
On the Operationalization of Composable Architecture
by Means of Normalized Systems Theory

Geert Haerens
Antwerp Management School, Belgium

Engie nv, Belgium
Email: geert.haerens@engie.com

Herwig Mannaert
University of Antwerp, Belgium

Email: herwig.mannaert@uantwerpen.be

Abstract—In a fast-evolving world, companies require IT solu-
tions that allow them to adapt swiftly to changing conditions. In
2020, Gartner introduced the Composable Architecture Frame-
work as a guiding principle to create application landscapes
that are easily composable and re-composable, thus supporting
change. The Normalized Systems theory is about the creation
of evolvable modular software. The concepts presented in the
Composable Architecture Framework resonate with Normalized
Systems. A closer analysis of the framework through Normalized
Systems theory reveals that Gartner’s framework lacks precision.
As such, following the guidance of the framework will insuffi-
ciently protect companies from change, both outside and inside
the organization.

Keywords—Normalized Systems Theory; Composable Architec-
ture; Packaged Business Capabilities.

I. INTRODUCTION

For many years now, a death wish toward the monolithic
application has been declared. Monolithic applications are
difficult to change and unsuitable in our fast-moving world.
Many paradigms have been proposed over the years that aim
at splitting applications into smaller, modular parts. With the
rise of the Internet and faster network speeds, the physical
distribution of those parts has become a reality. Distributed
Computing Environment (DCE) [1] proposed modules encap-
sulating functionality that could be activated using Remote
Procedure Calls (RPC). An essential benefit to splitting ap-
plications into smaller, independent callable modules is re-
use. This resonates with McIlroy’s dream, expressed during
the 1968 NATO conference on Sofware Engineering, where ”
... I expect families of routines to be constructed on rational
principles so that families fit together as building blocks. In
short, [the user] should be able to safely regard components
as black boxes.”. SAP ERP (Enterprise Resource Planning),
for instance, uses this kind of approach to allow the calling
of SAP functionalities from other systems through Remote
Function Calls (RFC). SAP re-baptized RFC to BAPI, Busi-
ness Application Programming Interface, to focus even more
on encapsulated functionality. In the past couple of years,
we have seen a shift from encapsulated functionality toward
technology, meaning that today, the talk of the town is about
REST APIs, message queues, and event systems as a means of
implementing integration between modules but without paying
attention to the functionality.

In 2020, Gartner [2] introduced the notion of Packaged
Business Capabilities (PBC) to create Composable Applica-

tions. They proposed the Composable Architecture Framework
[2] as a guide for proper encapsulating functionalities and
using technologies that allow flexibility in recomposition and
evolution. Their approach connects the previous focus on
functionality with today’s emphasis on technology.

Normalized System theory (NS) [3], originating in software
development, put forward the necessary conditions for the
evolvability of modular structures. In this paper, we will
try to operationalize and guide the implementation of the
concepts of Gartner’s Composable Architecture Framework
by using NS [4]. The paper is structured as follows: In
Section II, we will introduce Gartner’s Reference Architecture
for Composable Business Technology, followed by Section III
that will introduce NS. In Section IV, we refer to related work,
and in Section V, we attempt to operationalize the framework
through NS. Section VI reflects on the operationalization and
the paper is wrapped up in Section VII.

II. GARTNER’S REFERENCE ARCHITECTURE FOR
COMPOSABLE BUSINESS TECHNOLOGY

In 2020, the world was struck by COVID. Besides the hu-
man loss and suffering, businesses were also severely disrupted
by this crisis. Gartner noticed that companies with a modular
application approach could adjust swiftly to external condi-
tions by quickly and safely assembling, disassembling and
reassembling applications as the world required. In Novem-
ber 2020, Gartner published their Reference Architecture for
Composable Business Technology [2], which investigates the
conditions required for a platform to facilitate the composition
and re-composition of applications. The needed ingredients
for such a platform are PBCs as the essential modules, an
application composition experience allowing custom assembly
of PBCs via low code and no code, an application composition
platform enabling development and deployment of the newly
composed applications, and a data fabric allowing easy access
to data and analytics on those data.

The PBCs are modules that encapsulate a well-defined
business capability (recognized by the intended business users)
and must adhere to the following conditions:

• They are modular and cohesive.
• They are autonomous (can run independently) and have

minimal dependencies with external components.
• They allow orchestration as they can realize a process

flow across PBCs (via APIs, events, etc.).

23Copyright (c) IARIA, 2025. ISBN: 978-1-68558-263-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

PATTERNS 2025 : The Seventeenth International Conference on Pervasive Patterns and Applications

Fig. 1. Overview of the Composable Architecture Framework [5].

• They are discoverable as easily accessible and recogniz-
able by those who require them.

Defining the right level of business capability granularity is
challenging (too large = monolith, too small = more complex
to identify).

Gartner provides further guidance on the PBC definition by
defining PBC types.

There is the Application Type PBC that encapsulates both
data and functions related to a well-defined business capability.
Application Type PBC can be used to create fully expressed
(=autonomous and encapsulating a full context) PBCs or basis
business function PBC (= not autonomous and encapsulating
a part of a context). Application Type PBC can create pseudo
PBCs that are APIs toward existing monolithic applications.
They encapsulate the legacy application, allowing them to
participate in PBC composition but lack some flexibility in
true PBCs regarding their evolvability.

Reference-type PBCs allow encapsulated access to data in
the data fabric. They can access master data, metadata, or any
data instance representing a business object or physical data
container.

The Insight Type PBC allows the encapsulation of data
analytics processes. It can perform analytic operations or apply

AI models (ML, Deep learning, etc.) to data in the data fabric.
The Thing Type PBC encapsulates things in the physical

world. It can be used to access and manipulate data from the
real world (IoT).

There is the Flow Type PBC that combines different PBC
in an order. Flow Type PBCs facilitate the creation of orches-
trated PBCs that encapsulate a process.

The PBCs are activated via event channels and called
via APIs. They can also provide different and optional user
interfaces (web, mobile, or other).

In Table 1, Gartner contrasts the organization of an appli-
cation landscape in PBCs (combined with a composition and
deployment platform) with traditional application landscapes.

Garter analyzed the main change drivers in their papers:
adding new business capabilities and their associated PBCs.
Gartner further emphasizes that a platform that conforms to the
above specifications is insufficient. Business and IT must work
closely together to define and implement the required business
capabilities, requiring what Gartner calls fusion teams. These
teams are essential in creating business–IT alignment and,
thus, value creation.

To start with a composable architecture strategy, one must
first know what PBCs are already in the company. They may

24Copyright (c) IARIA, 2025. ISBN: 978-1-68558-263-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

PATTERNS 2025 : The Seventeenth International Conference on Pervasive Patterns and Applications

TABLE I
CONTRASTING TRADITIONAL WITH PBC APPLICATION LANDSCAPES (FROM [2])

Criteria Traditional Applications PBCs
Primary value Business capability Business capability
Primary access User Interface (UI) Programmatic Interface (API, event)
Scope Many business objects One business object
Internal architecture monolith or modular monolith or modular
Designed for Business Business and IT
Design priority Stability Agility
Delivered value Business solutions Recomposable business solutions
Production style Project Product
Essential tools Customization included Composition, added cost
Required IT skills Customization, low Composition, high
Cost Bulk, some ”shelfware” Componentized, tracks value
Governance Sample Complex
Internal data ”Owned” ”Owned”
Open for integration/composition Partially, a secondary priority Fully, primary design objective

already be present as fine-grained PBCs or via applications
aggregating PBCs and accessible via APIs. It is vital that
investments in future technologies that should provide PBCs
can be used as such. The individual PBCs must be accessible
via APIs and not in an aggregated way. For example, a SaaS
solution integrating multiple PBCs should allow the individual
usage of the platform PBCs without depending on the other
PBCs.

New applications are composed of assembled PBCs, al-
lowing faster delivery and updating. Updating a PBC in the
catalogue should update all applications with that PBC as an
active module.

In summary, the Gartner Composable Architecture Frame-
work “presents the reference model for developing business
applications that are modular, composable, easily adapted and
ready for change.” [2].

III. FUNDAMENTALS OF NS THEORY

Software should be able to evolve as business requirements
change over time. In NS theory [6], the lack of Combinatorial
Effects measures evolvability. When the impact of a change
depends not only on the type of the change but also on the size
of the system it affects, we talk about a Combinatorial Effect.
The NS theory assumes that software undergoes unlimited
changes over time, so Combinatorial Effects harm software
evolvability. Indeed, modifications to a system depend on the
size of the growing system. In that case, these changes become
more challenging to handle (i.e., requiring more work and
lowering the system’s evolvability).

NS theory is built on classic system engineering and statisti-
cal entropy principles. In classic system engineering, a system
is stable if it has bounded input, which leads to bounded
output (BIBO). NS theory applies this idea to software design,
as a limited change in functionality should cause a limited
change in the software. In classic system engineering, stability
is measured at infinity. NS theory considers infinitely large
systems that will go through infinitely many changes. A system
is stable for NS if it does not have Combinatorial Effects,
meaning that the effect of change only depends on the kind
of change and not on the system size.

NS theory suggests four theorems and five extendable
elements as the basis for creating evolvable software through
pattern expansion of the elements. The theorems are proven
formally, giving a set of required conditions to follow strictly
to avoid Combinatorial Effects. The NS theorems have been
applied in NS elements. These elements offer a set of pre-
defined higher-level structures, patterns, or “building blocks”
that provide a clear blueprint for implementing the core
functionalities of realistic information systems, following the
four theorems.

A. NS Theorems

NS theory [6] is based on four theorems that dictate the
necessary conditions for software to be free of Combinatorial
Effects.

• Separation of Concerns
• Data Version Transparency
• Action Version Transparency
• Separation of States

Violating any of these four theorems will lead to Combinato-
rial Effects and, thus, non-evolvable software under change.

B. NS Elements

Consistently adhering to the four NS theorems is challeng-
ing for developers. First, following the NS theorems leads
to a fine-grained software structure, which introduces some
development overhead and may slow the development process.
Second, the rules must be followed constantly and robotically,
as a violation will introduce Combinatorial Effects. Humans
are not well suited for this kind of work. Third, the accidental
introduction of Combinatorial Effects results in an exponential
increase in rework.

Five expandable elements [7] [8] were proposed, which
make the realization of NS applications more feasible. These
elements are carefully engineered patterns that comply with
the four NS theorems and that can be used as essential building
blocks for various applications: data element, action element,
workflow element, connector element, and trigger element.

• Data Element: the structured composition of software
constructs to encapsulate a data construct into an isolated

25Copyright (c) IARIA, 2025. ISBN: 978-1-68558-263-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

PATTERNS 2025 : The Seventeenth International Conference on Pervasive Patterns and Applications

module (including get- and set methods, persistency,
exhibiting version transparency, etc.).

• Action Elements: the structured composition of software
constructs to encapsulate an action construct into an
isolated module.

• Workflow Element: the structured composition of soft-
ware constructs describing the sequence in which action
elements should be performed to fulfil a flow into an
isolated module.

• Connector Element: the structured composition of soft-
ware constructs into an isolated module, allowing external
systems to interact with the NS system without calling
components statelessly.

• Trigger Element: the structured composition of software
constructs into an isolated module that controls the sys-
tem states and checks whether any action element should
be triggered accordingly.

The element provides core functionalities (data, actions,
etc.) and addresses the Cross-Cutting Concerns that each of
these core functionalities requires to function correctly. Cross-
cutting concerns cut through every element, requiring careful
implementation to avoid introducing Combinatorial Effects.

C. Element Expansion

An application comprises data, action, workflow, connector,
and trigger elements that define its requirements. The NS
expander is a technology that will generate code instances of
high-level patterns for the specific application. The expanded
code will provide generic functionalities specified in the appli-
cation definition and will be a fine-grained modular structure
that follows the NS theorems (see Figure 2).

The application’s business logic is now manually pro-
grammed inside the expanded modules at pre-defined loca-
tions. The result is an application that implements a certain
required business logic and has a fine-grained modular struc-
ture. As the code’s generated structure is NS compliant, we
know that the code is evolvable for all anticipated change
drivers corresponding to the underlying NS elements. The only
location where Combinatorial Effects can be introduced is in
the customized code.

Fig. 2. Requirements expressed in an XML description file, used as input for
element expansion.

D. Harvesting and Software Rejuvenation

The expanded code has some pre-defined places where
changes can be made. To keep these changes from being
lost when the application is expanded again, the expander can
gather them and re-inject them when re-expanded. Gathering
and putting back the changes is called harvesting and injection.

The application can be re-expanded for various reasons. For
example, the code templates of the elements can be improved
(fix bugs, make faster, etc.), new Cross-Cutting Concerns (add
a new logging feature) can be included, or a technology change
(use a new persistence framework) can be supported.

Software rejuvenation aims to routinely carry out the har-
vesting and injection process to ensure that the constant
enhancements to the element code templates are incorporated
into the application.

Code expansion produces more than 80% of the code of
the application. The expanded code can be called boiler-plate-
code, but it is more complex than what is usually meant
by that term because it deals with Cross-Cutting Concerns.
Manually producing this code takes a lot of time. Using
NS expansion, this time can now be spent on constantly
improving the code templates, developing new templates that
make the elements compatible with the latest technologies, and
meticulously coding the business logic. The changes in the
elements can be applied to all expanded applications, giving
the concept of code reuse a new meaning. All developers
can use a modification on a code template by one developer
on all their applications with minimal impact, thanks to the
rejuvenation process (see Figure 3).

Fig. 3. NS development and rejuvenation.

IV. RELATED WORK

While searching for relevant literature, we found some
papers discussing Composable Architecture. The most relevant
publications are, on the one hand, a paper about a possible
methodology and demonstration by use case for implementing
Composable Architecture, and on the other hand, the book of
AW Sheers, ”The Composable Enterprise” [9]. While Scheer
[9] tried to rearchitect a complete organization, Ivas [10]
provides a methodology to introduce Composable Architecture
and demonstrates it with a use case. The paper also provides a
good literature review where the author notices that only a few
academic papers discuss Composable architecture (search on

26Copyright (c) IARIA, 2025. ISBN: 978-1-68558-263-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

PATTERNS 2025 : The Seventeenth International Conference on Pervasive Patterns and Applications

Google Scholar, Web of Science, and Resource Gate). At the
same time, thousands of papers are found in the professional
literature (via Google), pointing out the need for academic
attention to the subject. The paper proposes a methodology
consisting of 6 steps (from [10]:

• Understand business drivers and objectives. The first
step is to understand the business background of the
initiatives, i.e., the rationale, objective, and scope from
the business point of view.

• Understand the holistic scope of the initiative. The second
step is about understanding which value stream steps and
business capabilities from the Holistic value delivery are
being affected by the initiative and how.

• Understand the current situation. Understand and sketch
the scope of the current solution (architecture).

• Understand the situation and needs at the enterprise level.
Identify if any components can be reused or optimised by
this solution at the enterprise level or if there are other
future initiatives with the same need.

• Design as API -first Headless PBC (preferably according
to MACH [11]). If you need to implement a new service,
you should preferably design it according to MACH
principles. Otherwise, deliver business change by creating
new or optimising existing monolith modules by API-first
and Headless MACH principles.

• Implement business-IT aligned PBC solution and con-
solidate. Implement the agreed business-IT solution and
consolidate any old solutions into the new solution that
implements the same functionality (business capability).

For an Enterprise Architect, those steps are logical and provide
excellent guidance. We argue that, next to the need for
academic attention to applying Composable Architecture for
(re)introducing functional re-uses, there is a need as well for
academic attention to properly operationalizing/implementing
Composable Architecture to make the dream of McIllroy a
reality and not a nightmare.

V. OPERATIONALIZATION OF GARTNER’S REFERENCE
ARCHITECTURE FOR COMPOSABLE BUSINESS

TECHNOLOGY

In this section, we will take the components of the Compos-
able Architecture Framework (see Figure 1) and try to guide
how to operationalize them. We start by looking closer at
business capabilities and how they should help align business
and IT. We continue by looking at the modularity of PBCs
and the different types of PBCs defined by the Composable
Architecture Framework. We end this section by looking at
PBCs and Cross-Cutting Concerns (CCC) and by taking a
closer look at the requirements for a PBC platform.

A. Defining Business Capabilities

The concept of business capabilities originates in the
resource-based view [12] of companies, where it is consid-
ered vital to identify resources and capabilities that provide
a competitive advantage [13]. This evolved into the idea
that companies need to know ”what” kind of activities they

are undertaking and gave rise to using the term Business
Capabilities. Although decades have passed since the first
mention of capabilities, there is no agreed-upon definition of
business capabilities and how they should be defined, named
and properly used. We refer to [13] for a comprehensive
literature overview.

The cornerstone of Gartner’s Composable Architecture
Framework is PBCs. However, as argued above, the definition
of business capabilities can be problematic. If the definitions
are unclear, then the implementation into PBC is suspect. For
some industries, there are business capabilities frameworks
such as BIAN [14] for the banking industry or NBility
for energy transmission and distribution in the Netherlands
[15]. Still, a lot of sectors have no such frameworks openly
available.

As such, a necessary condition for using the Composable
Architecture Framework, being well-defined business capabil-
ities, is already a tough nut to crack, and scientific guidance
on how to do it is lacking.

B. Business IT Alignment using PBCs

Gartner considered the business capabilities to be well-
defined, shared between business and IT, and as an accurate
alignment tool between the two. They refer to ”Fusion Teams”
as the secret formula to create this shared understanding.
Fusion teams are teams in which business and IT people are
present. Close collaboration between the two will result in
shared understanding and better solutions. This idea is also
present in Agile Frameworks such as SAFe [16], where agile
teams are considered multi-functional (mix of business and
IT), and having people who know the job best close together,
their emerging designs will be better than those imposed by
intentional architecture. Or stated otherwise, the PBCs are to
be built bottom-up and not defined top-down.

From NS, we know the importance of having an anthro-
pomorphic design. This means that the naming of modules
should represent something that exists in the real world, as this
increases understanding of the module’s function. The same
holds for business capabilities. If they are insufficiently fine-
grained and abstract, they no longer represent business reality,
but if they are too detailed, the number of business capabilities
is considered too large and thus complex. Whether bottom-up
or top-down is the right approach is beyond the scope of this
paper. One often notices a combination of both; they meet in
the middle somewhere.

C. PBCs and Modularity

Gartner’s PBCs are modular, where modularity is defined
as ”partitioned” into a cohesive set of components [2]. Garter
further adds that ”The granularity of PBCs, as with all
modular systems, is a common design challenge. Modular
components that are too large may be easier to manage,
but they are harder to change are use in new compositions.
Components that are too small may be easier to assemble but
harder to isolate, identify, find or change.” [2]. This statement
is vague. What are the objective criteria for too large and

27Copyright (c) IARIA, 2025. ISBN: 978-1-68558-263-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

PATTERNS 2025 : The Seventeenth International Conference on Pervasive Patterns and Applications

too small? Secondly, as neither is considered a good modular
design, what are the requirements for a sound module size?

Normalized Systems theory explicitly defines the optimal
module size to facilitate anticipated changes. A module must
be split into smaller modules until each complies with the four
NS theorems: SoC, AvT, DvT, and SoS. When all the theorems
are met, the optimal size is reached. As these are the necessary
conditions for system stability under change, violating them
will introduce Combinatorial Effects (CE).

Separation of Concern (SoC) teaches that each PBC should
encapsulate a separate change driver. PBCs must be defined
as fine-grained and very specific. For example, a possible
PBC is Asset Monitoring. The asset could be an IT system
(servers, databases) or an OT system (Operational Technology
as SCADAs, Turbines, etc.). Although both are assets, secure
monitoring for both requires different implementations. This
would mean that if we were only to use one PBC for this,
we would need two different versions of this PBC: one
for IT and one for OT. It suffices to extend this way of
thinking and conclude that insufficiently fine-grained PBCs
would lead to multiple versions of the PBC and break the
anthropomorphic relation between what something is (a PBC)
and how something is done. Such an anthropomorphic relation
is a required condition for a PBC platform as PBCs must be
easily discoverable (see Section II)

Action version Transparency (AvT) enforces interface sta-
bility when the implementation changes. The Composable
Architecture Framework does not explicitly mention interface
stability when the PBC implementation changes. However, it
does say the need for technologies that will result in loosely
coupled systems, such as providing interfaces via APIs and
event buses and using technologies promoted by the MACH
Alliance [11]. We will return to this point when discussing
the PBC platform. However, AvT should not be limited
to technical protocols and implementations. PBC definitions
should also pay attention to semantic issues regarding version
transparency. In case a business capability introduces a new
feature, a default behavior needs to be defined in case the new
feature is not specified.

Data version Transparency (DvT) ensures that evolution in
data attributes does not impact processing functions that do
not use these new attributes. The Composable Architecture
Framework does not mention this concept; it is left to the
data fabric. This paper will not discuss the vagueness or
evolvability of concepts such as data fabric.

Separation of State (SoS) required all modules to keep state
and make their state externally visible. The Composable Archi-
tecture Framework does not mention the need for statekeeping
of the PBCs. Like with AvT, there is the mention of MACH
technologies that promote using process Choreography over
process orchestration for evolvability purposes. Independently
of whether this is valid, choreography (as orchestration) re-
quires state-keeping and exposition if you want to trace process
issues back to the failure location. Similar to AvT, statekeeping
should also be looked at semantically, i.e., what is the actual
business state at specific points in the process flows.

D. PBC Types

Garter introduces PBC Types, such as application PBC,
data entry, analytics PBC, Digital Twin and Process. What
is missing is the relation between a PBC and a PBC Type.
Is a PBC comprised of multiple PBC types, or do they have
a one-to-one relationship? The latter would be strange as to
do something, a ”what” or a capability, you require things to
make it happen, ”hows”, and the PBC Types are pointing more
into the direction of a ”how” than in the direction of a ”what”.
The PBC Types have similarities with NS elements.

• Application PBC Type (action) versus the Task Element
• Data Entity PBC Type (reference) versus Data Element
• Process PBC Type (flow) vs Flow Element

For NS, an Analytics PBC would be an Application PBC,
where the action/task is to perform some analytic operation.
A similar reasoning applies to the Digital Twin (thing) PBC,
where this would combine data and task elements in NS.
We notice Garter’s difficulty in addressing concepts at their
suitable granularity and abstraction level.

E. PBCs and Cross-Cutting Concerns

Normalized Systems recognize that cross-cutting concerns
must be treated as any other change driver and require splitting
into different modules and proper encapsulation. PBC focus on
business, not technology. The technologies used to implement,
run, and deploy the PBC are abstracted, and the only type of
guidance regarding technology is to use MARCH-compliant
technologies. As stated in the previous subsection, we notice
an analogy between PBC Types and NS Elements. NS Ele-
ments are there to allow proper encapsulation and separation
of cross-cutting concerns. One would expect something similar
in PBCs, but this is not the case. This represents a lack
of design criteria for the PBC and could result in proper
SoC regarding capabilities/functionalities but zero evolvability
for the cross-cutting concern and associated technologies. As
new technological implementations change faster and faster,
ignoring this change driver will introduce CEs. Gartner implies
leaving this up to the PBC Platform to take care of.

F. PBC Platform

Much of the PBC implementation magic is left over to
the PBC Platform. It must facilitate the discovery of the
available PBC, the composition of PBCs and the deployment
of PBCs. We already argued that proper discovery requires
anthropomorphism of the PBC namespace and associated
granularity to avoid PBC versioning without meaning. In the
previous subsection, we argued that Gartner seems to push
the treatment of the cross-cutting concerns toward the PBC
Platform. Instead of addressing cross-cutting concerns at the
PBC level, it would need to be done at the PBC Platform level.
This would be a possibility, were it not that as a selection
criteria for a PBC platform, it is currently not mentioned in
the Composable Architecture Framework.

Another crucial aspect of the PBC platform is the design,
deployment and running of the PBCs. Gartner sees that a
change in a PBC Type would yield an update of all composed

28Copyright (c) IARIA, 2025. ISBN: 978-1-68558-263-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

PATTERNS 2025 : The Seventeenth International Conference on Pervasive Patterns and Applications

applications that use such PBC Type. In NS, the updates
of templates making up the elements are handled through
expansion and rejuvenation. The new version of the element
templates triggers a rejuvenation cycle, updating all instances
where this element template is used. The final step is to deploy
the application.

Gartner simplifies this concept with an example of Planning
PBC used in two compositions [5]. The update of that Planning
PBC would trigger the update of both compositions. The
question is, what is being updated? Is it a PBC Type that
underlies the Planning PBC? Is it the Planning PBC template
or the code making up the PBC? Does this update result in one
deployment of the Planning PBC shared by two compositions,
or are there two deployments of the Planning PBC? In the
former case, it would mean that the Planning PBC has zero
customizations (even in terms of low and no code). Otherwise,
it cannot be used in two different composite applications
without putting extra differentiation logic into the Planning
PBC or the composite applications. In the latter case, it
would mean that running instances of Planning PBCs are not
identical, and the difference must be managed on the Platform,
resulting in different PBC versions. We already discussed the
issues related to that topic.

The problem is that clear guidance is missing on how the
PBC platform should handle this. The PBC Platform must also
conform to the four NS principles, or it will not allow the
evolvability Gartner portrayed in its Composable Architecture
Framework.

VI. VALIDATION BY FOCUS GROUP

The previous section looked at the components of the
Composable Architecture framework and tried to point out
possible operationalization issues employing NS and business
capabilities theories. To avoid our findings being considered
too opinionated, we conducted a small experiment with stu-
dents of the Antwerp Management School who had just been
exposed to NS. The idea was to investigate how they look at
a concept such as Composable Architecture once they know
about NS.

Between September 2024 and November 2024, the Mas-
ter in Enterprise IT Architecture (MEITA) students of the
Antwerp Management School were exposed to Normalized
Systems for 16 hours. The MEITA is an executive master, and
students in the program already have many years of practical
experience in IT Architecture. At the end of this period,
they were given the Gartner paper about the Composable
Architecture Framework and asked to read this document using
their newly acquired knowledge of NS. All students got the
reading material beforehand, were asked to read it, and were
asked to discuss it in groups for thirty minutes and provide a
summary of their findings in 5 minutes. In total, 18 students
participated, split into four groups.

The first group had difficulty understanding the meaning of
Packaged Business Capabilities (PBCs). They realised that the
approach can only succeed if business and IT people define
the PBCs. They expected more guidance on how to do this and

foresaw evolvability issues, as no mechanisms were foreseen
to adequately address SoC beyond business changes (what
about technological changes?).

The second group tried to list the pros and cons of the frame-
work. They found the usage of no/low-code with a marketplace
of PBCs to be powerful. They considered the recommended
usage of headless promoting technologies to be a good way
to decouple UI and logic, adhering to SoC at least for those
two concerns. Group one also struggled with understanding
PBCs and claimed they had never observed it in their practices.
They see the framework’s application more in classifying your
existing applications according to business capabilities and
then use the Composable Architecture Integration platform to
recombine existing applications.

The third group also struggled to understand PBCs. They
compared the main characteristics of PBCs with the NS
theorems. Modularity resonates with NS, but the framework
has issues describing the level of granularity. They see SoC
applied to some extent but insufficient to be NS compliant.
They saw that the second characteristic, autonomy, would
require SoS, but this is not mentioned. They make a similar
remark about PBC orchestration. They conclude that the fourth
characteristic, discoverability, misses the need for AvT and
DvT.

The fourth group noticed that while NS is about change over
time and minimizing ripple effects, PBC is about building fast.
The characteristics of PBC are such that nobody in their right
mind would not want them, but the framework insufficiently
explained how to do it. On the other hand, NS tells you how
to do it, and doing it the NS way requires significant effort.
The group also identifies the PBC granularity uncertainty as
a source of future issues. For instance, the sales business
capability, packaged in a PBC, may or may not answer to the
different sales business capabilities needs in large and complex
organizations, opening the door for violation of the four NS
principles quicker than expected.

The different groups struggle with similar issues. Once
exposed to NS, one can ask more profound questions about
how implementation should occur and whether a proposed
solution has the characteristics it claims to have. It is important
to note that this does not necessarily mean that NS is the
optimal solution to operationalize the concept of PBC, as
only a single methodology was evaluated in the focus group.
Nevertheless, it does seem to validate that there is a need for
a strategy to operationalize a PBC architecture through more
concrete guidance, such as provided to a certain extent by NS.

VII. CONCLUSION

Application re-use is not just a long-forgotten dream of
McIllroy, but a focus on many companies. The ability to
reuse and recombine applications to support the changing
business conditions of an expectation many CEOs have toward
their CIOs. In recent years, the focus on functional reuse has
been pushed aside by technology-focused integration patterns.
Gartner puts functional re-use back on the map with its
Composable Architecture Framework, where PBCs are the

29Copyright (c) IARIA, 2025. ISBN: 978-1-68558-263-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

PATTERNS 2025 : The Seventeenth International Conference on Pervasive Patterns and Applications

essential building blocks of application landscapes. By using
NS as an instrument of design and evaluation method for
evolvable systems, we pointed out operationalization issues
one might face when trying to implement the Composable
Architecture Framework, or one might use it to critically
evaluate providers of solutions based on it. A focus group
was used to validate and balance our findings.

ACKNOWLEDGMENT

The authors thank Rudy Claes of Innocom for introducing
them to Gartner’s Composable Architecture Framework and
conducting a brainstorming session about the framework and
its evolvability. We also thank the Master in Enterprise IT Ar-
chitecture (MEITA) students at Antwerp Management School
(AMS) for their contribution as focus group.

REFERENCES

[1] G. Coulouris, J. Dollimore, and T. Kindberg, ”Distributed Systems:
Concepts and Design Edition 3,” ISBN:978-0-201-61918-8, 2001.

[2] J. Sun and Y. Natis. ”Use Gartner’s Reference Model to Deliver
Intelligent Composable Business Applications,” Gartner, ID G00720701,
2020 - refresh 2022.

[3] H. Mannaert, P. De Bruyn, and J. Verelst, “On the interconnection of
cross-cutting concerns within hierarchical modular architectures,” IEEE
Transactions on Engineering Management, Vol. 69, pp. 3276-3291 2020.

[4] P. Huysmans, G. Oorts, P. De Bruyn, H. Mannaert, and J. Verelst, “Po-
sitioning the normalized systems theory in a design theory framework,”
Lecture notes in business information processing, ISSN 1865-1348-142,
pp. 43-63, 2013.

[5] Y. Natis and G. Alvarez, ”How to Implement Composable Technology
with PBCs,” Gartner, ID G00751018, 2021.

[6] H. Mannaert, J. Verelst, and P. De Bruyn, “Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design,” ISBN 978-90-77160-09-1, Koppa, 2016.

[7] H. Mannaert, J. Verelst, and K. Ven, “The transformation of requirements
into software primitives: Studying evolvability based on systems theo-
retic stability,” Science of Computer Programming, Volume 76, Issue
12, pp. 1210-1222, 2011.

[8] P.Huysmans, J. Verelst, H. Mannaert, and A. Oost, ”Integrating infor-
mation systems using normalized systems theory: four case studies,” In
IEEE 17th Conference on Business Informatics, Volume 1, pp. 173-180,
2015.

[9] A.W. Scheer, ”The Composable Enterprise: Agile, Flexible, Innovative:
A Gamechanger for Organisations, Digitisation and Business Software,”
ISBN:978-3-658-42482-4, Springer, 2024.

[10] I. Ivas, ”Implementation of Composable Enterprise in an Evolutionary
Way through Holistic Business-IT Delivery of Business Initiatives,”
In Proceedings of the 26th International Conference on Enterprise
Information Systems, Volume 1, ISBN: 978-989-758-692-7, pp. 397-
408, 2024.

[11] MACH Alliance, [Online], Available: https://machalliance.org, [re-
trieved: March, 2025].

[12] J. Barney, ”Firm resources and sustained competitive advantage,” In
Journal of management, Volume 17, Issue 1, pp 99-120, 1991.

[13] T. Offerman, C.J. Stettina, and A. Plaat, ”Business capabilities: A
systematic literature review and a research agenda,” In International
Conference on Engineering, Technology and Innovation (ICE/ITMC),
pp. 383-393, 2017.

[14] BIAN, [Online], Available: https://bian.org, [retrieved: March, 2025].
[15] NBility, [Online], Available: https://www.edsn.nl/nbility-model, [re-

trieved: March, 2025].
[16] SAFe Framework, [Online], Available: www.scaledagileframework.com,

[retrieved: March, 2025].

30Copyright (c) IARIA, 2025. ISBN: 978-1-68558-263-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

PATTERNS 2025 : The Seventeenth International Conference on Pervasive Patterns and Applications

	Introduction
	Gartner's Reference Architecture for Composable Business Technology
	Fundamentals of NS theory
	NS Theorems
	NS Elements
	Element Expansion
	Harvesting and Software Rejuvenation

	Related Work
	Operationalization of Gartner's Reference Architecture for Composable Business Technology
	Defining Business Capabilities
	Business IT Alignment using PBCs
	PBCs and Modularity
	PBC Types
	PBCs and Cross-Cutting Concerns
	PBC Platform

	Validation By Focus Group
	Conclusion
	References

