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Abstract—This paper explores the convergence between Clean
Architecture and Normalized Systems principles and design
elements, highlighting their synergistic potential to enhance
software design and evolvability. The paper draws upon the
research described in the thesis of “On the Convergence of
Clean Architecture with the Normalized Systems Theorems”
from G. Koks through a comparative analysis. It demonstrates
how each paradigm contributes to modular, maintainable, and
evolvable software design and how integrating both approaches
can lead to a more widely spread adoption and an improved
software design.
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I. INTRODUCTION

In the evolving landscape of software architecture, the
software development paradigms of Clean Architecture (CA)
and Normalized Systems (NS) have emerged as pivotal in
addressing the multifaceted challenges of software design,
particularly in managing stability, modularity, and evolvability
to achieve resiliency in software. This paper delves into
the synergy between these two paradigms, each contributing
significantly to the contemporary discourse on software archi-
tectural complexity.

Tracing the historical underpinnings of these concepts re-
veals the works of pioneers like D. Mcllroy [2], who cham-
pioned modular programming, and Lehman [3], who under-
scored the importance of software evolution. Contributions
from Dijkstra [4] on structured programming and Parnas [5] on
software modularity further cemented the foundation for CA
and NS. These historical insights contextualize the evolution of
software engineering principles and underscore the relevance
of fostering maintainable and evolvable software systems.

The foundation of this paper is an exploration of findings
from extensive research on the convergence of CA and NS
[1]. This research provides a nuanced perspective on inte-
grating these distinct yet harmonious frameworks to enhance
software design. It meticulously examines the core principles
and elements of both CA and NS, presenting a scientifically
robust synthesis that addresses critical challenges in software
architecture.

This paper outlines the insights from G. Koks’ research,
exploring the significant benefits and practical implications of
integrating the strengths of CA and NS within the dynamic
field of software development.

The introduction is intended to set the stage and articulate
the goal of this paper. Section 2 lays out the theoretical back-
ground, zooming in on the specific principles and elements of
each Software Design Paradigm while also highlighting their
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unified concepts. In Section 3, we analyze the similarities and
differences of their principles and elements and their effect on
the evolvability of software constructs. The paper summarizes
the conclusions in Section 4.

II. THEORETICAL BACKGROUND

This Section explores the theoretical background of both CA
and NS frameworks in software engineering. It focuses on the
synergetic concepts, underlying principles, and architectural
building blocks of both approaches and paradigms, providing
the foundation for the comparative analysis.

A. Unified concepts

In this Section, we will examine concepts related to both CA
and NS. Understanding these concepts is crucial for executing
the research and interpreting its results.

1) Modularity: The original material of Martin [6, p. 82]
describes a module as a piece of code encapsulated in a
source file with a cohesive set of functions and data structures.
According to Mannaert et al. [7, p. 22], modularity is a
hierarchical or recursive concept that should exhibit high cohe-
sion. While both design approaches agree on the cohesiveness
of a module’s internal parts, there is a slight difference in
granularity in their definitions.

2) Cohesion: Mannaert et al. [7, p. 22] consider cohesion
as modules that exist out of connected or interrelated parts of
a hierarchical structure. On the other hand, Martin [6, p. 118]
discusses cohesion in the context of components. He attributes
the three component cohesion principles as crucial to grouping
classes or functions into cohesive components. Cohesion is a
complex and dynamic process, as the level of cohesiveness
might evolve as requirements change over time.

3) Coupling: Coupling is an essential concept in software
engineering that is related to the degree of interdependence
among various software constructs. High coupling between
components indicates the strength of their relationship, creat-
ing an interdependent relationship between them. Conversely,
low coupling signifies a weaker relationship, where modifica-
tions in one part are less likely to impact others. Although
not always possible, the level of coupling between the various
modules of the system should be kept to a bare minimum.
Both Mannaert et al. [7, p. 23] and Martin [6, p. 130] agree
to achieve as much decoupling as possible.

B. Normalized Systems

NS in software engineering revolves around stable and
evolvable information systems, drawing from System Theory

19



PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

and Statistical Entropy from Thermodynamics. NS is rooted
in software engineering but applies to other domains, such
as Enterprise Engineering [8], Hardware configurations like
TCP-IP firewalls [9], and Business Process Modeling [10].
The NS theory emphasizes stability as a crucial prop-
erty derived from the concept of Bounded Input leading
to Bounded Output (BIBO). Stability in NS means that a
bounded functional change must result in a bounded amount
of work, regardless of the system’s size. Instabilities, also
referred to as combinatorial effects, occur when the number
of changes depends on the system size, negatively impacting
its evolvability.
In the following list, we will describe the design Theorems of
NS, first presented by Mannaert and Verelst [11].

o Separation Of Concerns (SoC): A processing function
containing only a single task to achieve stability.

e Data Version Transparency (DvT): A data structure
passed through a processing function’s interface must
exhibit version transparency to achieve stability.

o Action Version Transparency (AvT): A processing func-
tion that is called by another processing function needs
to exhibit version transparency to achieve stability.

o Separation of State (SoS): Calling a processing function
within another processing function must exhibit state-
keeping to achieve stability.

NS aims to design evolvable software independent of the
underlying technology. Nevertheless, a particular technology
must be chosen when implementing the software and its com-
ponents. For object-oriented programming languages, the fol-
lowing normalized elements have been proposed [7, pp. 363—
398]. It is essential to recognize that different programming
languages may necessitate alternative constructs [7, p. 364].

The following list describes each element using the defini-
tion from Mannaert et al. [12, p. 102]

e Data Element: Based on DvT, data elements have “get”
and “set” methods for wide-sense data version trans-
parency or marshal -and parse- methods for strict-sense
DvT. Supporting tasks can be added in a way that is
consistent with the principles of SoC and DvT.

e Task Element: Based on SoC, the core action entity
can only contain a single functional task, not multiple
tasks. Based on AvT, arguments and parameters must be
encapsulated data entities. Based on SoC and SoS, work-
flows need to be separated from action entities and will
therefore be encapsulated in a workflow element. Based
on AvT, tasks need to be encapsulated so that a separate
action entity wraps the action entities representing task
versions. Supporting tasks can be added in a way that is
consistent with SoC and AvT.

o Workflow Element: Based on SoC, workflow elements
cannot contain other functional tasks, as they are gen-
erally considered a separate change driver, often im-
plemented in an external technology. Based on SoS,
workflow elements must be stateful. This state is required
for every instance of use of the action element and,
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therefore, needs to be part of, or linked to, the instance
of the data element that serves as an argument.

o Connector Element: Based on Theorem SoS, connector
elements must ensure that external systems can interact
with data elements, but that they cannot call an action
element in a stateless way. Supporting tasks can be added
in a way that consistent with SoC and AvT.

o Trigger Element: Based on SoC, trigger elements need
to control the separated —both error and non-errorstates,
and check whether an action element has to be triggered.
Supporting tasks can be added in a way that is consistent
with SoC and AvT.

C. Clean Architecture

CA is a software design approach emphasizing code or-
ganization into independent, modular layers with distinct re-
sponsibilities. This approach aims to create a more flexible,
maintainable, and testable software system by enforcing the
separation of concerns and minimizing dependencies between
components. CA aims to provide a solid foundation for soft-
ware development, allowing developers to build applications
that can adapt to changing requirements, scale effectively, and
remain resilient against the introduction of bugs [6].

CA organizes its components into distinct layers. This archi-
tecture promotes the separation of concerns, maintainability,
testability, and adaptability. The following list briefly describes
each layer [6]. By organizing code into these layers and
adhering to the principles of CA, developers can create more
flexible, maintainable, and testable software with well-defined
boundaries and a separation of concerns.

e Domain Layer: This layer contains the application’s
core business objects, rules, and domain logic. Entities
represent the fundamental concepts and relationships in
the problem domain and are independent of any specific
technology or framework. The domain layer focuses on
encapsulating the essential complexity of the system and
should be kept as pure as possible.

o Application Layer: This layer contains the use cases or
application-specific business rules orchestrating the inter-
action between entities and external systems. Use cases
define the application’s behavior regarding the actions
users can perform and the expected outcomes. This layer
coordinates the data flow between the domain layer and
the presentation or infrastructure layers while remaining
agnostic to the specifics of the user interface or external
dependencies.

o Presentation Layer: This layer translates data and in-
teractions between the use cases and external actors,
such as users or external systems. Interface adapters
include controllers, view models, presenters, and data
mappers, which handle user input, format data for display,
and convert data between internal and external repre-
sentations. The presentation layer should be as thin as
possible, focusing on the mechanics of user interaction
and deferring application logic to the use cases.
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o Infrastructure Layer: This layer contains the technical
implementations of external systems and dependencies,
such as databases, web services, file systems, or third
party libraries. The infrastructure layer provides concrete
implementations of the interfaces and abstractions defined
in the other layers, allowing the core application to remain
decoupled from specific technologies or frameworks. This
layer is also responsible for configuration or initialization
code to set up the system’s runtime environment.

Presentation

Application

Figure 1. Flow of control

An essential aspect is described as the dependency rule.
The rule states that source code dependencies must point
only inward toward higher-level policies (Robert C. Martin,
2018, p. 206). This 'flow of control’ is designed following the
Dependency Inversion Principle (DIP) and can be represented
schematically as concentric circles containing all the described
components. The arrows in Figure 1 clearly show that the
dependencies flow from the outer layers to the inner layers.
Most outer layers are historically subjected to large-scale
refactorings due to technological changes and innovation.
Separating the layers and adhering to the dependency rule
ensures that the domain logic can evolve independently from
external dependencies or certain specific technologies.

Martin [6, p. 78] argues that software can quickly become
a well-intended mess of bricks and building blocks without
rigorous design principles. So, from the early 1980s, he began
to assemble a set of software design principles as guidelines
to create software structures that tolerate change and are easy
to understand. The principles are intended to promote modular
and component-level software structure [6, p. 79]. In 2004, the
principles were established to form the acronym SOLID.

The following list will provide an overview of each of the
SOLID principles.

o Single Responsibility Principle (SRP): This principle

has undergone several iterations of the formal definition.
The final definition of the Single Responsibility Principle
(SRP) is: “a module should be responsible to one, and
only one, actor” Martin [6, p. 82]. The word ‘actor’ in
this statement refers to all the users and stakeholders
represented by the (functional) requirements. The modu-
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larity concept in this definition is described by Martin [6,
p. 82] as a cohesive set of functions and data structures.
In conclusion, this principle allows for modules with
multiple tasks as long as they cohesively belong together.
Martin [6, p. 81] acknowledges the slightly inappropriate
name of the principle, as many interpreted it, that a
module should do just one thing.

Open/Closed Principle (OCP): Meyer [13] first men-
tioned the OCP and formulated the following defini-
tion: A module should be open for extension but closed
for modification. The software architecture should be
designed such that the behavior of a module can be
extended without modifying existing source code. The
OCP promotes the use of abstraction and polymorphism
to achieve this goal. The OCP is one of the driving forces
behind the software architecture of systems, making it
relatively easy to apply new requirements. [6, p. 94].
Liskov Substitution Principle (LSP): The LSP is named
after Barbara Liskov, who first introduced the principle
in a paper she co-authored in 1987. Barbara Liskov
wrote the following statement to define subtypes (Robert
C. Martin, 2018, p. 95). If for each object ol of type
S, there is an object 02 of type T such that for all
programs P defined in terms of T, the behavior of P
is unchanged when ol is substituted for o2 then S is
a subtype of T.1. Or in simpler terms: To build software
from interchangeable parts, those parts must adhere to
a contract that allows those parts to be substituted for
another (Robert C. Martin, 2018, p. 80)

Interface Segregation Principle (ISP): The ISP suggests
that software components should have narrow, specific
interfaces rather than broad, general-purpose ones. In
addition, the ISP states that consumer code should not
be allowed to depend on methods it does not use. In
other words, interfaces should be designed to be as small
and focused as possible, containing only the methods
relevant to the consumer code using them. This allows the
consumer code to use only the needed methods without
being forced to implement or depend on unnecessary
methods [6, p. 104].

DIP: The DIP prescribes that high-level modules should
not depend on low-level modules, and both should depend
on abstractions. The principle emphasizes that the archi-
tecture should be designed so that the flow of control
between the different objects, layers, and components
is always from higher-level implementations to lower-
level details. In other words, high-level implementations,
like business rules, should not be concerned about low-
level implementations, such as how the data is stored
or presented to the end user. Additionally, high-level
and low-level implementations should only depend on
abstractions or interfaces defining a contract for how they
should interact [6, p. 91]. This approach allows for great
flexibility and a modular architecture. Modifications in
the low-level implementations will not affect the high-
level implementations as long as they still adhere to the
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contract defined by the abstractions and interfaces. Simi-
larly, changes to the high-level modules will not affect the
low-level modules as long as they still fulfill the contract.
This reduces coupling and ensures the evolvability of the
system over time, as changes can be made to specific
modules without affecting the rest of the system.

Martin [6] proposes the following elements to achieve the
goal of “Clean Architecture.”

o Entities: Entities are the core business objects, represent-
ing the domain’s fundamental data.

o Interactor: Interactors encapsulate business logic and
represent specific actions that the system can perform.

e RequestModels: RequestModels represent the input data
required by a specific interactor.

o ResponseModel: ResponseModel represents the output
data required by a specific interactor.

o ViewModels: ViewModels are responsible for managing
the data and behavior of the user interface.

o Controllers: Controllers are responsible for handling re-
quests from the user interface and routing them to the
appropriate Interactor.

o Presenters: Presenters are responsible for formatting and
the data for the user interface.

e Gateways: A Gateway provides an abstraction layer be-
tween the application and its external dependencies, such
as databases, web services, or other external systems.

e Boundary: Boundaries are used to separate the different
layers of the component.

III. THE ANALYSIS

This Section delves into the convergence of CA and NS, ex-
ploring their convergence and application in software design.
The discussion is anchored in the results of the research “On
the Convergence of Clean Architecture with the Normalized
Systems Theorems” [1], which meticulously examines the
principles and design elements of both CA and NS mentioned
in previous chapters. By aligning the theoretical constructs of
both paradigms, the thesis provides a perspective on achieving
modular, evolvable, and stable software architectures. This
convergence reinforces the robustness of software systems and
enhances their evolvability and longevity in the face of future
requirements. The subsequent sections will summarize the key
components of their convergence by highlighting the practical
implications and the potential for evolvable software design.

A. The converging principles

The main goal of both the SRP and SoC is to promote
and encourage modularity, low coupling, and high cohesion.
While their definitions have minor nuances, the two principles
are practically interchangeable. Even though SRP does not
implicitly guarantee DvT or AvT, it supports those theorems
by directing design choices in a certain way. One example lies
in separating data models for requests, responses, and views
and respective versions of these models.

The OCP and its relation to NS theory emphasize the
importance of designing software entities that are open for
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extension but closed for modification. This principle aligns
with the NS approach to evolvability, advocating for structures
that can adapt to new requirements without altering existing
code, thus minimizing the impact of changes. An example of
this synergy can be seen in the use of expanders within NS,
which allow for introducing new functionality or data elements
without disrupting the core architecture, cohesively supporting
the OCP principle goal of extendibility and maintainability.

The LSP emphasizes that objects of a superclass should
be replaceable with objects of a subclass without altering
the correctness of the program. This principle strongly aligns
with the emphasis on modular and replaceable components
in NS, advocating for flexibility and the seamless integration
of new functionalities. Applying this principle within NS is
evident in designing tailored interfaces specific to a particular
version. This ensures system evolution without compromising
existing functionality, thereby upholding the LSP directive for
substitutability and system integrity.

The ISP advocates for creating specific consumer interfaces
rather than one general-purpose interface, aligning with NS
principles to enhance system evolvability and maintainability.
This alignment is evident in the modular and decoupled design
strategies advocated by both NS and ISP, where the focus is
on minimizing unnecessary dependencies and promoting high
cohesion within systems. By applying ISP, developers can
ensure that system components only depend on the interfaces
they use, which mirrors the approach in NS to create evolvable
systems by reducing the impact of changes across modules.

The DIP and its alignment with NS are centered on inverting
the conventional dependency structure to reduce rigidity and
fragility in software systems. DIP promotes high-level module
independence from low-level modules by introducing abstrac-
tions that both can depend on, thereby facilitating a more mod-
ular and evolvable design. This principle mirrors the emphasis
on minimizing dependencies to enhance system evolvability
in the NS paradigm. Examples from the thesis demonstrate
how leveraging DIP in conjunction with NS principles leads
to systems that are more adaptable to change, showcasing
the practical application of these combined approaches in
achieving resilient software architectures. Designers should
also be aware of the potential pitfalls of using DIP as faulty
implementations can increase combinatorial effects.

In the following table, we summarize the analysis in a
tabular overview using the following denotation:

o Strong convergence (+): This indicates that the prin-
ciples of CA and NS are highly converged. Both have a
similar impact on the design and implementation.

o Supports convergence (¥): The CA principle supports
implementing the NS principle through specific design
choices. However, applying the CA principle does not
inherently ensure adherence to the corresponding NS
principle.

o Weak or no convergence (=): The principles have no
significant similarities in terms of their purpose, goals,
or architectural supports.
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TABLE I
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B. The converging elements

The Data Element from NS and the Entity Element from CA
represent data objects of the ontology or data schema, typically
including attributes and relationship information. While both
can contain a complete set of attributes and relationships, the
Data Element of NS may also be tailored to serve a specific
set of information required for a single task or use case. In
CA, these types of Data Elements are explicitly specified as
ViewModels, RequestModels, or Response Models.

The Interactor element of CA and the Task and WorkFlow
elements of NS are all responsible for encapsulating business
rules. NS has a more strict approach to encapsulating the exe-
cution of business rules in Task Elements, as it is only allowed
to have a single execution of a business rule. Additionally, the
WorkFlow element is responsible for executing multiple tasks
statefully and is highly convergable with the Interactor element
of CA.

The convergence of the Controller element from CA with
NS is highlighted by its partial interchangeability with the
Connector and Trigger elements in NS. The Controller Ele-
ment is primarily responsible for interaction using protocols
and technologies involving the user interface, while the Con-
nector and Trigger elements are also intended to interact with
other types of external systems.

The Gateway element of CA and the Connector element
of NS communicate between components by providing Data
Version Transparent interfaces to provide Action Version
Transparency between these components.

The Presenter is responsible for preparing the ViewModel
on the controller’s behalf and can be considered a Task or
Workflow Element in the theories of NS.

The Boundary element of CA strongly converges with the
Connector element of NS, as both are involved in communi-
cation between components and help ensure loose coupling
between these components. However, the Boundary element’s
scope seems more specific, as this element usually separates
architectural boundaries within the application or component.

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

In the following table, we summarize the analysis in a
tabular overview using the same denotation used in Section
1I-A.

TABLE II
THE CONVERGENCE BETWEEN CA AND NS ELEMENTS.

Normalized Systems
Flow Element
Connector Element
Trigger Element

Data Elements
Task Element

Clean Architecture

Entity Element
Interactor Element
RequestModel Element
ResponseModel Element
ViewModel Element
Controller Element
Gateway Element

Presenter Element

IIIIIIIII
11
I+IIIIIII

III+IIIII
1

Boundary Element

IV. CONCLUSION

The primary objective of G. Koks was to study the conver-
gence between CA and NS by analyzing their principles and
design elements through theory and practice. This Section will
summarize the findings into a research conclusion.

Stability and evolvability are concepts not directly ref-
erenced in the literature on CA, but this design approach
aligns with the goal of NS. The attentive reader can observe
the shared emphasis on modularity and the separation of
concerns, as all SOLID principles strongly converge with SoC.
Both approaches attempt to achieve low coupling and high
cohesion. In addition, CA adds the dimensions of dependency
management as useful measures to improve maintainability by
rigorously managing dependencies in the Software Architec-
ture.

The DvT appears to be underrepresented in the SOLID prin-
ciples of CA. DvT is primarily supported by the SRP of CA, as
evidenced by ViewModels, RequestModels, ResponseModels,
and Entities as software elements. It is worth noting that this
application of Data Version Transparency is an integral part
of the design elements of CA. While CA does address DvT
through the SRP, a more comprehensive representation of the
underlying idea of DvT within the principles of CA will likely
improve the convergence of CA with NS.

CA Lacks a strong foundation for receiving external triggers
in its design philosophy. This is partially represented by the
Controller element. However, this element is described as
being used for web-enabled environments and might result in
a less comprehensive approach to receiving external triggers
across various technologies or systems.
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The most notable difference between CA and NS is their
approach to handling state. CA does not explicitly address state
management in its principles or design elements. NS Provides
the principle of SoS, ensuring that state changes within a
software system are stable and evolvable. This principle can be
crucial in developing scalable and high-performance systems,
as it isolates state changes from the rest of the system, reducing
the impact of state-related dependencies and side effects.

The findings can only lead to the conclusion that the
convergence between CA and NS is incomplete. Consequently,
CA cannot fully ensure stable and evolvable software artifacts
as NS has defined them.

While it has been demonstrated that the convergence be-
tween these two approaches is incomplete, combining both
methodologies is highly beneficial for NS and CA for various
reasons. The primary advantage of synergizing them lies in
the complementary nature of both paradigms, where each
approach provides strengths that can be leveraged to address
a robust architectural design.

CA offers a well-defined, practical, and modular structure
for software development. Its principles, such as SOLID, guide
developers in creating maintainable, testable, and scalable
systems. This architectural design approach is highly suitable
for various applications and can be easily integrated with the
theoretical foundations provided by NS. Conversely, the NS
approach offers a more comprehensive theoretical understand-
ing of achieving stable and evolvable systems.

To conclude, the popularity and widespread adoption of CA
in the software development community can benefit NS. As
more developers adopt CA, they become more familiar with
NS and recognize their value to software design. Synergizing
both approaches will likely lead to increased adoption of NS.
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