: else // process_id == WORKER
22: worker_activity(process_id);

23:

24: master_collects_distributed_values();
25:

26: MPI_Finalize();
27: return 0;

Figure 3. Main function of the algorithm.

Function void master_rcv_activity(int
procs)

1: for (j = 1; j < procs; j++) do
2: do

master_is_receiving_from_worker(j);
3: if (rc_init == MPI_INIT_RESTARTED_NODE)

then
4: any_worker_re-spawned = 1;

while (receiving is not SUCCESSFUL);

Figure 4. Master is receiving from workers.

the failed processes.
• Original advection values (input) generation and dis-

tributing them to workers are done on Line 11.
• Saving the values of workers to master is done on Line

13 such that the master can provide these values to
workers when they rebuild after the failure.

• The main iteration is going on between Lines 16–22.
• The master is receiving advection values from all the

workers on Line 18 (details in the algorithm shown in

43Copyright (c) IARIA, 2013. ISBN: 978-1-61208-268-4

PESARO 2013 : The Third International Conference on Performance, Safety and Robustness in Complex Systems and Applications

Function void ghost_iter_activity(int
procs)

1: /* updating ghost values */
2: for (j = 1; j < procs; j++) do
3: if (any_worker_re-spawned == 1) then
4: /* Load previous advection values

*/
5: copy prev_advection_values(j) to advection_values(j);

6: calculate_ghost_values_for_j(advection_values);
7:

8: /* Saving advection values */
9: save advection_values(j) to prev_advection_values(j);

10: if (any_worker_re-spawned == 1) then
11: /* reset any_worker_re-spawned */
12: any_worker_re-spawned = 0;
13:

14: /* load previous time step */
15: i - -;

Figure 5. Updating ghost values and saving/restoring advection
values.

Function void master_send_activity(int
procs)

1: for (j = 1; j < procs; j++) do
2: do
3: master_is_sending_to_worker(j);

while (sending is not SUCCESSFUL);

Figure 6. Master is sending to workers.

Fig. 4). Received values in the master may come from
processes which are just rebuilt after failure. These
values are invalid, because, upon process failure, FT-
MPI destroys all MPI objects with non-local infor-
mation (e.g., communicators and groups) including its
current address space, except MPI_COMM_WORLD,
requiring the application to manually recreate these
objects after every failure in the same order [9]. So,
a flag called any_worker_re-spawned is set in the
algorithm shown in Fig. 4 on Line 4 to mark that the
value in received buffer is invalid. Whether the value
is received from restarted processes or not is checked
on Line 3 in the algorithm shown in Fig. 4.

• Calculation of left and right ghost values for workers
is done on Line 19 (details in the algorithm shown in
Fig. 5). This calculation depends on the value of the flag
any_worker_re-spawned stated in the algorithm shown
in Fig. 4. If that flag is set, then we have to load the
saved buffer values in previous iteration (done on Line 9
in the algorithm shown in Fig. 5) into the current buffer

before calculating ghost values. Saving the values in
current buffer and calculating the ghost values are done
on Lines 5 and 6, respectively, in the algorithm shown
in Fig. 5. The purpose of Lines 10–15 of the algorithm
shown in Fig. 5 is to reset the flag any_worker_re-
spawned and decrease the main iteration by one, if the
flag was set before, so that the algorithm could continue
for the correct number of iterations.

• The master is sending advection values including left
and right ghost values as a message to each of the
corresponding worker on Line 20 (details in the algo-
rithm shown in Fig. 6) to update their ghost values and
replace the buffer with the advection values if it is just
rebuilt after failure.

• Sending advection values to master from each worker,
receiving advection values including left and right ghost
values from master to each worker, and calculating flux

Function void worker_activity(int
process_id)

1: do
2: worker_is_sending_to_master(process_id);

while (sending is not SUCCESSFUL);
3: do
4: worker_is_receiving_from_master(process_id);

while (receiving is not SUCCESSFUL);
5:

6: calculate_flux_and_update_advection_values(process_id);

Figure 7. Workers are sending to and receiving from master.

Function void recover(MPI_Comm *com, int
*er)

1: MPI_Comm oldcomm, newcomm;
2: int rc;
3: int size, rank;
4: if (*er == MPI_ERR_OTHER) then
5: oldcomm = MPI_COMM_WORLD;
6: newcomm = FT_MPI_CHECK_RECOVER;
7: /* collective recovery occurs here!

*/
8: rc = MPI_Comm_dup (oldcomm, &newcomm);
9: rc = MPI_Comm_rank (MPI_COMM_WORLD, &rank);

10: rc = MPI_Comm_size (MPI_COMM_WORLD, &size);

11: else
12: printf("ERR: Error occured with error code %d\n", *er);

13: sleep(30);

Figure 8. Failure recovery function.

44Copyright (c) IARIA, 2013. ISBN: 978-1-61208-268-4

PESARO 2013 : The Third International Conference on Performance, Safety and Robustness in Complex Systems and Applications

as well as updating advection values in each worker
is done on Line 22 (details in the algorithm shown in
Fig. 7).

• Finally, upon completion of main iteration, each worker
sends their computer advection values to master so that
master can combine these values to generate complete
advection values.

A. Failure Detection

Any failure of processes or other errors in communication
in FT-MPI is detected by error code MPI_ERR_OTHER.
This error code is invoked inside a user-defined error handler
function (Fig. 8) which is registered as an error handler in
main function (Fig. 3) for detecting errors.

B. Failed Process Recovery

The next task after detecting process failure is to re-
cover these failed processes to reconstruct communica-
tor. So, it actually means recovering MPI environment
including its communicator. This is done by substituting
failed processes with the new ones by passing the FT-
MPI attribute FT_MPI_CHECK_RECOVER to the collective
function MPI_Comm_dup shown in the algorithm shown in
Fig. 8.

C. Data Recovery Techniques

As we mentioned before, processes replacing failed pro-
cesses require the application to manually recreate MPI
objects other than MPI_COMM_WORLD and needs to
initialize the variables in the new address space. There are
two following scenarios of process failures on which data
recovery technique depends.

• Sending from master is failed.
• Sending from worker is failed.

For the first case, master resends its current buffer to the
worker waiting for re-receiving that after recovering from
failure. The received data from master after the recovery is
valid, because master’s address space is not changed due
to the worker’s failure. The Do· · ·While loops of Figs. 6
and 7 are used for resending and re-receiving the buffer. Data
recovery techniques under this scenario is demonstrated in
the algorithm shown in Fig. 9.

For the second case, on the other hand, worker resends
its current buffer after recovering from failure to the mas-
ter waiting for re-receiving the data of that buffer. The
Do· · ·While loops of Figs. 4 and 7 are used for re-receiving
and resending the buffer. However, the received data from
worker after the recovery is invalid to be used as advection
values as well as ghost values, because the worker’s address
space is changed due to its failure as we mentioned before.
As a result, a technique should be applied to replace this
invalid data into valid one. The technique that we applied
is saving the data (advection values) into another buffer in
each time-step so that it can be used to replace that invalid

P0

P1

P2

P3

Pn

.

.

.

Iteration 0 Iteration 1 Iteration 2

recovery

g
h

o
st

ca
lc

u
la

tio
n

waiting to receive fromP0

flu
x

ca
lc

u
la

tio
n

an
d

va
lu

es
u

p
d

at
e

fa
ilu

re
in

fo
.

p
ro

p
ag

at
ed

resend toPn

· · ·

· · ·

· · ·

· · ·

time

Figure 9. When sending from master is failed.

P0

P1

P2

P3

Pn

.

.

.

Iteration 0 Iteration 1 Iteration 2

· · ·

· · ·

· · ·

· · ·

recovery

w
ai

tin
g

to
re

ce
iv

e
fr

om
P
2

resend to

g
h

o
st

ca
lc

u
la

tio
n

flu
x

ca
lc

u
la

tio
n

an
d

va
lu

es
u

p
d

at
e

if receive from resend

(invalid data)

flu
x

ca
lc

u
la

tio
n

an
d

va
lu

es
u

p
d

at
e

otherwise

P0time

Figure 10. When sending from worker is failed.

buffer. This saving is done on Line 9 in the algorithm shown
in Fig. 5. Later, under this scenario, the invalid current
buffer is replaced with the saved buffer using Line 5 of the
algorithm shown in Fig. 5. Data recovery techniques under
this scenario are demonstrated in the algorithm shown in
Fig. 10.

D. Time-Evolving Control

The next task after recovering the data for the restarted
processes is to control the total number of updates on
advection values of the workers. For the scenario of Fig. 10
described in previous section (Section IV-C), the number
of such update is decreased by one for each such failure
scenario due to invalid data. In order to keep the total number
of updates in the presence of failure as the same as that of
without failure, the iteration counter should be decreased by
one for each such scenario. Lines 10–15 of the algorithm

45Copyright (c) IARIA, 2013. ISBN: 978-1-61208-268-4

PESARO 2013 : The Third International Conference on Performance, Safety and Robustness in Complex Systems and Applications

shown in Fig. 5 is used for this purpose.

E. Duplicate Message Handling

Duplicate message handling in application development
using FT-MPI is also an important issue. For the scenario of
Figs. 9 and 10, a master or worker does not receive duplicate
messages from each other. A re-receive is done only when
the previous receive did not succeeded. So, no control is
needed for duplicate message handling except Do· · ·While
loop for resending and re-receiving. However, we should
control the receive and send operations on Lines 11 and 13,
respectively, of the algorithm shown in Fig. 3 in case of
re-spawned process initialization. These two operations are
not needed for re-spawned processes. Although there is no
problem for send operation in this case as multiple sending
operations without corresponding receive operations do not
complain, but we should strictly control receive operations.
Otherwise, the application waits forever for receiving from
master where master sends nothing. An attribute of FT-
MPI called MPI_INIT_RESTARTED_NODE is used for the
purpose of this control.

V. EXPERIMENTAL RESULT

Although FT-MPI is build with MPI-1 implementation, a
significant amount of effort goes into making it competitive
with other open source implementations by considering their
execution time. In order to prove this issue, we perform an
experiment for the non-fault-tolerant (Open MPI) and the
Fault-Tolerant (FT-MPI) version of the algorithm applying
for the problem discussed in Section IV. This experiment
is done on a cluster with a standard GigE Switch with four
nodes, each with AMD Phenom(tm) II X4 945 Quad-Core
Processor with 3.0GHz of speed and 4.0GB of memory,
having a total of 16 cores. The way of measuring the
execution time is the time and difftime functions of
C++. The result of this experiment is shown in Table I,
which shows that FT-MPI is almost similar to Open MPI
(version 1.4.5) in case of considering execution time.

Experiment on process failure recovery and recovery time
is also conducted for the same problem and on the same
cluster, where process failure is simulated by killing the
process(es) by issuing the kill command and time is
measured by the time and difftime functions of C++
as before. The experimental result which is performed on a
grid with 120 points and 300 time steps is shown in Table II.
This result shows that this algorithm could recover from any
number of worker process failures. Moreover, the recovery
time of process failure is minimum and acceptable.

VI. CONCLUSION

This paper proposes a master-worker model for designing
and implementing a fault-tolerant algorithm applicable for
time-evolving problems. One of the emerging problems in
such category is the solution of advection equations which

TABLE I. EXECUTION TIME OF NON-FAULT-TOLERANT VERSION OF
ALGORITHM IN OPEN MPI AND FT-MPI.

Grid
Points # Time Steps Open MPI

(Sec)
FT-MPI

(Sec)
15360 38400 41 61
30720 76800 173 204
46080 115200 382 441

TABLE II. EXPERIMENT ON PROCESS FAILURE RECOVERY AND
RECOVERY TIME.

Total
Process
Failed

List of Killed
Processes

Failure
Recovered?

Recovery
Time
(Sec)

1 Any 1 of the 15
worker processes YES 1

2 Any 2 of the 15
worker processes YES 1

3 Any 3 of the 15
worker processes YES 2

4 Any 4 of the 15
worker processes YES 2

5 Any 5 of the 15
worker processes YES 2

6 Any 6 of the 15
worker processes YES 3

7 Any 7 of the 15
worker processes YES 3

8 Any 8 of the 15
worker processes YES 3

9 Any 9 of the 15
worker processes YES 3

10 Any 10 of the 15
worker processes YES 4

11 Any 11 of the 15
worker processes YES 4

12 Any 12 of the 15
worker processes YES 4

13 Any 13 of the 15
worker processes YES 5

14 Any 14 of the 15
worker processes YES 5

15 All worker processes YES 5

are modeled by partial differential equations. We have ap-
plied this model on the iterative solution of one dimensional
advection equations so that it can survive the failure of
all the worker processes in that system. We have used the
semantics of FT-MPI to implement this algorithm focusing
on different issues related to fault tolerance like failure
detection, failed process recovery, data recovery techniques,
time-evolving control, duplicate message handling, etc. This
model is not scalable, but it can recover the failure of all
workers in the system and there are scopes to modify this
model to make it scalable. This contribution will also help
application developers to resolve different issues of design
and implementation of fault-tolerant algorithms for more
complex time-evolving applications.

We are currently working on modifying this model so that
it turns into a scalable solution. One of the scopes include
using an extra process for each working process replacing
single master process so that each working process can

46Copyright (c) IARIA, 2013. ISBN: 978-1-61208-268-4

PESARO 2013 : The Third International Conference on Performance, Safety and Robustness in Complex Systems and Applications

communicate with another working process directly and save
their data to the corresponding extra processes. The purpose
of this saving is that the extra processes can send their saved
data to the corresponding processes when they re-spawned
after the failure. Another approach avoids requiring a master
process and saves the data on their left and right neighbors
during communication. This saved data can be send to its
neighbors when they are re-spawned after the failure. There
are also many approaches like this which can be proposed
to make this fault-tolerant application scalable.

ACKNOWLEDGMENT

This work was supported by the Australian Research
Council (ARC) and Fujitsu Laboratories of Europe (FLE)
through the ARC National Competitive Grants Program
(NCGP) Linkage Project LP110200410.

REFERENCES

[1] Y. Ajima, S. Sumimoto, and T. Shimizu, “Tofu: A 6d
mesh/torus interconnect for exascale computers,” Computer,
vol. 42, no. 11, November 2009, pp. 36–40.

[2] L. D. Fosdick, E. R. Jessup, C. J. C. Schauble, and G. Domik,
An Introduction to High-Performance Scientific Computing,
ser. Scientific and Engineering Computation. MIT Press,
1996.

[3] B. Schroeder and G. A. Gibson, “A large-scale study of fail-
ures in high-performance computing systems,” in Proc. Inter-
national Conference on Dependable Systems and Networks,
ser. DSN ’06. Washington, DC, USA: IEEE Computer
Society, 2006, pp. 249–258.

[4] A. Geist and C. Engelmann, “Development of naturally fault
tolerant algorithms for computing on 100,000 processors,”
2002. [Retrieved: December 10, 2012], URL: http://www.
csm.ornl.gov/~geist/Lyon2002-geist.pdf

[5] G. Gibson, B. Schroeder, and J. Digney, “Failure tolerance
in petascale computers,” Software Enabling Technologies for
Petascale Science, vol. 3, no. 4, November 2007, pp. 4–10.

[6] Message Passing Interface Forum, “MPI: A message passing
interface,” in Proc. Supercomputing. IEEE Computer Society
Press, November 1993, pp. 878–883.

[7] G. E. Fagg and J. J. Dongarra, “FT-MPI: Fault tolerant mpi,
supporting dynamic applications in a dynamic world,” 2000.

[8] W. Gropp and E. Lusk, “Fault tolerance in mpi programs,”
Special issue of the International Journal High Performance
Computing Applications (IJHPCA), vol. 18, 2002, pp. 363–
372.

[9] J. Hursey and R. Graham, “Building a fault tolerant mpi
application: A ring communication example,” in IEEE Inter-
national Symposium on Parallel and Distributed Processing
Workshops and PhD Forum (IPDPSW), May 2011, pp. 1549–
1556.

[10] Fault Tolerance Working Group, “Run-through stabilization
interfaces and semantics.” [Retrieved: December 10,
2012], URL: svn.mpi-forum.org/trac/mpi-forum-web/wiki/
ft/run_through_stabilization

[11] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou,
“Algorithm-based fault tolerance applied to high performance
computing,” Journal of Parallel and Distributed Computing,
vol. 69, no. 4, 2009, pp. 410–416.

[12] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tol-
erance for matrix operations,” IEEE Trans. Comput., vol. 33,
no. 6, June 1984, pp. 518–528.

[13] P. Du, A. Bouteiller, G. Bosilca, T. Herault, and J. Dongarra,
“Algorithm-based fault tolerance for dense matrix factoriza-
tions,” SIGPLAN Not., vol. 47, no. 8, February 2012, pp.
225–234.

[14] Z. Chen, G. E. Fagg, E. Gabriel, J. Langou, T. Angskun,
G. Bosilca, and J. Dongarra, “Fault tolerant high performance
computing by a coding approach,” in Proc. tenth ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’05. New York, NY, USA: ACM,
2005, pp. 213–223.

[15] J. Langou, Z. Chen, G. Bosilca, and J. Dongarra, “Recovery
patterns for iterative methods in a parallel unstable environ-
ment,” SIAM J. Sci. Comput., vol. 30, no. 1, November 2007,
pp. 102–116.

[16] Z. Chen, “Algorithm-based recovery for iterative methods
without checkpointing,” in Proc. 20th International Sym-
posium on High Performance Distributed Computing, ser.
HPDC ’11. New York, NY, USA: ACM, 2011, pp. 73–84.

[17] G. E. Fagg and J. Dongarra, “Building and using a fault-
tolerant mpi implementation,” vol. 18, no. 3, 2004, pp. 353–
361.

47Copyright (c) IARIA, 2013. ISBN: 978-1-61208-268-4

PESARO 2013 : The Third International Conference on Performance, Safety and Robustness in Complex Systems and Applications

