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Abstract—In this study, we investigate students’ motivation
to learn scientific computing in the undergraduate systems
engineering program at the University of Cérdoba (Colombia).
Scientific computing is often a challenging subject for college
students; therefore, motivation plays a crucial role in succeeding
in these courses. To quantify the factors that potentially impact
student motivation, we conducted a survey of 117 students,
relying on their perceptions. Using an F-test, we selected 15
independent variables from the original set of factors. With
this dataset, we applied multidimensional linear regression to
identify a function that captures the regular patterns associating
motivation with its influencing factors. This prediction function
quantifies a student’s motivation — our target variable — based
on the values of the independent variables. Using this function
and the Monte Carlo method, we explored the multidimensional
space of independent variables to estimate the probability that
a student attains one of ten motivation levels, ranging from
completely demotivated to highly motivated to learn scientific
computing. Our findings indicate that students are most likely to
achieve moderate motivation levels, specifically the 4th (26.86%),
5th (45.03%), and 6th (21.21%) levels. However, we also found
that implementing effective policies and strategies (e.g., enhancing
student satisfaction) may increase the probability of achieving
higher motivation levels, particularly the 7th (36.98%) and 8th
(61.04%) levels.

Keywords-higher education; motivation; regression; Monte Carlo
method.

I. INTRODUCTION

The motivation to study in college is crucial for success
in courses. Demotivated students often lack the willingness,
reasons, or desire to complete assignments, study for tests,
and so forth. In the specific context of scientific computing
courses, maintaining students’ motivation can be challenging
due to the difficulties associated with the mathematical concepts
underlying these courses and understanding how to apply these
concepts and methods to solve real-world problems.

Scientific computing courses, such as numerical methods,
can be quite challenging to learn. This has prompted research
aimed at predicting which students are at risk of failing these
courses [1]-[4]. Indeed, these courses are difficult because they
involve mathematics, programming skills, and knowledge of
science for application purposes.

Studying the factors influencing the learning of mathematics
has been a subject of interest in prior research, from basic
educational levels [S]-[8] to higher education [9]-[13], and
even doctoral levels [14]. Scientific computing, essentially an

applied mathematics topic, consists of numerical methods and
heuristics for solving mathematical problems in science and
engineering that cannot be addressed analytically.

In Colombia, studies have examined the process of construct-
ing knowledge among college students in the context of algebra
courses within engineering curricula [10]. However, prior
research has focused primarily on commitment, satisfaction,
and the challenges of learning mathematics in college. As far as
we know, no prior research has studied the students’ motivation
to learn scientific computing.

Thus, we aim to fill this gap in the literature. Our problem
is to find a function that allows us to predict the student’s
motivation based on the variables that affect it by examining
regular patterns in students’ perceptions. Furthermore, we aim
to explore a broader set of values for those independent vari-
ables than those available in the surveyed students’ perceptions
to calculate the probability that a student feels completely
demotivated (level one) up to completely motivated (level ten).
Identifying these probabilities is useful for developing policies
that improve motivation among students pursuing careers that
require scientific computing.

We found that it is less likely for a student to reach the
highest level of motivation, while the fifth level is the most
probable. Moreover, by simulating other scenarios, we found
that it is possible to increase the student’s motivation for
learning scientific computing.

The remainder of this article is outlined as follows: In
Section II, we describe how we collected and preprocessed the
dataset, including its characteristics. Section III presents the
regression model used to determine the functional relationship
between the independent and dependent variables of this
study, which forms the basis for calculating the probability
of a student reaching a specific motivation level in scientific
computing courses, as described in Section IV. To visualize
the input variables of the regression model, we reduce the
dimensionality of the input space and discuss the method used
in Section V. Section VI presents and discusses our findings,
while Section VII concludes the article and outlines directions
for future research.

II. COLLECTING AND PREPROCESSING THE DATASET

To determine the aforementioned functional relationship,
we collected a dataset to fit a regression model. The dataset
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contains independent and dependent variables. The independent
variables, also referred to as input variables, were selected
from factors that influence students’ motivation for learning
scientific computing. The dependent variable, also known as
the target or output variable, represents the student’s level of
motivation.

In this study, we assumed that the factors listed in Table I
influence student motivation in scientific computing. Some of
these factors have been utilized in prior research [12], [13].

We conducted a survey of 117 engineering students enrolled
in scientific computing courses in 2024, specifically numerical
methods and nonlinear programming. The identities of the
students were anonymized. Each student ranked almost all
factors on a scale from one to five, with the exception of
the average grade in previous mathematics courses, which is
represented as a real number between zero and five (inclusive).
For example, the extent to which a student felt positively about
the course ranged from "not good at all" (zero) to "completely
positive" (five). In contrast, the target variable was measured
on a scale from zero to ten.

After collecting the dataset, we performed an F-test to select
the input variables used for fitting the regression model. Input
variables with a p-value less than 5 x 10~2 were selected,
rejecting the null hypothesis that there is no linear relationship
between the input variable and the target variable. Table I lists
the input variables selected according to this criterion.
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Figure 1. This histogram depicts the frequency with the students chose every
level of motivation during the survey

Thus, the resulting dataset comprises 15 input variables in
addition to the target variable. Each input variable forms a
component of 117 vectors in a multidimensional input space,
where each vector represents a student’s responses to the survey,
and the motivation level is recorded as the target variable.
Formally, the vector z; € X C RP corresponds to the ith
student, where the jth component x;; represents the input
variable associated with a specific factor. Here, D denotes
the number of dimensions in the input space, i.e., D = 15.

Additionally, the target variable y; € ) C R represents the jth
student’s course motivation level.
Finally, the dataset is denoted as

D= {(xzuyz)|xz EX/\yl €y72:177N}:{($27y1)}£\;17

where N is the number of examples in the dataset (N = 117),
and the input vector space X is the Cartesian product of the
domains of each input variable, i.e.,

X=X xXgx---xX; x---xXp.
The domain of the j-th input variable is defined as

X;={aeN[1<a<5}, forj=1,...,D.

On the other hand, the domain of the target variable is denoted
as
Y={aeN|l<a<10}.

The histogram, shown in Figure 1, illustrates that the maximum
motivation level was chosen by most of the students, namely,
48 out of 117 students (see Table II).

III. FINDING THE FUNCTIONAL RELATION AMONG
VARIABLES

The functional relationship between the target variable and
the input variables is determined using ridge regression (a more
detailed description of this method can be found in [15]). The
goal is to find the function g based on the dataset D, such that
it approximates the target variable y; given the input variables
in the vector xz;, i.e., g(x;) =~ y;, where g : X — ). The
function g is defined as a linear combination of weights and
input variables as follows:

T A
g(x;) = wo + wixs1 + wamio + - +wWpaip = W Iy,

where Z; is an augmented vector of x; that includes an
additional component £;,0 = 1, and &;; = x;; for j =1,..., D.
The components of the vector w € RP*! are the weights of
the model. Henceforth, we shall call g the prediction function,
as it allows us to predict a student’s motivation level given the
above-mentioned input variables.

For simplicity sake, the input variables are represented by
the matrix X € RVN*(PH+Dwhere X,;; = 1 if j = 1, and
Xij=2;51forj=2,...,D+1 Letyc RY be the vector
whose components correspond to the target variable values in
the dataset. This setup formalizes the problem as the following
optimization problem:

min f(w) = || Xw —y|* + Alfwl?, (1

where A\ is the regularization parameter used to prevent
overfitting to noise in the input variables. The regularization
parameter is chosen using the elbow rule and 10-fold cross-
validation. By setting the gradient of the objective function f
with respect to w to zero and rearranging terms, the solution
is obtained as:

w= (XTX 4+ A)"1XxTy. )
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TABLE I. INPUT VARIABLES ASSOCIATED TO THE FACTORS THAT INFLUENCE THE STUDENT’S MOTIVATION IN SCIENTIFIC COMPUTING COURSES

Input Variable F-statistic p-value
The student’s average grade in previous mathematics courses 0.43 5.16 x 10~ T
The extent to which the student has felt good about the courset x; 1 26.17 1.27 x 10=6
The extent to which the student has felt good about previous mathematics courses} x; 2 24.68 2.38 x 1076
The extent to which the student has enjoyed the coursef x; 3 37.08 1.54 x 108
The extent to which the student considers it imperative to study the course 1.08 3.02 x 10~1
The extent to which the student considers it imperative to study mathematics courses 0.99 3.22 x 1071
The extent to which the student considers it wrong not to study the course 0.40 5.26 x 10~1
The extent to which the student considers it wrong not to study mathematics courses 1.30 2.56 x 10~1
The extent to which the student would like to recommend the course to other peerst x; 4 37.27 1.43 x 108
The extent to which the student perceives the university has up-to-date equipmentf x; 5 8.43 4.42 x 1073
The extent to which the course has been encouraged students to study with classmatest x; ¢ 29.49 3.17 x 1077
The extent to which the student has been encouraged to help classmatest x; 7 29.09 3.74 x 1077
The extent of the student’s current engagement in participating in course lessonst x; g 20.43 1.51 x 1072
The extent of the student’s current engagement in attending course lessons 2.04 1.56 x 101
The extent of the student’s current engagement in making an additional effort to understand the coursef x; o 27.31 7.82 x 1077
The extent of the student’s current focus and engagement during course lessonst x; 10 27.59 6.96 x 10~7
The extent to which the student has been encouraged to study the course independentlyf x; 11 31.37 1.48 x 1077
The extent to which the student has believed the course is useful for their professional lifet x; 12 20.64 1.37 x 10~5
The extent to which the student has considered mathematics courses useful for their professional lifef ;13 12.94 4.75 x 10~4
The extent to which the student has believed that they possess the ability to learn mathematicst x; 14 3.30 7.17 x 1072
The extent to which the student has believed that they have the ability to solve mathematics-related problems 0.93 3.37 x 1071
The extent to which the student has enjoyed to solve challenging mathematics-related problems similar to those addressed 15.02 1.77 x 1074
in the course

The extent to which the student feels their secondary school preparation is insufficient for succeeding in mathematics 3.67 5.79 x 10~2
courses

The extent to which the student believes people have innate abilities for mathematics 1.96 1.64 x 1071
The extent to which the student believes learning success depends on the lecturer 3.80 5.36 x 1072
The extent to which the student believes learning success depends on the student 1.62 2.06 x 1071
The extent to which the student believes hard work is key to succeeding in the coursef ;15 4.29 4.07 x 1072

1The input variable is selected for regression

TABLE II. MOTIVATION LEVELS OF THE STUDENTS WHO ANSWERED THE
SURVEY

Motivation Level = Number of Students  Proportion of the Sample

2 2 1.71%
3 1 0.85%
4 4 3.42%
5 11 9.40%
6 6 5.13%
7 10 8.55%
8 27 23.08%
9 8 6.84%
10 48 41.02%
Total 117 100.00%

Once the weights are computed, the function that maps the
input variables to the target variable is defined. Thus, given
new input variables e, corresponding to a new student, the
function g(zqew) calculates their respective motivation level.

IV. CALCULATING THE PROBABILITY OF EACH
MOTIVATION LEVEL

In this section, we delve into the details of calculating
the probability that students feel motivated at each level
using the function that predicts the target variable given the
input variables. To achieve this, we adopted the Monte Carlo
numerical method [16].

The probability that students achieve motivation level %k for
learning scientific computing is defined as follows:

Py =)~ Plo(os) = 1) = [ Platas) = k| P(a:) da.

3)
where P(z;) is the probability density function of the input
variables.

Assuming that each component of z; is uniformly distributed,
ie., x;; ~U(1,5) for j =1,..., D, the probability density
function P(x;) is uniform. Therefore, Equation (3) is rewritten
as:

N
Pl = k)~ Plg(e) = k) = 3" 1(gle) = B, @)

where N is the number of vectors x;, whose components are
random numbers uniformly distributed. Moreover, 1(u) = 1 if
w is true, and 1(u) = 0 otherwise. Note that N is not the size
of the dataset described in Section II.

The value of IV is chosen based on the standard error (SE),
which is calculated as:

SE = — &)

where o is the standard deviation of the calculated probabilities.
The value of N is increased iteratively until the SE decreases
to a tolerable threshold.
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V. REDUCING THE DIMENSIONALITY OF THE INPUT SPACE

We reduce the dimensionality of the vectors in the input space
by adopting Principal Component Analysis (PCA) (see [15]
for a complete description of the method). PCA transforms
the original vectors into a new space with fewer dimensions,
where each principal component is a linear combination of the
original variables. The components are calculated to maximize
variance, enabling a better understanding of the latent structure,
reducing noise, and visualizing the dataset.

Let u; € RP be the first basis vector of the new space. The
first principal component z;;, corresponding to vector z;, is
calculated as:

Zil = U?ﬂ%,

(6)

where the variance of the first principal component is defined
as:

var(zﬂ) = ufSul, (7)
with S € RP*P being the covariance matrix:
1
S==> (v —2)(a; —z)" (8)
i=1

Here, = is the mean of the input vectors.

The optimization problem is to find u; that maximizes the
variance of the first principal component z;;, subject to the
constraint that u; is a unit vector (u? u; = 1):

9)

max J(u1) = ui Suy — A\ (uluy — 1),
-

where \; is a Lagrange multiplier. By setting the gradient
of the objective function J to zero with respect to u; and
simplifying, we find:

A= uipSul = var(z;1), (10)

where \; represents the variance of the first principal compo-
nent.

To calculate the second principal component z;2, we find
the second basis vector us, such that z;5 = ugTa:l The vector
ug must be orthogonal to u (ulTuQ = 0) and a unit vector
(ufuy = 1). The optimization problem is:

(1)

max J(uz) = ul Sug — Ao(ud ug — 1) — aud uy,
-

where Ao and « are Lagrange multipliers. Setting the gradient
of J to zero yields:

)\2 = UgSUQ = Var(zig). (12)

This procedure generalizes to calculate all basis vectors
for j = 1,..., D, producing d principal components, where
d < D. The transformed vector z; € R? represents the original
x; € RP in the reduced space. The vector z; can then be used
as input for the methods described in Sections III and IV.

For visualization purposes, three or fewer principal compo-
nents are sufficient (d < 3). Another criterion for choosing d
is based on the proportion of retained variance p, calculated

as: d
1A
ijl J%.

p =100 -
f=1 Ak

(13)

In some cases, p = 100% is achieved with d < D due to
noise in the variables. Alternatively, a threshold for p (e.g.,
p < 97%) can be set depending on the application domain.

VI. RESULTS AND DISCUSSION

The resulting prediction function g estimated through the
regression model described in Section III is defined as follows:

g(x;) = 0.0220 + 0.1678x; 1 + 0.1751x; 2 + 0.1992x; 3 + . ..
-+ 0.1989x; 4 + 0.1018z; 5 + 0.1111x; 6 + . ..
-+ 0.1592x; 7 + 0.11572; g + 0.1597;9 + . ..
-+ 0.1557x; 10 + 0.1765x; 11 + . ..
-+ 0.0895x; 12 — 0.00492; 13 + . ..

-+ 0.07441’1"14 + 0.0749%2'715
(14)
According to this model, the ith student’s satisfaction (x; 4)
and enjoyment (z;3) with the scientific computing course
are the variables with the highest weights; therefore, both
correspond to the most influential factors in the student’s
motivation for the course.

RMSE vs. InA
 Test RMSE
8.354 * Bestregularization parameter (A =128.00)
8.34
w
2 833
4
8.32
8.31

InA

Figure 2. This chart is the elbow rule used to tune the regularization
parameter of the regression model. We used values of \ ranging from 212
to 22, We adopted 10-fold cross-validation to evaluate the model with several
regularization settings.

On the other hand, a negative weight for x; 13 indicates
that students who perceive mathematics courses as more
useful for their careers tend to have slightly lower motivation
levels in scientific computing courses. Since the absolute
value of the weight is very small, the effect is weak but still
worth considering. Either the students are motivated to obtain
high grades in the scientific computing course, even though
they consider acquiring mathematical knowledge merely a
graduation requirement, or they are motivated because they
can solve mathematical problems in the scientific computing
course using algorithms (i.e., numerical methods or heuristics)
instead of the analytical methods covered in previous classical
courses (e.g., differential calculus).
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The regression model achieved a coefficient of determination

and a root-mean-squared-error of 0.37 and 1.62, respectively.

This outcome suggests that the regression model performs better
than predicting by using the mean value. The regularization
parameter A was chosen using the elbow rule as depicted
in Figure 2. According to this method, the best value for
regularization is A = 128.

Standard Error vs. InN

0.10 4

0.08 4

0.06

0.04

Standard Error (SE)

0.02 1

0.00

Figure 3. This chart shows how the standard error drops as the variable IV is
increased.

Thus, the maximum and minimum values that can be
obtained from the prediction function are approximately 2 and
10, respectively. However, the most probable level according
to the Monte Carlo method is 4.908 with a standard error of
6.8 x 10~%. Figure 3 illustrates how this value was achieved as
N increases. This outcome was obtained with 95% confidence
(alpha = 0.05), within the interval (4.90, 4.91). However, this
is not an actual level; therefore, we performed rounding to the
nearest even number for halfway cases, and the probabilities
of the motivation levels are shown in Table III.

It is noteworthy that the high levels of motivation have the
lowest probabilities, in contrast with the motivation levels of
the students in the dataset depicted in Table II. The results in
Table III align with the histogram illustrated in Figure 4, where
the high levels were obtained with less frequency through the
Monte Carlo simulation.

TABLE III. PROBABILITY OF EVERY MOTIVATION LEVEL CALCULATED
WITH THE MONTE CARLO METHOD

Level Probability

1 P(y = 1.0) = 5.49 x 10~ %%
2 Py =2.0)=1.34 x 10~ 1%
3 P(y = 3.0) = 4.17%

4 P(y = 4.0) = 26.86%

5 P(y = 5.0) = 45.03%

6 P(y = 6.0) = 21.21%

7 P(y = 7.0) = 2.55%

8 P(y = 8.0) = 5.57 x 1072%
9 P(y =9.0) = 6.10 x 107°%

700000 A

600000 A

500000

400000 4

Motivation

300000 A

200000 A

100000 +

oA
1 2 3 4 5 6 7 8 9 10
Density

Figure 4. Histogram yielded through the Monte Carlo method. This shows the
frequency with which the function g calculates each motivation level based
on the random input variables.

Despite these figures, we might increase the probability
of high motivation levels through policies that improve the
factors associated with the input variables. We found this by
simulating P(y; = k) while assuming high random values
for the controllable input variables, such as z;; ~ U(3,5)
for 1 < j < 12, and setting x;,12 to zero to mitigate its
negative influence on the prediction. Meanwhile, the variables
that cannot be directly controlled were assigned random values
across their entire range, i.e., 2;; ~ U(1,5) for j =13, 14.

Standard Error vs. InN

0.05 +

0.04 A

0.03 4

0.02

Standard Error (SE)

0.01 A

0.00

Inn

Figure 5. This chart shows how the simulation converges to the solution
with a setting aiming to increase the student motivation to learn scientific
computing, hence, standard error drops as the variable N is increased.

With the aforementioned simulation setting the most probable
level according to the Monte Carlo method is 7.642 with a
standard error of 8.1 x 10~*. Figure 5 shows how the simulation
converges as IV increases. This outcome was obtained with
95% confidence (alpha = 0.05), within the interval (7.641,
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7.643). The probabilities of the motivation levels are shown in
Table IV while the resulting histogram is illustrated in Figure 6.

TABLE IV. PROBABILITY OF EVERY MOTIVATION LEVEL CALCULATED
WITH THE MONTE CARLO METHOD FROM THE BEST SIMULATION SETTING

Level Probability
6 P(y = 6.0) = 2.5 x 10~ 1%
7 P(y = 7.0) = 36.98%
8 P(y = 8.0) = 61.03%
9 P(y = 9.0) = 1.74%
500000 A
400000 A
E 300000
8
=
200000 A
100000 1

4] T T T T T T
1 2 3 4 5 6 7 8

Density

9 10

Figure 6. Histogram yielded through the Monte Carlo method using a
simulation setting that aims to increase the probability of highest level of
motivation for learning scientific computing

TABLE V. VARIANCE RETAINED BY THE PRINCIPAL COMPONENTS

Number of Principal Components  Retained Variance (%)

1 44.84%
2 55.43%
3 64.22%
4 71.16%
5 76.19%
6 80.51%
7 84.30%
8 87.74%
9 90.69%
10 92.92%
11 94.77%
12 96.50%
13 97.99%
14 99.15%
15 100.00%

The previous results reveal that designing policies to enhance
satisfaction in prerequisite mathematics and scientific comput-
ing courses, providing students with up-to-date equipment,
promoting teamwork, and so forth might improve students’
motivation to learn scientific computing.

Additionally, regarding the visualization of the input space,
using two components retained 53.43% of the variance (see
Table V). To retain the complete variance, the dimensionality

must be the same as the original input space or close to it.
Therefore, it is pointless to use a dimensionality that cannot
be visualized.

The regression model trained with a two-dimensional input
space obtained through principal component analysis yields a
coefficient of determination and a root-mean-squared-error of
0.33 and 1.67, respectively. Therefore, the regression model
applied to the original input space outperforms the one applied
to the reduced input space.

RMSE vs. InA

1.80

1.78 A

1.76 1

1.74

172+

RMSE

1.70

1.68

1.66

e Test RMSE
« Best regularization parameter (A =512.00)

1.64

T T T T T T
-8 -6 —4 -2 o] 2 4 6 8
InA

Figure 7. This chart is the elbow rule used to tune the regularization parameter
of the regression model performed on a two-dimensional input space. We used
values of A ranging from 2712 to 212, We utilized 10-fold cross-validation
to evaluate the model with different regularization values.

Figure 7 shows how the regularization parameter was selected
through the elbow rule to avoid overfitting.

Standard Error vs. InN

0.175

0.150

0.125 A

0.100

0.075 4

Standard Error (SE)

0.050

0.025 4

0.000 4

Figure 8. This chart shows how the standard error drops as the variable N is
increased in the Monte Carlo simulation applied on the two-dimensional input
space.

When the Monte Carlo method is performed on the regres-
sion model obtained from the new two-dimensional input space,

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-263-0

20



PATTERNS 2025 : The Seventeenth International Conference on Pervasive Patterns and Applications

the outcome is that the most likely level is 3.84 with a standard
error of 1.46 x 10~3. This outcome is within (3.83, 3.84) with
a 95% (alpha = 0.05) confidence interval (see Figure 8)

TABLE VI. PROBABILITY OF EVERY MOTIVATION LEVEL CALCULATED
WITH THE MONTE CARLO METHOD TAKING INTO ACCOUNT TWO
PRINCIPAL COMPONENTS

Level Probability

1 P(y = 1.0) = 13.62%
2 P(y =2.0) = 15.61%
3 P(y = 3.0) = 15.64%
4 P(y = 4.0) = 15.59%
5 P(y =5.0) = 15.62%
6 P(y = 6.0) = 15.59%
7 P(y =7.0) = 8.32%

The results obtained with two-dimensional input spaces
reveal that it becomes more likely that a student will reach the
lower levels of motivation (see Table VI). The results align with
the histogram depicted in Figure 9. In this case, the prediction
function is defined as follows:

250000 A

200000 A

150000 +

Motivation

100000 +

50000

Density

Figure 9. Histogram yielded through the Monte Carlo method on the two-
dimensional input space. This shows the frequency of each motivation level
based on the reduced input space.

Figure 10 shows that the second principal component, z;s,
is mostly negative, despite its corresponding weight also
being negative (see Equation (15)). Moreover, this principal
component does not appear to be a latent factor influencing
student motivation, whereas the first principal component does.
This is evident from the figure, as the vectors on the left side
correspond to the highest motivation levels, while those on the
opposite side are associated with the lowest levels.

In Figure 10, the vectors representing the students who
participated in the survey are shown, classified according to
the function g obtained from the regression model, as illustrated
by the contour lines. Notably, these lines indicate the absence
of vectors in the highest motivation level, which explains why
this level is unlikely in the simulation outcomes.

VII. CONCLUSION AND FUTURE WORK

In this study, we found that engineering students enrolled
in scientific computing courses at the University of Cérdoba
exhibit a moderate level of motivation, which is the most likely
outcome. This suggests that these students find it challenging
to grasp the concepts, foundations, and methods taught in these
courses. As such, understanding the underlying factors that
contribute to motivation is critical in designing more effective
learning environments.

Visualization of the Input Space
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Figure 10. Visualization of the latent factors derived from the regression
model. The contour lines show the lower probability of obtaining the higher
motivation levels.

As a consequence, it is essential for lecturers to develop
effective motivation strategies tailored to the unique challenges
of scientific computing courses. Strategies might include
more interactive teaching methods, real-world problem-solving
tasks, or personalized feedback systems aimed at increasing
student engagement. By aligning teaching practices with the
motivational needs of students, there is a greater chance of
improving learning outcomes and overall academic success.

However, the findings are subject to some limitations.
The data collected in this study might not fully capture the
diversity of motivation levels across different institutions or
disciplines. Therefore, further data collection is necessary to
address potential validity threats, such as the potential for
selection bias or the lack of data from different academic
backgrounds. Expanding the dataset to include students from
other universities or fields of study could provide a more
comprehensive understanding of the factors influencing student
motivation.

So far, to interpret the prediction function, we have assumed
a linear relationship between the factors influencing motivation
and the student’s motivation level. While this assumption
has provided valuable insights, it might not fully reflect the
complexity of motivation. For future research, we will explore
nonlinear regression models such as Gaussian processes, Kernel
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Ridge Regression, and Random Forests, which might uncover
more nuanced relationships between the variables.

Additionally, we will also evaluate alternative models for
dimensionality reduction. Methods, such as non-negative matrix
factorization, autoencoders, and t-SNE might be adopted to
better capture the underlying structure of the data. These
methods may offer advantages over principal component
analysis, particularly in terms of capturing nonlinearities or
latent factors that influence motivation.

The impact of further data collection should not be under-
estimated. By collecting more data, we could improve the
robustness of our findings and potentially develop a model
that can predict motivation levels more accurately across
diverse student populations. Future work could also involve
incorporating more detailed demographic information, which
could lead to insights into how motivation varies across different
student groups based on age, prior experience, or other factors.

Finally, future work will include practical steps to further
investigate these findings. For example, we plan to collaborate
with faculty members in scientific computing courses to apply
the insights gained from this study in real-world teaching
settings. Pilot studies may also be conducted to test the efficacy
of the proposed motivational strategies and validate the results
through student feedback and performance.

In summary, while this study provides a valuable starting
point, there is much more to explore regarding the complexities
of student motivation in scientific computing. We hope that
future research will contribute to the development of more
effective and personalized teaching methods that foster greater
student engagement and success.
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