
Toward a Rejuvenation Factory for Software Landscapes

Herwig Mannaert

Normalized Systems Institute
University of Antwerp, Belgium

Email: herwig.mannaert@uantwerp.be

Tim Van Waes and Frédéric Hannes

Research and Development
NSX bv, Belgium

Email: tim.van.waes@nsx.normalizedsystems.org

Abstract—The agile paradigm has become the default method-
ology for the delivery of software-based products. While there is
a widespread belief that this methodology has numerous benefits,
including improved and timely delivery of software projects,
it can be argued that the lack of an overall architecture to
which developers must adhere can result in increased technical
debt. Through its normative structure of software application
skeletons, NST (Normalized Systems Theory) provides a possible
mechanism to manage the delicate balance between intentional
architecture and emerging design. Moreover, the systematic
rejuvenation of application skeletons, featuring harvesting and
re-injection of custom code, enables to accommodate not only
changes in the functional model, but also in the software
skeletons, including the technology frameworks that are used.
In this contribution, we describe the setup and operations of an
NST rejuvenation factory, where dozens of software applications
are being developed using agile methodologies, and rejuvenated
on an approximately weekly basis. Both the size of the application
models, codebase, and technologies, and their evolution in time,
are presented. The achieved levels of agility, and the realized
abilities to change are discussed, as well as the current limitations
and some future work to address them.

Index Terms—Software Evolvability; Software Factories; Nor-
malized Systems Theory; Case Study.

I. INTRODUCTION

The agile paradigm has become the default methodology for
software development. While there is a widespread belief that
this methodology has numerous benefits, including improved
and timely delivery of software projects, it can be argued that
the lack of an overall architecture may result in increased
technical debt and reduced evolvability. Normalized Systems
Theory (NST) aims to provide higher levels of evolvability
through its normative structure of software application skele-
tons. This underlying architecture could serve as a mechanism
to manage the delicate balance between evolvable architecture
and agile design. In this paper, we conduct a case study to
investigate this potential by studying the evolvability behavior
of a software factory that operates in an agile way, while
adhering to the NST architecture to realize evolvability.

The remainder of this paper is structured as follows. In
Section II, we briefly discuss some related work and the
methodology. In Section III, we describe the issues related to
software evolvability, and the way NST aims to provide higher
levels of evolvability. We present the structure, operations,
and possibilities of a software factory based on NST in

Section IV. In Section V, we present the case study analyzing
the realized software evolvability in a specific NST software
factory. Finally, we discuss some conclusions and future work
in Section VI.

II. RELATED WORK AND METHODOLOGY

In this paper, we investigate whether NST is able to realize
the substantial improvement in evolvability that it proposes, by
studying its application at scale in a state-of-the-art software
factory. Section III gives an overview of related work on the
deep issues regarding software maintenance and evolution, and
on the way that NST aims to address some of these issues in
a structured way. In Section IV, we go through some related
work on current state-of-the-art software factories.

The methodology of this paper is based on Design Science
Research [1]. The artifact that we consider is the NST method-
ology aimed at the development of software applications that
exhibit higher levels of evolvability. We conduct an observa-
tional case study to investigate whether the application of this
methodology at scale in a software factory is able to realize
the envisaged evolvability. While the operations of the NST
software factory contribute to the relevance cycle by applying
NST to the appropriate environment, this case study aims to
contribute to the rigor cycle by extending the knowledge base.

III. THE PREMISE OF NORMALIZED SYSTEMS THEORY

In this section, we introduce NST as a theoretical basis to
obtain higher levels of evolvability in information systems, and
the approach to realize its promise through a code generation
or expansion framework.

A. On Software Maintenance and Evolvability

Software maintenance is not merely about fixing defects.
While originally three categories of maintenance were de-
fined, i.e., corrective, adaptive, and perfective maintenance [2],
modern standards also include preventive maintenance. Stud-
ies have indicated that about eighty percent of maintenance
effort is used for non-corrective actions and functionality
enhancements [3] [4]. This means that software maintenance
is intimately related to software evolution, even though users
often perpetuate its reduction to bug fixing by submitting
enhancements as problem reports.

13Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

Software evolution and evolvability were studied in depth
by Manny Lehman over a long period of time, leading to the
insight that maintenance is really an evolutionary development,
and to the formulation of Lehman’s Laws. One of these laws,
the Law of increasing complexity [5], states that systems,
as they evolve, grow more complex and more difficult to
maintain, unless some action such as code refactoring is taken
to reduce the complexity. Though never formally proven, this
empirical law is widely accepted by software developers.

While the evolvability of information systems (IS) is consid-
ered as an important attribute determining the agility and there-
fore the survival chances of organizations, it has traditionally
not received much attention within the IS research area [6].
More recently, software maintenance and evolution have at-
tracted more attention through the introduction of concepts like
technical debt, representing the need for refactoring to reduce
structure degradation, and maintenance debt, corresponding to
maintenance needs generated by dependencies on external IT
factors such as libraries, platforms and tools, that have become
obsolescent [7].

B. Normalized Systems Software Applications

Normalized Systems Theory (NST) was developed by ap-
plying the concept of stability from systems theory to the
evolution of engineering artifacts such as software systems.
It operationalizes the concept of systems theoretic stability,
i.e., a bounded input should result in a bounded output, in the
context of information systems development and maintenance,
by demanding that a bounded set of changes should only result
in a bounded impact to the software, or, that the impact of
changes to an information system should not be dependent
on the size of the system to which they are applied, but only
on the size of the changes to be performed [8] [9]. Changes
causing an impact dependent on the size of the system are
called combinatorial effects. Being a major factor limiting
the evolvability of information systems, these combinatorial
effects are considered to be one of the mechanisms causing
the structure degradation described by Manny Lehman.

The theory derives four theorems and formally proves that
any violation of these theorems will result in combinatorial
effects, thereby hampering evolvability [8] [9] [10]:

• Separation of Concerns: no two concerns or change
drivers should be combined in a software construct.

• Action Version Transparency: invoking new versions of
processing functions should not demand changes.

• Data Version Transparency: exchanging new versions of
data objects should not demand changes.

• Separation of States: no two processing functions should
be sequenced without keeping state.

The application of these theorems to software applications
results in very fine-grained modular structures within these
applications. The theory also proposes a set of design pat-
terns, and presents a constructive proof that these patterns
are free of combinatorial effects with respect to a number

of basic changes. Specifically, NST proposes five elements,
i.e., detailed design patterns, and argues that instantiations of
these elements are sufficient to build the main functionality of
information systems [9] [10] [11]:

• data elements to store and retrieve data entities.
• action elements to perform operations on data entities.
• workflow elements to orchestrate the operations on data.
• connector elements to interface with users and systems.
• trigger elements to drive and activate operations.

Implementing and enforcing detailed design patterns of fine-
grained modular structures is, in general, difficult to achieve by
manual programming. Therefore, an implementation of mod-
ular code generators, called expanders, was made to generate
information systems based on NST. The development of such a
Normalized Systems (NS) information system starts by defining
a set of data, task and workflow elements. Based on the
detailed design patterns, the expanders generate source code
for the various elements that are defined. The code generation
mechanism, called expansion, is quite straightforward, i.e.,
simply instantiating parametrized copies of a set of coding
templates. The generated code makes up the evolvable skeleton
of the information system. It is in general complemented with
custom code or craftings to add non-standard functionality
not provided by the skeletons. These craftings may reside in
separate classes, or placed at well specified places identified
by anchors within the generated boiler plate code.

C. Variability Dimensions and Evolvability

Information Systems generated by an NS expansion process
consist of application skeletons that are free of combinatorial
effects with respect to a set of basic changes [9]. This entails
a number of evolvability characteristics, essentially based on
the separation of four variability dimensions as schematically
visualized in Figure 1. While we have discussed elsewhere
[12] [13] in more detail how such an application with separate
variability dimensions can evolve throughout time, we briefly
describe here these dimensions.

First, as represented at the upper left side of the figure, the
skeletons are based on the models or mirrors of the required
information system such as data models and workflows. As the
model can have multiple versions throughout time (e.g., being
updated or complemented), it constitutes a first dimension of
variability or evolvability.

Second, the expanders (represented by the big blue icon
in the figure) generate application skeletons by instantiating
the various class templates, taking the specifications of the
model as parameters. As these expanders, or rather template
skeletons, can have multiple versions throughout time (e.g.,
solving bugs or offering additional features), they represent a
second dimension of variability or evolvability.

Third, as represented in the upper right side of the figure,
the skeletons use a number of frameworks or utilities to
take care of several so-called cross-cutting concerns. As these
frameworks and the generated adapter code, specified through

14Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

Figure 1. A graphical representation of four variability dimensions within a Normalized Systems application codebase.

infrastructure settings, can have multiple versions throughout
time (e.g., new versions of existing frameworks or alternative
frameworks), these settings or frameworks represent a third
dimension of variability or evolvability.

Fourth, as represented in the lower left of the figure, custom
code or craftings are used to enrich the generated skeletons.
These craftings are harvested into a separate repository to en-
able their re-injection into a newly generated application skele-
ton. As these craftings can have multiple versions throughout
time (e.g., improvements or additional features), they represent
a fourth dimension of variability or evolvability.

To summarize, NS software applications as represented in
Figure 1, exhibit four different and independent variability
dimensions. This means that the concept of the “version”
of an NS application is more refined, as the version of an
application codebase corresponds to a specific combination
of four different versions representing the four variability
dimensions [13]. Given certain constraints, e.g., certain ver-
sions of the expanders do not (yet) support certain versions
of the frameworks, the versions of the different dimensions
are independent and can be used in various combinations.
Conceptually, with M , E, I and C referring to the number of
available model versions, the number of expander versions,
the number of infrastructure settings, and crafting versions
respectively, the total set of possible versions V of a particular
NST application could become equal to:

V = M × E × I × C

This is an example of a quite fundamental principle stating that
the thorough decoupling of concerns can realize exponential
gains in their recombination potential, leading to higher levels
of evolvability and variability [9].

IV. A NORMALIZED SYSTEMS SOFTWARE FACTORY

In this section, we describe how expansion and rejuvenation
are integrated into the Normalized Systems software factory,
and discuss the different rejuvenation modes.

A. Integrating Expansion in a Software Factory

The production and/or assembly of software in a more
industrial way has been pursued for many decades. It dates
back at least to 1968 with the work of Doug McIlroy on
mass produced software components [14], and is currently
associated with terms like Software Product Lines (SPLs)
and Software Factories. The term Software Factory is for
instance defined by Greenfield et al. as a software product
line that configures extensive tools, processes, and content
using a template based on a schema to automate the develop-
ment and maintenance of variants of an archetypical product
by adapting, assembling, and configuring framework-based
components [15]. However, the systematic reuse of software
artifacts is not a trivial task facing may different issues, as was
for instance recently argued by Saeed [16].

These issues become even more challenging when in-
tegrating a code generation environment into such a soft-
ware factory. Many existing code generation technologies,
identified with terms like Model-Driven Engineering (MDE),
Model-Driven Architecture (MDA), Low-Code Development
Platforms (LCDP), amd No-Code Development Platforms
(NCDP), enable programmers to create software applications
by interactively defining domain models that drive code gen-
eration. However, in general these technologies do not support
the harvesting of custom code and their re-injection into newer
regenerated versions of the software. A software factory based
on NST on the other hand, has to support this harvesting
and re-injection of custom code in order to enable the proper
separation of the various dimensions of variability.

15Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

B. From CI/CD Toward Continuous Rejuvenation

The current mainstream approach to organize and control
the operations of so-called software factories is a methodology
called DevOps to integrate and automate the work of software
development (Dev) and IT operations (Ops). As stated by
Ravi Yarlagadda, Through DevOps, there is an assumption
that all functions can be carried out, controlled, and managed
in a central place using a simple code [17]. In accordance
with the main purpose of such a DevOps environment, it is
often called a Continuous Integration, Continuous Delivery
(CI/CD), or Continuous Integration, Continuous Deployment
infrastructure. The various tools used in such an infrastructure,
being both commercial and open source, are in general quite
numerous and versatile. While the technical community often
focusses on these tools, it needs to be stressed that DevOps is
essentially a methodology striving to improve the collaboration
and integration between development and operations teams.

In an NS software factory, the CI/CD infrastructure needs to
contain an expansion cycle before the build phase. The control
structure of such an NS CI/CD infrastructure is schematically
represented in Figure 2, and described in more detail in [18].
Of course, the modular code generators or expanders are being
built, integrated and tested themselves in a CI/CD infrastruc-
ture. As the CI/CD pipelines of expanders and information
systems are integrated, rejuvenation, i.e., application skeletons
that are regenerated with new versions of expander templates,
becomes part of the CI/CD infrastructure. In that sense,
we obtain a Continuous Integration, Continuous Deployment,
Continuous Rejuvenation (CI/CD/CR) infrastructure.

C. Normalized Systems Rejuvenation Modes

Having an infrastructure that includes rejuvenation of the
application skeletons, we are now able to distinguish dif-
ferent modes of structural rejuvenation. Conceptually, this
corresponds to evolutions and improvements in the variability
dimensions of expander templates and external frameworks,
while allowing respectively modelers and programmers to
further improve and extend the model and the custom code.

First, various external frameworks can be upgraded to
new versions. This includes both minor version upgrades,
or even patches to address vulnerabilities, and more major
version upgrades. While this kind of ’rejuvenation’ is also
available and even standard practice in traditional applications,
an NS approach aims at making this more straightforward
by embedding the code to interface with these frameworks
in the expanded skeletons. In this way, the expanded boiler
plate code should cope with changes in the interfaces of the
frameworks. Recently, solutions like OpenRewrite [19] have
become available to enable traditional applications to deal in
a more productive way with such interface changes.

Second, new versions of expanders and the corresponding
templates can be used in the expand phase. This includes
possible bug fixes, minor improvements in functionality or
coding style, and new features that may have become available.

TABLE I. DOMAIN, LIFESPAN, MODEL AND CUSTOM CODE SIZE
OF VARIOUS APPLICATIONS.

Application Domain Age Data Model Custom Code
(yrs) (Nr. elem.) (Size kBytes)

Energy Monitoring > 10 116 6,352
3− 5 38 1,010

Power Grid Management 1− 3 106 10,642

Human Resource Services 3− 5 940 12,103
3− 5 59 1,433

Real Estate Services > 10 491 70,449
1− 3 331 1,412

Unmanned Aviation 5− 10 30 4,230

Traffic Management 1− 3 134 2,896

Learning Management 1− 3 133 1,794

This kind of rejuvenation, enabling a structural regeneration
and modernization of application skeletons, is not available in
a traditional development approach.

Third, the support of new infrastructure settings with cor-
responding templates to interface with these technologies, can
conceptually enable the seamless migration of applications, or
even entire application landscapes, to new and/or alternative
frameworks. Indeed, as the code to interface with such new
technologies should in general be embedded in the generated
skeletons, both application skeletons and custom code should
almost automatically support existing functionality through the
new framework.

V. THE CASE OF AN NST REJUVENATION FACTORY

Since the publishing of NST, two development centers have
been building and rejuvenating NS applications, one at the
spin-off company to further develop NST, i.e., NSX bv, and
one at the Dutch Tax Office. In this section, we study the de-
velopments and rejuvenations at the NSX development center
after 12 years of existence. The development center operates
in a realistic business environment, producing and maintaining
operational applications for clients. During these years, the
number of staff members, working on code generation tools
and applications, increased almost linearly from 2 to 50.

Table I presents some overview data of some of the most
prominent NS software applications that have been developed,
and that are still being maintained and evolved at this point
in time. While the functional domain of the application is
identified in a first column, the second column lists the age
in years, i.e., the number of years since the development of
the software application started. To reflect the size of the
model, we present the current total number of data elements,
corresponding roughly to the number of database tables, in the
third column. The total size of the craftings or custom code
(in kBytes) is listed in the fourth column.

As stated in Section I, the main goal of the agile architecture
is to rejuvenate the core structures of the various software
applications, in a way that is independent and decoupled from

16Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

Figure 2. A traditional representation of a typical DevOps infrastructure.

the continuous evolution of the underlying model and custom
features. We now discuss this structural rejuvenation according
to the different modes that we have distinguished. Given the
overall size of the applications, both in model and custom code
size, we may consider this single observation to be significant.
The detailed development resources spent are considered to be
out of scope, as we want to observe the evolvability behavior
under normal market conditions.

A. Continuous Development

The various applications summarized in Table I are in
production, and either still in full development mode, or
at least subject to extended development and/or perfective
maintenance. The development teams, consisting of one to four
people depending on the application, deliver bug fixes, minor
improvements, and new features, that are implemented using
modifications and extensions of both the model and the custom
code. In several applications, this includes application-specific
expanders or code generator modules that are being used and
maintained. As part of the CI/CD infrastructure, applications
are built and deployed in test on a daily basis, and new versions
are typically deployed in production every two weeks.

B. Updating Dependencies

Updating frameworks to new versions is, similar to most
software development environments, an integrated part of
the CI/CD infrastructure. Besides urgent patches to address
vulnerabilities, they follow the same cadence as the continuous
development. When new versions are considered appropriate,
they are included in the daily builds and test deployments, and
the bi-weekly production deployments.

C. Rejuvenating Skeletons

The development of the NS expanders follow the same
release rhythm, i.e., daily builds and testing and bi-weekly
releases. As the pipelines of the expanders and the applica-
tions are part of the same integrated CI/CD infrastructure,
they become available immediately upon release. As potential

conflicts between the new skeletons and the existing custom
code may lead to additional efforts, the various applications
are only rejuvenated using a new version of the NS expanders
every one or two months. Upon acceptance, they will proceed
to the bi-weekly production deployments.

The systematic rejuvenation of the application skeletons,
the CI/CD/CR environment, has only been realized the last
4 to 5 years of the development center. Reasons for this
delay include learning effects and lack of critical mass in the
NSX development center during the early years. Currently, the
regular rejuvenation includes systematic improvements across
the entire application landscape. These landscape-wide im-
provements include the cleanup of outdated coding constructs,
performance enhancements in database queries, enhanced au-
thorization and access control, additional options and features
for generated screens, improved support for multitenancy and
workflows, and additional options for parallel processing.

D. Replacing Technologies

The NST-based evolvable architecture of the applications
also aims to facilitate the systematic replacement of external
technology frameworks that handle the cross-cutting concerns
of the multi-layer applications. Throughout the years, the NS
expanders have introduced support for additional databases
and persistency providers in the data layer. In the logic
layer, improved JEE implementations have been introduced
for transactions, timers and triggers. The entire application
landscape has migrated seamlessly to these new technologies.

In the control and view layer, systematic migrations have
been performed in the early days of the development center.
First, from the Cocoon Model-View-Controller framework to
Struts2, followed by migrating from Struts2 to Knockout in the
view layer, while Struts2 remained the default technology in
the control layer. More recently, new technologies were intro-
duced without completely phasing out previous technologies.
JAX-RS was introduced both in the control layer that supports
the view layer, and in a separate integration layer to offer REST
interfaces for third-party applications. Angular was introduced

17Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

in the view layer, integrating with both the legacy Struts2
control layer and the new JAX-RS implementation. The fact
that custom code has been developed on quite a large scale
over the last couple of years, often lacking discipline when
calling into other layers, makes it nowadays less obvious to
retire frameworks, stressing the need for coding discipline.

VI. CONCLUSION AND FUTURE WORK

Software evolution has been facing many deep-seated issues
for decades. While the current agile development paradigm
has numerous benefits, it does not really solve these issues,
and could potentially even worsen them. Normalized Systems
Theory has proposed a software architecture that could provide
software applications with higher levels of evolvability, while
preserving the benefits of the agile development process. In
this contribution, we have presented an observational case
study to evaluate to what extent the envisioned evolvability
characteristics have been realized in a state-of-the-art agile
software factory based on NST.

Studying the evolvability characteristics of an NST-based
agile software factory is believed to make some contributions.
First, we have described in some detail how NST can be ap-
plied at a substantial scale in a modern agile software factory.
Second, we have validated that some levels of evolvability
envisoned by NST can indeed be operationalized in such an
environment. Third, we have identified a concern that may
hamper these evolvability features in a realistic environment.

Next to these contributions, it is clear that this observational
case study is also subject to a number of limitations. First,
the software development factory of the case study was set
up in close collaboration with the authors of NST. It would
be interesting to study how easily this could be reproduced
in other development centers. Second, the software factory
has only been operating at scale for a couple of years.
Therefore, the number of significant evolutions across an entire
application landscape is quite limited.

To increase significantly the time period during which the
rejuvenation factory has been operating at scale, we plan to
continue this observational case study for at least the next
few years. We also intend to look into the added value of
frameworks such as Scaled Agile Framework (SAFe), that seek
to guide enterprises in scaling agile practices [20] [21]. For
instance, we could investigate the structured integration of
techniques such as canary releases and feature toggles that
are currently used on an ad hoc basis.

REFERENCES

[1] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in
information systems research,” MIS Quarterly, vol. 28, no. 1, 2004, pp.
75–105.

[2] B. P. Lientz, E. B. Swanson, and G. E. Tompkins, “Characteristics
of application software maintenance,” Communications of the ACM,
vol. 26, no. 6, 1978, pp. 466—-471.

[3] T. M. Pigoski, Practical software maintenance: Best practices for man-
aging your software investment. Wiley Computer Pub, 1997.

[4] S. Eick, T. Graves, A. Karr, J. Marron, and A. Mockus, “Does code
decay? assessing evidence from change management data,” IEEE Trans-
actions on Software Engineering, vol. 27, no. 1, 2001, pp. 1—-12.

[5] M. Lehman, “Program, life-cycles and the laws of software evolution,”
in Proceedings of the IEEE, vol. 68, 1980, pp. 1060–1076.

[6] R. Agarwal and A. Tiwana, “Editorial—evolvable systems: Through the
looking glass of IS,” Information Systems Research, vol. 26, no. 3, 2015,
pp. 473–479.

[7] J. Estdale, “Delaying maintenance can prove fatal,” in Proceedings of
Software Quality Management XXVII: International Experiences and
Initiatives in IT Quality Management, 2019, pp. 95—-106.

[8] H. Mannaert, J. Verelst, and K. Ven, “The transformation of require-
ments into software primitives: Studying evolvability based on systems
theoretic stability,” Science of Computer Programming, vol. 76, no. 12,
2011, pp. 1210–1222, special Issue on Software Evolution, Adaptability
and Variability.

[9] H. Mannaert, J. Verelst, and P. De Bruyn, Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design. Koppa, 2016.

[10] H. Mannaert, K. De Cock, P. Uhnak, and J. Verelst, “On the realization
of meta-circular code generation and two-sided collaborative metapro-
gramming,” International Journal on Advances in Software, no. 13, 2020,
pp. 149–159.

[11] H. Mannaert, J. Verelst, and K. Ven, “Towards evolvable software
architectures based on systems theoretic stability,” Software: Practice
and Experience, vol. 42, no. 1, 2012, pp. 89–116.

[12] P. De Bruyn, H. Mannaert, and P. Huysmans, “On the variability
dimensions of normalized systems applications: Experiences from an
educational case study,” in Proceedings of the Tenth International
Conference on Pervasive Patterns and Applications (PATTERNS), 2018,
pp. 45–50.

[13] ——, “On the variability dimensions of normalized systems applications
: experiences from four case studies,” International Journal on Advances
in Systems and Measurements, vol. 11, no. 3, 2018, pp. 306–314.

[14] M. D. McIlroy, “Mass produced software components,” in Proceedings
of NATO Software Engineering Conference, Garmisch, Germany, Octo-
ber 1968, pp. 138–155.

[15] J. Greenfield, K. Short, and S. Cook, Steve; Kent, Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools.
Wiley, 2004.

[16] T. Saeed, “Current issues in software re-usability: A critical review of
the methodological & legal issues,” Journal of Software Engineering and
Applications, vol. 13, no. 9, 2020, pp. 206–217.

[17] R. T. Yarlagadda, “Devops and its practices,” International Journal of
Creative Research Thoughts (IJCRT), vol. 9, no. 3, 2021, pp. 111–119.

[18] H. Mannaert, K. De Cock, and J. Faes, “Exploring the creation and
added value of manufacturing control systems for software factories,”
in Proceedings of the Eighteenth International Conference on Software
Engineering Advances (ICSEA 2023), 2023, pp. 14—-19.

[19] Moderne, “Introduction to OpenRewrite,” URL:
https://docs.openrewrite.org/, 2023, [accessed: 2024-03-05].

[20] W. Hayes, M. A. Lapham, S. Miller, E. Wrubel, and P. Capell, “Scaling
agile methods for department of defense programs,” Software Engineer-
ing Institute, Tech. Rep. CMU/SEI-2016-TN-005, 12 2016.

[21] D. Athrow, “Why Continuous Delivery is key to speeding up software
development,” URL: https://www.techradar.com/news/software/why-
continuous-delivery-is-key-to-speeding-up-software-development-
1282498, 01 2015, [accessed: 2024-03-24].

18Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

