PESARO 2013 : The Third International Conference on Performance, Safety and Robustness in Complex Systems and Applications

Developing Safe Control Systems using Patterns for Assurance

André Alexandersen Hauge

Institute for energy technology, Halden, Norway

University of Oslo, Norway
andre.hauge @hrp.no

Abstract—The Safe Control Systems (SaCS) method is a
pattern-based method supporting the development of concep-
tual designs for safety critical systems. A pattern language
offers support for the method by six different kinds of basic
patterns, operators for combining patterns, and a graphical
notation for visualising a pattern composition. Intended users
of SaCS are system developers, safety engineers and HW/SW
engineers. The method has so far been applied in two cases
within different industrial domains. This paper demonstrates
and presents experiences from the application of SaCS within
the railway domain. We consider an interlocking system that
controls the appliances of a railway station. We argue that
SaCS effectively supports the establishment of requirements, a
design satisfying the requirements, and an outline of a safety
demonstration for the design.

Keywords-conceptual design; pattern language; development
processes; safety;

I. INTRODUCTION

This paper demonstrates and presents experiences from
the use of a pattern-based method called Safe Control
Systems (SaCS) to develop a conceptual design for a railway
interlocking system.

SaCSs has previously been tested out in the nuclear domain
for the development of a reactor control system design [1].

The six kinds of basic patterns offered by SaCS are cate-
gorised according to two development perspectives: Process
Assurance; and Product Assurance. Both perspectives detail
patterns according to three aspects: Requirement; Solution;
and Safety Case. We distinguish between basic and compos-
ite patterns. Each basic pattern contains an instantiation rule
that may be used to assess whether it is correctly instantiated.

The basic SaCS patterns captures design solutions as
well as commonly accepted safety engineering practices,
e.g., development processes and activities, risk assessment
methods, and other methods for providing safety assurance
as reflected in international safety standards and guidelines,
e.g., [2], [3], [4], [5]. Basic SaCS patterns are defined in a
format inspired by classical literature on patterns [6], [7],
[8]. It differs with respect to its explicit definition of inputs,
outputs, and the instantiation rules that defines the transition
from input to output for each pattern. The explicitly defined
parameters facilitate easy combination of several patterns.
The instantiation rules facilitate validation of the result of
pattern instantiation based on the pattern definition and the

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-268-4

Ketil Stglen
SINTEF ICT, Oslo, Norway
University of Oslo, Norway

ketil.stolen @sintef.no

00— mO — mN —Q0
(V) QO—1 dMO
o1 - py OO —imB cO—imB
) Ny S AN oy W G 0y O—
dA—00 mA —000 OCO—mM mL —000 -
dLN 00
AX
- S
AY BX
D BY
%M
- e
Figure 1. Railway Station Overview

given inputs. The composite patterns are expressed graph-
ically and its notation is inspired by languages for system
modelling, e.g., the modelling of patterns by collaborations,
or modularisation of a specification by decomposition in
UML [9], and literature related to visualisation, e.g., related
to risk analysis [10] and general literature on visualisation
of complex data [11].

The remainder of this article is structured as follows:
Section II outlines the railway case on design of an inter-
locking system. Section III gives a short background on the
SaCS method and its supporting pattern language. Section
IV presents our hypothesis and main prediction. Section
V to Section VIII exemplifies the stepwise application of
the SaCS method and supporting pattern language in an
example-driven manner for establishing a conceptual design
for the railway interlocking system. Section IX outlines the
results of applying SaCS. Section X presents related work,
while Section XI concludes.

II. THE SYSTEM: RAILWAY INTERLOCKING

Fig. 1 illustrates the main appliances of a train station
with two tracks.

The station in Fig. 1 is connected in both ends of the
station area to neighbouring stations with a single track. An
interlocking system controls the appliances associated with
the station in order to safely control the movements of trains
along defined train routes. The train station that is used as
a case has a level crossing (Note: the level crossing is not
depicted). The annotations in Fig. 1 denote the following:

o The circles with a letter inside, i.e., M, A, X, Y, B, and

L denote the different track sections.

PESARO 2013 : The Third International Conference on Performance, Safety and Robustness in Complex Systems and Applications

o All lines that end with two or three adjacent circles
represent either a distant light signal, i.e., dA, dB, dLN,
and dMO or a main light signal, i.e., mA, mB, mL, mM,
mN, and mO.

o There are two points for switching traffic onto different
tracks, these are identified as P1 and P2.

o The arrows illustrate the eight train routes, i.e., AX,
AY, BX, BY, L, M, N, and O that are possible with the
depicted track configuration.

The SaCS method was applied to develop a conceptual
design for an interlocking system to control the appliances
of a railway station with two tracks and a level crossing
such that trains may move safely according to defined train
routes. The interlocking system is one of many sub-systems,
though the most critical to safety, in an overall system
for controlling train movements. The conceptual design is
intended to model a replacement of an existing system
governing the interlocking rules only.

III. BACKGROUND — SACS
A. The SaCS Method

The method interleaves three main activities, each of
which is divided into sub-activities:

S Pattern Selection — The purpose of this activity is
to support the conception of a design by selecting:
a) SaCS patterns for requirement elicitation; b) SaCS
patterns for establishing design basis; ¢) SaCS patterns
for establishing safety case.

C Pattern Composition — The purpose of this activity is to
specify the use of the selected patterns by specifying:
a) compositions of patterns; and b) instantiations of
patterns.

I Pattern Instantiation — The purpose of this activity is
to instantiate the composite pattern specification by: a)
selecting pattern instantiation order; and b) conducting
stepwise instantiation.

Pattern selection is supported by a selection map that is
introduced in Section V-A. Pattern composition is supported
by a pattern language outlined in Section III-B. Pattern
instantiation is supported by instantiation rules defined for
every basic pattern (defined in [12]).

B. The SaCS Pattern Language

Fig. 2 presents the main graphical elements used to
illustrate the kind of patterns involved in a composite pattern.

The SaCS Pattern Language (SaCS PL) consists of pat-
terns (basic SaCS patterns) of different types, and annota-
tions for specifying how patterns are combined and applied
in order to derive a conceptual design.

Every basic SaCS pattern is defined such that it may be
used stand-alone. Every pattern is also defined such that
it is easy to use several patterns together as every input
and output parameter of a pattern is explicitly detailed.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-268-4

Basic Pattern
Product

Assurance

Process
Assurance

Requirement @
‘Q’ (Method) @ (Design)

Safety Case <A, @
Composite Pattern

Figure 2.

Solution

Icons for Visually Representing a Pattern

A composition of patterns (composite for short) may be
expressed by, e.g., mapping an output parameter of a pattern
to an input parameter of a second pattern and thereby
defining a relationship between the patterns.

The different icons in Fig. 2 for representing a pattern
reflect the different types of patterns in SaCS PL. Operators
combine patterns. The operators will be introduced and ex-
plained by the examples provided in Section V to Section IX.
A composite pattern may contain any type of SaCS pattern,
i.e., basic patterns, composite patterns, or a combination of
composite and basic patterns.

IV. HYPOTHESIS

Success is evaluated based on the satisfaction of pre-
dictions. The hypothesis (H) and predictions (P) for the
application of SaCS is defined below.

H: The SaCS method facilitates effective and efficient de-
velopment of conceptual designs that are: 1) consistent;
2) complete; 3) correct; 4) comprehensible; 5) reusable;
and 6) implementable.

Definition A conceptual design is a triple consisting of a
specification of requirements, a specification of design, and
a specification of a safety case. The design characterises
a system that satisfies the requirements. The safety case
characterises a strategy for demonstrating that the design
is safe with respect to safety requirements.

We deduce the following prediction from the hypothesis
with respect to the application of SaCS on the case described
in Section II:

P: Application of the SaCS method on the railway case
described in Section II results in a conceptual design
that uniquely characterises the railway case and is
easily instantiated from a composite SaCS pattern.
Furthermore, the conceptual design is 1) consistent; 2)
complete; 3) correct; 4) comprehensible; 5) reusable;
6) implementable.

Definition A conceptual design instantiates a SaCS com-
posite pattern if each element of the triple can be instan-
tiated from the SaCS composite pattern according to the
instantiation rules of the individual patterns and according
to the rules for composition.

PESARO 2013 : The Third International Conference on Performance, Safety and Robustness in Complex Systems and Applications

Establish

Hazard

Concept A Identification
7 \
« Risk Hazard
Analysis C Analysis B
@

* Establish
« SIL System Safety
Classification Requirements

A B C D
i Dual Modul
Simple (O’ HAZID <'°" FTA * @ ual Modular
Interlocking Redundant
@ Station * @ EMEA @ EMEA Trusted
Interlocking Backup
Level Crossing
HAZOP
Interlocking * @
E Code of
Practise

A Overall A Quality Safety Requirements
Safety * Management Satisfied *

A Safety TEChmc: ! Cross Reference
Management Safety

Figure 3. Pattern Selection

o
m

V. ELICIT FUNCTIONAL REQUIREMENTS
A. Pattern Selection

Fig. 3 provides an overview of the patterns considered
in the railway interlocking case, organised into a pattern
selection map based on defined relationships between pat-
terns. Due to space restrictions the pattern definitions are
not provided (described in [12]). The following abbrevations
are used in Fig. 3: HAZID — HAZard IDentification; FMEA
— Failure Modes and Effects Analysis; HAZOP — HAZard
and OPerability Studies; FTA — Fault Tree Analysis; SIL —
Safety Integrity Level.

The selection process starts at the pattern referenced in
the upper left corner of Fig. 3 and follows the direction of
the arrows. Pattern selection ends when all patterns have
been considered. The diamond represents a choice; more
than one pattern may be selected. The letter above a choice
is a reference to a correspondingly named group of patterns
in the lower part of Fig. 3. The symbol “*” is used to
identify the patterns that are used in this article. Each pattern
definition clearly describes the problem addressed by the pat-
tern and its intended application, thus the pattern definitions
may be conferred for support in the selection process. The
application of the SaCS method and the selection process
as exemplified in this article assures that relevant patterns
may be selected at each stage of development. The rationale
given by a user at each selection step on the selection of
patterns should give assurance for the correct set of patterns
being selected.

We assume in this article that the information provided
in Section II sufficiently details the development objectives

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-268-4

such that the pattern Establish Concept (supports clarifying
objectives) may be passed in the selection process.

The patterns Station Interlocking and Level Crossing
Interlocking associated with choice A in Fig. 3 capture the
problem of eliciting functional requirements for a system
that shall control the appliances available in a station with
several tracks and a level crossing, respectively. They were
chosen as support.

B. Pattern Instantiation

A pattern may have multiple input and output parameters.
The instantiation of the input parameters define the context
for interpreting the pattern, while the instantiation of the
output parameters define the result of pattern instantiation.
The pattern definition describes the transition from input to
output. The instantiation of the pattern Station Interlocking
produced a set of requirements. The following is one of these
requirements.

“FR.1: a train route AX may be locked (secured for train
movements) when: a) the train routes AY, M, O, N, BX and
BY are in the state not locked; and b) point Pl is aligned;
and c) track sections A, X and B are in the state vacant.”

C. Fattern Composition

Fig. 4 specifies a composite pattern. Everything above the
horizontal line may be thought of as a kind of preamble.
The icon for a composite occurs in the upper left corner
underneath the name of the composite, which is Functional
Requirements. The inputs and outputs of the composite
are tagged by an arrow pointing either towards (indicating
input) or from (indicating output) a list of parameters. The
parameter list is visualised on the form [<parameter list>].
Everything below the horizontal line describes the actual
composition. The input and output of the patterns occurring
within the composite are distinguished in the same manner
as input and output in the preamble. The input parameter
Mch of the composite is used by both contained patterns.

The patterns Station Interlocking and Level Crossing In-
terlocking are related by the combines operator (symbolised
by two overlapping circles). Hence, the icon decorating the
line connecting the parameter lists in Fig. 4 symbolises a
combines relationship.

Functional
Requirements

—»[Mch][F-Req]—»

Station

Level Crossing

Interlocking [F-Req] —> Interlocking
=—[Mch] [2TR®Req] aO— [LCR®Req]
=[Mch]

Figure 4. Functional Requirements — Composite

PESARO 2013 : The Third International Conference on Performance, Safety and Robustness in Complex Systems and Applications

The annotation [2TR=Req] (the symbol = enclosed by a
circle represents an alias operator) found in Fig. 4 defines
an alias 2TR for the output parameter Req. The combines
operator creates an output parameter list named F-Req that
consists of 2TR and LCR.

The grey wide arrow in the background indicates the
recommended pattern instantiation order and gives guidance
to the process of applying the patterns.

VI. ELICIT SAFETY REQUIREMENTS
A. Pattern Selection

Once the main functional requirements have been elicited
based on selected patterns from choice A of Fig. 3, further
traversal leads to the pattern Hazard Identification. This
pattern defines the process of identifying potential hazards.
In choice B, patterns describing methods for hazard identi-
fication are offered. We assume that the hazards associated
with the operation of the interlocking system, e.g., collision
train-train, collision train-object, and level crossing accident,
are identified such that the Hazard Identification pattern
as well as the patterns in choice B may be passed in the
selection process.

The Hazard Analysis pattern however is selected as it
provides guidance on the process of deriving the potential
causes of hazards. In choice C of Fig. 3, different process
solution patterns (representing methods) supporting hazard
analysis may be selected. The FTA was selected as support
for Hazard Analysis under the assumption that a top-down
fault tree analysis is an acceptable and effective method for
identifying potential causes of failure.

Further traversal of Fig. 3 leads to the pattern Risk
Analysis. The pattern provides guidance on how to address
identified hazards and to establish a notion of risk. The SIL
Classification pattern was selected as it defines the method
for classifying railway systems and their components with
respect to criticality.

The pattern Establish System Safety Requirements de-
scribes the process of establishing safety requirements based
on inputs from risk assessment. It was regarded as relevant
for the case and selected as support.

B. Pattern Instantiation

Safety requirements are defined on the basis of risk assess-
ment. The process requirement patterns selected in Section
VI-A support the process of eliciting safety requirements
and may be applied subsequently in the following order:

1. Hazard Analysis — used to identify potential causes of
hazards based on input on applicable hazards.

2. Risk Analysis — used for addressing hazards with
respect to their severity and likelihood of occurring
combined into a notion of risk.

3. Establish System Safety Requirements — used for defin-
ing requirements on the basis of identified risks.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-268-4

When Establish System Safety Requirements was instan-
tiated on the basis of inputs provided by the instantiation of
its successors, the following safety requirement was among
those identified: “SR.1: A main signal belonging to a train
route may only signal a proceed aspect if the train route is
locked*.

Other results from the instantiation of the mentioned
patterns were a hazard log that traces identified hazards to
potential causes of these hazards, a fault tree analysis, and
a qualitative risk assessment. In the following we only refer
to the safety requirement exemplified above.

C. Fattern Composition

Fig. 5 presents the Safety Requirements composite. The
pattern has two input parameters namely ToA (short for
Target of Assessment) and Haz (short for Hazards) and one
output parameter S-Req (short for Safety Requirements).

The hazards associated with the parameter Haz, e.g.,
collision train-train and collision train-object, consisted of a
set of relevant generic top events. The hazards were assessed
with respect to the intended operation of interlocking system
by the use of the Hazard Analysis pattern, supported by the
FTA pattern. The result of pattern instantiation is the output
HzLg (short for hazard log) containing an overview over
hazards and their potential causes.

The output HzLg from Hazard Analysis is an input of
the Risk Analysis pattern (illustrated by the assigns operator
that is drawn as an arrow from HzLg to Haz). The SIL
Classification pattern was used as support for Risk Analysis.
The output Risks from Risk Analysis is used as input to
Establish System Safety Requirements.

The output S-Req of Establish System Safety Require-
ments (S-Req is defined as an alias for the output parameter
Req) is an output of the composite.

Fig. 6 defines the Requirements composite. The composite
is defined in order to make later illustrations simpler and
consists of the composite for establishing functional require-
ments (defined in Fig. 4) and the composite for establishing

Safety
Requirements

= [TOA, Haz][S-Req] —

. Establish
Hazard Risk . System Safety
Analysis Analysis Requirements
~ =>[ToA] =~ o~
= [ToA,Haz](:=)[HzLg] —> [Haz]{(:=)[Risks] —=[Risks]{:=) [ToA] &=
[AnHaz] [CrCat] [S-Req@Req ==
[FT] [FncCat]

—> [Haz] (%% [Risks]

FTA SIL
Classification

—»[ToA,Haz]‘ﬁ»

Figure 5. Safety Requirements — Composite

PESARO 2013 : The Third International Conference on Performance, Safety and Robustness in Complex Systems and Applications

Requirements
=p[Mch, Haz] [Req] ===

Functional Safety
Requirements Requirements

=p [Mch ®Toa, Haz]

[Req]==—>

—>[Mch][F-Req] aD

Figure 6. Requirements — Composite

safety requirements (defined in Fig. 5).

VII. ESTABLISH DESIGN BASIS
A. Pattern Selection

At choice D of Fig. 3, there are two available design
patterns that may be selected.

The Trusted Backup pattern describes a system concept
where an adaptable controller may operate freely in a
delimited operational state space. Safety is assured by a
redundant non-adaptable controller that operates in a broader
state space and in parallel with the adaptable controller.
A control delegator grants control privileges to the most
suitable controller at any given time on the basis of switching
rules and information from safety monitoring.

The Dual Modular Redundant pattern describes a system
concept where two similar controllers operate in parallel.
The parallel operating redundant controllers and a voting
unit provides mitigations against random error.

The Dual Modular Redundant pattern was selected as
guidance for establishing the design on the basis of an
evaluation of the strengths and weaknesses of the two design
patterns with respect to the requirements.

B. Pattern Instantiation

Fig. 7 represents an excerpt (simplified) of the result,
fully described in [12], of applying the Dual Modular
Redundant pattern. The pattern was instantiated according to
its instantiation rule and the design was defined to comply
with the requirements identified in Section V and Section
VL

Fig. 7 illustrates the main parts of our interlocking system.
A component identified as Cmd is responsible for the
communication towards the operators of the system. Dual
controllers, identified as Ctrll and Ctrl2, are responsible
for providing interlocking functionality, e.g., lock a train
route upon request from an operator. A component identified
as IO is responsible for communicating with e.g., points,
lights, and track sections as presented in Fig. 1 in order
to communicate their states to the dual controllers. The /10
component is also responsible for safe application of the
output from the dual controllers (the /O component contains
a voter).

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-268-4

«component»
Interlocking System

«component»gj

Cmd:C J iOperator

oL

iOperator

iCommand

&

«component»gj
Ctrl2:Interlocking

«component»gj
Ctrl1:Interlocking

ilnterlocking ilnterlocking

{1 {1
«component» 2]
10:InputOutput
1 I

0

iPointsx iGatesx iTracks %
fl fl fi
iPointsx iGatesx iTracksg

Figure 7. UML Component Diagram

o
iLights,

f
iLightsHu\

Besides the presented excerpt, results from pattern instan-
tiation include a description of: the interaction between the
interlocking system and other systems; the functionality of
the internal components of the interlocking system; and the
interaction between the components within the interlocking
system. In the following when we refer to the system design
we mean the full design of the interlocking system. The
fulfilment of identified requirements, e.g., FR.1 defined in
Section V-B and SR.1 defined in Section VI-B, is manifested
in different decomposed models of the full design.

C. Pattern Composition

In Fig. 8, the output parameter S of Dual Modular
Redundant represents the abstract system design described
by the pattern, the instantiation of which is represented by
the design outlined in Section VII-B.

Fig. 8 specifies that the instantiation of the output param-
eter S of the pattern Dual Modular Redundant shall satisfy
the instantiation of the output parameter Req of the pattern
Requirements. The relationship is captured by a satisfies
operator where the bullet is associated with the output that
describes what should be satisfied and the check mark is
associated with the output that is required to satisfy.

VIII. ESTABLISH SAFETY CASE
A. Pattern Selection

The Overall Safety pattern associated with choice E in
Fig. 3 was selected as a means to argue that the system is

Pattern Solution — Intermediate

—>[Mch, Haz] [Req, S]==>

Requirements

Dual Modular
Redundant

—>[Mch, Haz][Rﬂ. ‘v/lS]

[S]=—>

Figure 8. Intermediate Solution — Composite

PESARO 2013 : The Third International Conference on Performance, Safety and Robustness in Complex Systems and Applications

c1 G1 c2

Interlocking system: <
Outlined in Section 7.2

Sufficiently safe:
Quality management,
safety management,
and technical safety
sufficiently addressed

Interlocking system
is sufficiently safe for —>
its intended use

L v

Ceg ecr:):‘en s1 The system is demonstrated safe
G = Goal by demonstrating proper quality
S = Strategy management, safety

management and technical safety

G2 v G3 i G4 v

Quality management is
sufficiently addressed

Technical safety is
sufficiently addressed

Safety management is
sufficiently addressed

Figure 9. GSN Safety Case (excerpt)

sufficiently safe based on satisfactory quality management,
safety management and technical safety.

The Technical Safety pattern was selected for arguing sat-
isfactory technical safety. A strategy defined by the pattern
is to explicitly address all risks associated with the system
(contrary to an implicit safety demonstration). The explicit
risk demonstration strategy is here intended to be detailed by
the Safety Requirements Satisfied pattern that may be used
to structure the argument that all requirements are satisfied.

B. Pattern Instantiation

Fig. 9 presents an excerpt expressed in GSN [13] of the
safety case provided upon instantiation of Overall Safety,
Technical Safety and Safety Requirements Satisfied according
to their instantiation rules.

The safety case provided upon pattern instantiation de-
scribes a decomposable safety demonstration, annotated in
GSN [13], arguing that the system design is sufficiently safe
for its intended purpose. One of the decomposed parts of the
safety case put forward a claim that the system is safe given
that the safety requirements are correct, suitable and satis-
fied. Further, compliance to identified safety requirements is
shown by referring to the properties of the design as defined
by the design models. The design models act as supporting
evidences to claims put forward in the safety case. The safety
case contains the claims that must be supported by evidences
and that once shown provides assurance that the design is
safe.

C. Pattern Composition

Fig. 10 defines the composite Safety Case. It specifies
that the input to the composite is ToD (short for Target
of Demonstration) and Req (short for Requirements). The
output of the composite is identified as Case and represents
the output provided when the pattern Overall Safety is
instantiated.

A part identified as TechSaf (short for Technical Safety)
of the Overall Safety patterns is detailed (specified by the
details operator, the “black box” represents the output that is
detailed and the small icons represent the output that details)
by the Technical Safety Pattern. A part identified as ERE

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-268-4

Safety
Case
=[ToD, Req] [Case]==p
. Safety

Overall Technical Requirements

Safety Safety Satisfied
—>[TOD]‘ A’ [TechSaf] .—Clg[Case]@[E RE] .—CIOV[Case] @

[Case]==> = [ToD] = [Tod, Req]

Figure 10. Safety Case — Composite

(short for Explicit Risk Estimation) of Technical Safety is
detailed by Safety Requirements Satisfied.

IX. COMPOSITE PATTERN SOLUTION
A. Pattern Composition

Fig. 11 defines the composite Pattern Solution that com-
bines all patterns applied in the case.

Using the satisfies operator Pattern Solution specifies
that the instantiation of output parameter S of the Dual
Modular Redundant shall satisfy the instantiation of Req
of the composite Requirements (defined in Fig. 6). Further,
the demonstrates operator constrains the instantiation of
the output parameter Case of Safety Case to be a safety
demonstration for S of Dual Modular Redundant. 1t is
also specified that the instantiation of parameter S-Req
(representing an element of the parameter set named Req,
see Fig. 6) of the composite Requirements is assigned to
the input parameter Req of Safety Case. The instantiation
order of the patterns is defined by the grey arrow in the
background that indicates that the Requirement composite
shall be instantiated first, then the Dual Modular Redundant
and the Safety Case patterns may be instantiated in parallel.

B. Pattern Instantiation

The composite Pattern Solution described in Fig. 11 is
a pattern and may thus be applied on several cases, e.g.,
for developing an interlocking system for a station similar

Pattern
Solution

=p[Mch, Haz] [Req, S, Case]m==p

Requirements

Dual Modular
Redundant

—[Mch, Haz][Req]. Visi(%)is—
[sReal '~ 5]
Safety Case
\—)lReq][ToD] A
<+==[Case]
Figure 11. Pattern Solution — Composite

PESARO 2013 : The Third International Conference on Performance, Safety and Robustness in Complex Systems and Applications

Requirement artefact
Design artefact
Safety Case artefact

Documentation artefact

Figure 12. Icons for denoting different types of artefacts

to the one described in this article. In order to describe a
specific application of a composite pattern, annotations for
specifying the instantiation of parameters may be added to
the composite pattern diagram.

Fig. 12 illustrates the different icons and the respective
type of artefacts that they represent that are used to specify
parameter instantiation.

Fig. 13 is identical to Fig. 11 with the addition of
annotations specifying the instantiations of parameters. An
icon symbolising the type of artefact that is referred to and a
string identifying the referred artefact illustrates an artefact
reference. A dotted line connecting an artefact reference to
a parameter specifies that the referred artefact instantiates
the parameter.

The instantiations illustrated in Fig. 13 refer to the arte-
facts that are described in this article rather than the full
version of these artefacts as provided in [12].

When every composite pattern diagram that is applied
during development is annotated with their instantiations,
the traceability between the input and output of every pattern
and between patterns are provided.

X. RELATED WORK

To the best of our knowledge, there exists no other
pattern-based method that combines diverse kinds of patterns
into compositions like SaCS. SaCS has been conceived to

Ref. System description

Section Il
\ /

\ Ref. Hazards /

Ref. Requirement FR.1 Section V-B
and SR.1 Section VI-B

\ y / Ref. Figure 7,
Section V-A
\ \ / Section VII-B
\
\ \ Pattern ///)/ Ref. Safety Case
\ A .
\ Y Solution K)/ A Section VIII-B

\ / .7
=p[Mch, Haz] [Req, S, Case]===p

Requirements

Dual Modular
Redundant

= Mch, Haz]‘ Req] @ v S
(e Vs
[S-Red] [S]

e - Safety Case
-
/// Req][ToD]

Ref. Requirement
SR.1 Section VI-B

[S] ==

-

<+—[Case]

Figure 13. Pattern Solution — Composite (annotated with instantiations)

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-268-4

facilitate efficient development by the support of patterns,
separation of concerns in the style of pattern languages,
a clearly defined process and application of acceptable
development practices as required by safety standards, and at
the same time documentation and visualisation in the manner
of system modelling.

The concept of systematically applying a set of pat-
terns is inspired by the work of Alexander et. al [6] on
architecture of buildings. Important sources of inspiration
applicable to development of software based systems are
pattern approaches for: requirements elicitation [14], [15],
software design [7], [8], [16], and safety demonstration
[17], [13]. Two challenges associated with the referenced
pattern approaches are that: the integration of patterns is
detailed informally; each pattern approach only reflects on
one perspective important when developing critical systems,
e.g., software design [8]. SaCS offer the ability to combine
different kinds of patterns and detail the combination.

The notation for detailing the application of patterns and
the focus on establishing a complementing set of devel-
opment artefacts offered by SaCS are inspired by safety
domain needs on providing assurance. International safety
standards, e.g., [2], [4] express requirements related to
assurance. While safety standards to a large degree describe
what are the required practices to be performed during
development, SaCS provides guidance on applying accepted
safety engineering practices. The European railway regula-
tion [18] and the associated guideline [19] on common safety
methods for risk evaluation and assessment has influenced
the work on defining SaCS patterns. While the guideline
[19] addresses the railway domain, SaCS may be applied in
different domains by selecting among the available patterns
those that are accepted within a given domain.

XI. CONCLUSIONS

We have demonstrated how the conceptual design is in-
stantiated from several SaCS basic patterns within a specific
SaCS composite (Fig. 13). Each constituent basic pattern
of the composite has clearly defined inputs and outputs
and provides guidance on instantiation through defined in-
stantiation rules (these are detailed in [12]). Operators for
composition define the combination of instantiation results
from several patterns. The composite pattern details: the
identifier and type of every pattern applied in order to derive
the conceptual design; the pattern instantiation order; and
the flow of data through the network of patterns giving
traceability between development artefacts.

The conceptual design is built systematically in manage-
able steps (exemplified in Sections V to IX) by a clearly
defined process for pattern selection, instantiation and merg-
ing of results (by pattern composition). The conceptual
design (fully described in [12]) is consistent (see Section
IV). The required triple is provided by the instantiation of
the parameters Reg, S, and Case of the composite pattern

PESARO 2013 : The Third International Conference on Performance, Safety and Robustness in Complex Systems and Applications

illustrated in Fig. 13. In [12] we argue that the triple
completely specifies the required function. We also argue
that the design (instantiation of S in Fig. 13) correctly
specifies the fulfilment of requirements (instantiation of Req
in Fig. 13). The conceptual design is expressed in a form that
we think is easy to understand (textual descriptions, UML
diagrams, and GSN [13] diagrams) and that is easy to detail
or reuse. We also claim that the conceptual design may be
easily detailed into an implementable system.

XII. ACKNOWLEDGMENTS

This work has been conducted and funded within the
OECD Halden Reactor Project, Institute for energy tech-
nology (IFE), Halden, Norway.

REFERENCES

[1] A. A. Hauge and K. Stglen, “A pattern-based method for
safe control systems exemplified within nuclear power pro-
duction,” in Lecture Notes in Computer Science, vol. 7612,
September 2012, pp. 13-24.

[2] IEC 62278, “Railway Applications — Specification and
Demonstration of Reliability, Availability, Maintainability and
Safety (RAMS),” IEC 62278, ed. 1.0, International Elec-
trotechnical Commission, 2002.

[3] IEC 62279, “Railway Applications — Communication, Sig-
nalling and Processing Systems — Software for Railway
Control and Protection Systems,” IEC 62279, ed. 1.0, Inter-
national Electrotechnical Commission, 2002.

[4] IEC 62425, “Railway Applications — Communication, Sig-
nalling and Processing Systems — Safety Related Electronic
Systems for Signalling,” IEC 62425, ed. 1.0, International
Electrotechnical Commission, 2007.

[5] IEC 61025, “Fault Tree Analysis (FTA),” IEC 61025, ed. 2.0,
International Electrotechnical Commission, 2006.

[6] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson,
I. Fiksdahl-King, and S. Angel, A Pattern Language: Towns,
Buildings, Construction. New York: Oxford University Press,
1977.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-268-4

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

F. Buschmann, K. Henney, and D. Schmidt, Pattern-Oriented
Software Architecture: On Patterns and Pattern Languages,
Vol. 5. Wiley, 2007.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

OMG, “Unified Modeling Language Specification, version
2.4.1,” Object Management Group, 2011.

M. S. Lund, B. Solhaug, and K. Stglen, Model-Driven Risk
Analysis: The CORAS Approach, 1st ed. Springer, 2010.

E. R. Tufte, The Visual Display of Quantitative Information,
2nd ed. Graphics Press, 5 2001.

A. A. Hauge and K. Stglen, “A Pattern Based Method for
Safe Control Conceptualisation — Exemplified Within Rail-
way,” Institute for energy technology, OECD Halden Reactor
Project, Halden, Norway, Tech. Rep. HWR-1037, 2013.

GSN Working Group, “GSN Community Standard Version
1,” York, England, 2011.

E. Hull, K. Jackson, and J. Dick, Requirements Engineering.
Springer, 2004.

M. Jackson, Problem Frames: Analyzing and Structuring
Software Development Problems. Addison-Wesley, 2001.

R. S. Hanmer, Patterns for Fault Tolerant Software. Wiley,
2007.

R. Alexander, T. Kelly, Z. Kurd, and J. McDermid, “Safety
Cases for Advanced Control Software: Safety Case Patterns,”
University of York, York, UK, 2007.

European Union, “Commission regulation (EC) No 352/2009
on the adoption of a common safety method on risk evaluation
and assessment as referred to in Article 6(3)(a) of Directive
2004/49/EC of the European Parliament and of the Council,”
Official journal of the European Union, 2009.

ERA, “Guide for the application of the Commission Regu-
lation on the adoption of a common safety method on risk
evaluation and assessment as referred to in Article 6(3)(a)
of the Railway Safety Directive,” European Railway Agency,
2009.

