
Using Normalized Systems Expansion to Facilitate Software Migration - a Use Case

Christophe De Clercq

Research and Development
fulcra bv, Belgium

Email: christophe.de.clercq@fulcra.be

Jan Verelst

Department of Management Information Systems
Faculty of Business and Economics

University of Antwerp, Belgium
Email: jan.verelst@uantwerpen.be

Abstract—Applications with evolvability issues, becoming less
and less modifiable over time, are considered legacy. At some
point, refactoring such applications is no longer a viable solution,
and a rebuild lurks around the corner. However, without a clear
architecture that will enforce evolvability, the new application
risks becoming non-evolvable over time. Re-building an existing
application offers little business value; migrating from old to
new can be complicated. Normalized Systems (NS) theory aims to
create software systems exhibiting a proven degree of evolvability.
One would benefit from building legacy systems according to
this theory if legacy systems are to be rebuilt. In this paper,
we will present a real-life use case of an application exhibiting
non-evolvable behaviour and how this application is being mi-
grated gradually into an evolvable application through NS-based
software expansion. We will also address the extra value that
NS-based software expansion brings in the migration scenario,
allowing the combination of old and new features in the newly
built application.

Keywords—NS; Rejuventation; Software Migration

I. INTRODUCTION

The research on agile software development has increased
in the last few years. This research has helped to improve
the agile development methods, but there has not been much
attention paid to making the software more agile.

Agile Architecture, as defined by key agile frameworks such
as Scaled Agile Framework (SAFe) [1], is a set of values and
principles that guide the ongoing development of the design
and architecture of a system while adding new capabilities.
This definition describes more of a process than a guarantee
that the system being built will be agile, meaning the ability
to change. An agile architecture is an architecture that can
change. It is a feature of a system that requires deliberate
design. Therefore, agile architecting is a better term to describe
an agile approach to architecture, and agile architecture should
indicate the intentionality to create a dynamic system.

Normalized Systems (NS) theory aims to increase software
agility by designing software systems with agile architectures.
Software evolvability, or how easily software can be modified,
can be achieved by following a set of theorems that lead to a
specific and evolvable software architecture. NS theory has
been developed and improved over time. It is fully based
on theoretical foundations and has been applied in several
software projects. Previous research has documented the the-
oretical contributions of NS theory well, but there are few
studies on real-life cases where NS theory has been used. This

paper reports on a development project that shows the viability
of the NS theory method for creating evolvable software and
emphasizes the advantages of a real-life NS development
project. We show how NS can help with an information
system migration use case, and how it can make the target
system adaptable. The paper is organized as follows: Section II
explains the basics of NS, and Section III summarises software
migration strategies. Section IV presents the use case, and
Section V discusses the benefits of NS in this scenario. We
conclude the paper in Section VI.

II. FUNDAMENTALS OF NS THEORY

Software should be able to evolve as business requirements
change over time. In NS theory [2], the lack of Combinatorial
Effects measures evolvability. When the impact of a change
depends not only on the type of the change but also on the size
of the system it affects, we talk about a Combinatorial Effect.
The NS theory assumes that software undergoes unlimited
changes over time, so Combinatorial Effects harm software
evolvability. Indeed, if changes to a system depend on the
size of the growing system, these changes become harder to
handle (i.e., requiring more work and therefore lowering the
evolvability of the system).

NS theory is built on classic system engineering and sta-
tistical entropy principles. In classic system engineering, a
system is stable if it has Bounded Input leading to Bounded
Output (BIBO). NS theory applies this idea to software design,
as a limited change in functionality should cause a limited
change in the software. In classic system engineering, stability
is measured at infinity. NS theory considers infinitely large
systems that will go through infinitely many changes. A system
is stable for NS, if it does not have Combinatorial Effects,
meaning that the effect of change only depends on the kind
of change and not on the system size.

NS theory suggests four theorems and five extendable
elements as the basis for creating evolvable software through
pattern expansion of the elements. The theorems are proven
formally, giving a set of required conditions that must be
followed strictly to avoid Combinatorial Effects. The NS theo-
rems have been applied in NS elements. These elements offer a
set of predefined higher-level structures, patterns, or “building
blocks” that provide a clear blueprint for implementing the

6Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

core functionalities of realistic information systems, following
the four theorems.

A. NS Theorems

NS theory [2] is based on four theorems that dictate the
necessary conditions for software to be free of Combinatorial
Effects.

• Separation of Concerns
• Data Version Transparency
• Action Version Transparency
• Separation of States

Violation of any of these 4 theorems will lead to Combinatorial
Effects and, thus, non-evolvable software under change.

B. NS Elements

Consistently adhering to the four NS theorems is very chal-
lenging for developers. First, following the NS theorems leads
to a fine-grained software structure. Creating such a structure
introduces some development overhead that may be considered
slowing down the development process. Secondly, the rules
must be followed constantly, robotically, as a violation will
lead to the introduction of Combinatorial Effects. Humans are
not well suited for this kind of work. Thirdly, the accidental
introduction of Combinatorial Effects results in an exponential
increase of rework that needs to be done.

Five expandable elements [3] [4] were proposed, which
make the realization of NS applications more feasible. These
elements are carefully engineered patterns that comply with
the four NS theorems, and that can be used as essential
building blocks for various applications: data element, action
element, workflow element, connector element, and trigger
element.

• Data Element: the structured composition of software
constructs to encapsulate a data construct into an isolated
module (including get- and set methods, persistency,
exhibiting version transparency, etc.).

• Action Elements: the structured composition of software
constructs to encapsulate an action construct into an
isolated module.

• Workflow Element: the structured composition of soft-
ware constructs describing the sequence in which action
elements should be performed to fulfil a flow into an
isolated module.

• Connector Element: the structured composition of soft-
ware constructs into an isolated module allowing external
systems to interact with the NS system without calling
components statelessly.

• Trigger Element: the structured composition of software
constructs into an isolated module that controls the states
of the system and checks whether any action element
should be triggered accordingly.

The element provides core functionalities (data, actions,
etc.) and addresses the Cross-Cutting Concerns that each
of these core functionalities requires to properly function.
As Cross-Cutting Concerns cut through every element, they

require careful implementation to not introduce Combinatorial
Effects.

C. Element Expansion

An application comprises a set of data, action, workflow,
connector, and trigger elements that define its requirements.
The NS expander is a technology that will generate code in-
stances of high-level patterns for the specific application. The
expanded code will provide generic functionalities specified in
the application definition and will be a fine-grained modular
structure that follows the NS theorems (see Figure 1).

The business logic for the application is now manually
programmed inside the expanded modules at pre-defined lo-
cations. The result is an application that implements a certain
required business logic and has a fine-grained modular struc-
ture. As the generated structure of the code is NS compliant,
we know that the code is evolvable for all anticipated change
drivers corresponding to the underlying NS elements. The only
location where Combinatorial Effects can be introduced is in
the customized code.

Fig. 1. Requirements expressed in an XML description file, used as input for
element expansion.

D. Harvesting and Software Rejuvenation

The expanded code has some pre-defined places where
changes can be made. To keep these changes from being lost
when the application is expanded again, the expander can
gather them and put them back when the application is re-
expanded. Gathering and putting back the changes is called
harvesting and injection.

The application can be re-expanded for different reasons.
For example, the code templates of the elements are improved
(fix bugs, make faster, etc.), new Cross-Cutting Concerns (add
a new logging feature) are included, or a change in technology
(use a new persistence framework) is supported.

Software rejuvenation aims to carry out the harvesting
and injection process routinely to ensure that the constant
enhancements on the element code templates are incorporated
into the application.

Code expansion produces more than 80% of the code of
the application. The expanded code can be called boiler-plate-
code, but it is more complex than what is usually meant by that
term because it deals with Cross-Cutting Concerns. Manually

7Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

producing this code takes a lot of time. Using NS expansion,
this time can now be spent on the constant improvement of the
code templates, the development of new code templates that
make the elements compatible with new technologies, and on
meticulous coding of the business logic. The changes in the
elements can be applied to all expanded applications, giving
the concept of code reuse a new meaning. A modification on a
code template by one developer can be used by all developers
on all their applications with minimal impact, thanks to the
rejuvenation process.

III. FUNDAMENTALS OF SOFTWARE MIGRATION
STRATEGIES

Software systems are supposed to change over time as
the business environment changes. When a system has issues
following the changes, it is marked as legacy.

In [5], a legacy information system is defined as any
information system that significantly resists modification and
change. The main reasons for becoming legacy are the lack of
system flexibility (the very definition of legacy) and the lack
of skills to change the system.

Information Systems are closely linked with the technolo-
gies they depend on, which also evolve. These changes are
not driven by the business context but by the progress and
shifts in technology and its market. When some technologies
lose their support from the providers, their expertise will also
disappear, leading to a shortage of skilled resources to make
the necessary changes to the information system.

If a system is outdated but the business still needs to change
and improve, the only solution is to redesign the system and
move it to a new platform.

Formally, re-engineering is the examination and alteration
of a subject system to reconstitute it in a new form and the
subsequent implementation of the new form. Re-engineering
generally includes some form of reverse engineering (to
achieve a more abstract description) followed by some more
form of forward engineering or restructuring (from [5]).

Usually, the re-engineering of a new system will involve
not only current functionalities but also future functionalities.
Re-engineering provides the old and new requirements, while
migration builds and uses the new system that replaces the
legacy one.

Figure 2 shows the three activities that are part of the
migration process:

• The transformation of the conceptual information schema
(S)

• The data transformation (D)
• The programming code transformation (T)
The order of the three migration activities can vary, affecting

when the target system is ready for end users. The literature
defines the following generic methods:

• Database first: migrate data first, then migrate program-
ming gradually, and go live when all programming mi-
grations are done.

• Database last: migrate programming first, go live when
all data is migrated.

Fig. 2. Conceptual schema conversion strategy (from [5])

• Composite database: migrate data and functionality to-
gether, and go live when both are migrated.

• Chicken Little strategy: like a composite database but
keep both legacy and replacement systems running si-
multaneously.

• Big bang methodology: develop a new system, stop the
old system, migrate data, and start a new system.

• Butterfly methodology: big bang with data synchroniza-
tion techniques to reduce data migration time and down-
time.

Each of these strategies has advantages and disadvantages. We
refer to [6] for more details.

IV. USE CASE: CONNECTING-EXPERTISE

This paper presents a case study of migrating a legacy
information system using NS principles and NS expan-
sion/rejuvenation, which helped overcome some of the lim-
itations of the selected migration strategy.

We begin by providing a functional view of the legacy
system, followed by a technical view. We then discuss the
legacy system’s evolvability problems, justify the need for a
new system, and describe how the transition from old to new
occurred.

A. Functional perspective

Connecting-Expertise is a company that provides a software
platform called CE VMS that helps to improve and simplify
the sourcing, assigning, and management of an organization’s
workforce. Connecting Expertise uses a software platform to
connect job-seekers and job-suppliers quickly and efficiently.

When a job-seeker (seeking a human resource for a job)
and a job-supplier (supplying a human resource for a job) find
each other on the platform, the platform handles the necessary
administrative steps to make someone work effectively, such
as creating assignments, creating and processing timesheets,
and invoicing based on timesheets.

The business model of Connecting-Expertise combines a
buyer-funded model, where a job-seeker pays a license or a
fee per hour worked by a consultant to use the platform, and
a vendor-funded model, where a job-supplier pays per hour
worked by a consultant.

8Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

B. Technical perspective

The first version of CE VMS dates from 2007. CE VMS’s
core comprises a web server that uses PHP and a MariaDB
MySQL backend DB. The application has components such
as DTO/DAO classes (for data storage, access, and exchange),
HTML view templates, and CLI scripts for running back-
ground processes.

In 2017,, some CE VMS kernel features were separated
and moved to a new PHP server with a Zend Apigility API
framework. This setup is called CE2 VMS. The APIs are
only for internal use (not accessible by the job-seekers and
suppliers systems) and even though the features provided by
the API are not part of the CE VMS kernel, both kernel and
API framework use common code (like the data access logic,
as they both connect to the same database). The shared code
is in a library that both the kernel and the APIs use, but some
code, like DTO and DTA classes, exist in both the kernel and
the library.

The queuing system is a key component of the current
system, as it transfers tasks that take a long time from the
web application to specialized processing servers. The tasks
that take a long time are placed in a queue processed by node.js
scripts. These scripts will invoke the relevant (internal) APIs,
communicate with the DB, and even call external APIs of CE2
VMS users’ systems. An overview of the technical architecture
can be found in Figure 3 .

Fig. 3. CE2 VMS technical architecture.

C. Maintainability and evolvability issues

The following sections will describe the main problems
affecting the system’s maintainability and evolvability: the
code base, code quality, technical architecture, scalability, and
functionality. Each of these areas will be explained in more
detail below.

1) Code base: The code base was developed without proper
coding standards that were maintained and followed. First, the
SOLID principles [7] were suggested as a coding standard at
some point, but the standard is not systematically applied and
verified, leading to many violations. Second, current coding
practices led to highly coupled code because of the use of
global variables and the absence of interfaces. Third, many
classes are long and complex, and a lot of unused code
has not been removed. Fourth, consistent naming conventions
for database elements and attributes are missing. Finally, we
reiterate the previous point of code duplication between the
kernel and the libraries and the lack of standard frameworks
that could help structure the system and the code.

2) Code Quality: The code has quality problems because
there are no coding standards. First, there is no testing plan
to test each class or component of the application. Second,
doing functional acceptance tests is hard because the code
is complex. One needs to know many technical details (like
how the queue works, DB queries, and manual running of
background jobs to do end-to-end tests). Third, security coding
practices are not used, so the code is vulnerable to common
security risks like SQL injection because input data is not
validated properly. Finally, releasing a new version is a big
deal instead of a routine, often needing last-minute fixes, even
when acceptance testing seems good.

3) Technical Architecture: The technical architecture docu-
mentation (the infrastructure, system software, and networking
used) is not consistent, complete, or coherent. This might
account for the redundancies observed, such as using two
different indexing databases, two worker systems, two in-
voicing systems, and a custom approach to connecting with
external systems. The reason for having two different technical
environments for serving the BE and UK markets is not
justified and leads to double maintenance. There is a strong
dependency between the code base and the underlying techni-
cal infrastructure. Changing underlying technical components
(such as the DB) is very difficult because of the lack of
abstraction of the technologies used (tight coupling between c
code and Maria DB).

4) Scalability: A system that can cope with a growing
amount of work by adding resources has scalability. The
current environment has some components that are hard to
scale. First, the DB (MariaDB – MySQL) is not clustered (no
load balancing option, and it is on the same server as the web
server, which means they share the server resources). Second,
the file storage area for timesheet uploads is only accessible
from the web server, so all background processes that need
these files (like the background invoicing process) must also
run on the web server (which also shares the resources).
Third, the Xapian indexation system does not work across
the network, and it has to run on the web server, just like the
current job executer (Jenkins). There is also resource sharing
here. Lastly, the application does not use caching mechanisms,
which leads to unnecessary DB queries.

5) Functionality: The system is complicated to set up for
new clients. They frequently need new application settings,

9Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

reports, or even application functions. This makes it hard to
expand the application to more customers (for example, in a
new country). The system also has a limitation on the currency:
some system modules only support the Euro.

D. The Need for Change

Connecting-Expertise needs to enable integration with the
backend systems of job-seekers and suppliers to remain com-
petitive as a platform. However, this development is hindered
by current issues of evolvability. Connecting-Expertise faces
a challenge: how can CE2 VM offer integration with external
systems, along with existing and new functionalities, without
affecting the current CE2 VMS platform and creating a whole
new CE platform from scratch?

1) New setup: In 2021, a new system, called CE3 VMS,
was being put forward. It consists of a set of external APIs that
provide integration functionalities with job-seeker and supplier
systems. These APIs call a new set of internal APIs, which
expose the new CE data model.

As we discussed, the CE2 VMS data model is inconsistent
and lacks anthropomorphism. For CE3 VM, a new data
model that follows the NS evolvability principles is being
put forward. Connecting-Expertise decided to create a set of
APIs that would enable external integration and calls toward
the CE3 VMS. These APIs would interact with internal APIs
that expose existing CE2 VMS functionalities, new CE3 VMS
functionalities, and the new CE3 VMS data model. In the next
sections, we will explain the reason for an NS approach, the
new CE3 VMS data model, the conversion from CE3 VMS to
the CE2 VMS data model, the overall transition strategy from
CE2 VMS to CE3 VMS, and the benefit of rejuvenation.

2) NS Expansion approach: Connecting-Expertise realized
that their platform had issues with adaptability. Connecting-
Expertise liked the NS approach but was not completely
convinced about using NS Expansion with the NSX tools
[8]. Two methods were compared: building the new CE3
system following the NS principles or the CE3 system with the
NSX tools. Essentially, this means deciding between working
with or without software expansion. All stakeholders were
informed about both methods and a qualitative comparison
was done by the stakeholders. The result of this comparison
(see Figure 4) was that an expansion-based method using the
NSX tools, was preferred. It should be noted that this was a
qualitative comparison, which needs to be verified again once
implementation starts and/or finishes (see Section V).

3) CE3 VMS Data Model: CE3 VMS does not rebuild ex-
isting functionalities. Instead, it uses the CE3 VMS data model
to call existing functionalities (as a data exchange format) and
converts the CE3 VMS data model to the CE2 VMS data
model so that the corresponding CE2 VMS functionalities can
be used. Data already in CE2 VMS is accessed/stored via APIs
on CE3 VMS. Only when new functionalities on CE3 VMS
introduce new data types, the data will be stored and accessed
in the CE3 VMS-specific database.

CE3 VMS uses two types of data elements. One is for CE3
VMS native data, which can only be accessed and used by

Fig. 4. Implementing CE2 with or without Software Expansion.

CE3 VMS, called a CE3 data element. Another is for data
in CE2 VMS that CE3 VMS exposes through a CE3/CE2
data element. The CE3/CE2 data elements transform the less
anthropomorphic CE2 data elements into a data structure
according to NS principles. The CE2 data element will be
aggregating a certain amount of CE3/CE2 data elements.
Figure 5 shows an example modelled in ArchiMate. The
diagram shows a data object d A CE2 that is an aggregation
of d a1 CE3/CE2, d a2 CE3/CE2 and d a3 CE3/CE2, and
accessible via CE2 and CE3, while data object d b CE3 is
only accessible via CE3. Transformers are used to convert the
CE2 data object and CE2/CE3 data objects.

Fig. 5. Transformation of data objects between CE2 and CE3.

Fig. 6. Transformer as a Cross-Cutting Concern of the CE3/CE2 data element
type.

4) The Transformer Cross-Cutting Concern: The trans-
formers deal with a Cross-Cutting Concern that affects both
CE2 and CE3. They are special classes that belong to the
CE3/CE2 data elements of CE3 VMS.

All the expanded CE3/CE2 data elements have a transformer
inside them as a Cross-Cutting Concern. The transformer’s role
is to map the CE3 data model to the CE2 data model. When
an instantiated CE3/CE2 data element performs persist/retrieve
actions, the transformer will change the CE3 data into the CE2
format - like an ETL operation - and then do the persist/retrieve
action on the CE2 database. This approach requires the CE3

10Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

Fig. 7. Migration of data from CE2 VMS to CE3 VMS.

and CE2 data models to be unambiguously mappable. This
was ensured during the design of the CE3 data model. Figure 6
shows the difference between the 2 data element types.

A feature available on CE2 VMS will use the data elements
created on CE2 VMS. The same feature can be accessed from
CE3 VMS through the CE3/CE2 data elements. When all
users of this feature switch from using it on CE2 VMSand
start using it on CE3 VMS (moving users from the old to the
new platform for that feature), it is time to also move all the
relevant data from the CE2 VMS database to the CE3 VMS
database. The transformers will help with this migration.

A migration task would just get the CE2 data through the
CE3/CE2 data element and save it into a CE3 data element.
After this migration task is done, the feature that needs this
data will only use the native CE3 data element, making a
smooth transition from one system to the other. Figure 7
explains the process.

5) Rejuvenation and Transformation: To create CE3 VMS,
a connection with CE2 VMS had to be embedded in the code.
The parts of the code that handle this connection are in the
transformation classes. These classes belong to the CE3/CE2
data elements. When setting up the meta-model used as the
basis for the code expansion, data elements will be marked
as either type CE3/CE2 or type CE3. All transformation
classes are then included in the expansion. When a data
structure does not need to be linked to both CE2 and CE3
anymore, it is enough to specify this in the meta-model and
re-expand. CE3 data elements will be applied at that point,
and the transformers are no longer required. The process of
re-expansion that improves the element structures is called
rejuvenation. In this case, the rejuvenation process eliminates
all code and connections to CE2, removing the link to legacy.

V. DISCUSSION

In this section, we will discuss different aspects of the
migration approach. We will start with the choice of NS
expansion, followed by the value of a phased migration. We
will end by comparing this migration approach with a generic
migration approach called Chicken Little [6].

A. The choice for NS Expansion

In Section IV-D2, we explained why Connecting-Expertise
chose to use NS Expansion compared to standard program-
ming using the NS principles as guidelines. We asked the
Connecting-Expertise’s lead developer, Sven Beterams, if the
estimated gains of using NS Expansion also materialized
during project delivery. He confirmed that thanks to NS Expan-
sion, the development went faster, the code quality improved
considerably, and the data model was anthropomorphic and
consistent. The development of the backend was greatly im-
proved and the phased migration approach was made possible
thanks to NS Expansion/Rejuvenation.

B. Migration Approach

The usage of the transformers plays an essential role in
the migration from CE2 VMS toward CE3 VMS. The idea of
gradually shifting functionalities from one system to another
while keeping both live is referred to as the Chicken Little
approach (see [6]). The main drawback of using this approach
is the need for gateways between the source and target system.
These gateways must be meticulously designed and consis-
tently implemented, which can be daunting. NS Expansion
mitigates the downsides of doing Chicken Little dramatically.
The gateways are implemented using the transformer classes
that are part of the data elements. Using NS Expansion ensures
that each gateway/transformer is identical in structure and

11Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

usage. The transformers can evolve, and all modifications and
improvements can be quickly and easily redeployed using re-
expansion/rejuvenation. When functionality is fully migrated
from the source to the target system, there is no longer the
need to keep the gateways in place. With classic coding
practices, the manual removal of the gateways comes with
risks. Accidental removal of too much could result in broken
functionalities. Insufficient removal results in traces of legacy
code in a brand-new system. With NS Expansion, it suffices
to perform a rejuvenation cycle to replace the code templates
that contain transformers with code templates without trans-
formers. All traces of legacy are removed in a consistent and
precise way.

C. Phased migration

Connecting-Expertise wanted to avoid a big-bang migration.
The transformer approach facilitated this even more. The ease
with which the final migration of data can be performed (as
described in Figure 7) is thanks to the usage of the transformer
Cross-Cutting Concern and the ability to rejuvenate the code
and erase all links to legacy after final migration. Without the
NS Expansion approach, this task would be much harder.

VI. CONCLUSION

This paper presented a real-life case where software mi-
gration is facilitated by NS Expansion. We introduced NS,
NS Expansion, and a general overview of software migration
approaches. We presented the Connecting-Expertise use case,
where a mission-critical platform needed to evolve while
keeping the existing system operational. We have shown that
addressing the migration as a Cross-Cutting Concern, using
transformer classes embedded in data elements, combined with
NS Expansion and rejuvenation, can mitigate some of the
major drawbacks of a phased migration.

ACKNOWLEDGMENT

The authors would like to thank Sven Beterams from
Connecting-Expertise, for sharing his knowledge of the ap-
plications. We would also like to thank Chetak Kandaswamy
for collecting and structuring the material required to create
this paper.

REFERENCES

[1] SAFe Framework, [Online], Available: www.scaledagileframework.com,
[retrieved: April, 2024]

[2] H. Mannaert, J. Verelst, and P. De Bruyn, “Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design”, ISBN 978-90-77160-09-1, 2016

[3] H. Mannaert, J. Verelst, and K. Ven, “The transformation of requirements
into software primitives: Studying evolvability based on systems theo-
retic stability”, Science of Computer Programming, Volume 76, Issue
12, pp. 1210-1222, 2011

[4] P. Huysmans, G. Oorts, P. De Bruyn, H. Mannaert, and J. Verelst, “Po-
sitioning the normalized systems theory in a design theory framework”,
Lecture notes in business information processing, ISSN 1865-1348-142,
pp. 43-63, 2013

[5] S. Demeyer and T. Mens, “Software Evolution“, ISBN 978-3-540-
76439-7, 2008

[6] A. Sivagnana Ganesan and T. Chithralekha, “A Comparative Review
of Migration of Legacy Systems“, International Journal of Engineering
Research & Technology (IJERT), ISSN 2278-0181, Volume 6, Issue 02,
February 2017

[7] R. Martin, ”Clean Architecture”, ISBN-13 978-0-13-449416-6, 2017
[8] NSX, [Online], Available: www.normalizedsystems.org, [retrieved:

April, 2024]

12Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

	Introduction
	Fundamentals of NS theory
	NS Theorems
	NS Elements
	Element Expansion
	Harvesting and Software Rejuvenation

	Fundamentals of Software Migration Strategies
	Use Case: Connecting-Expertise
	Functional perspective
	Technical perspective
	Maintainability and evolvability issues
	Code base
	Code Quality
	Technical Architecture
	Scalability
	Functionality

	The Need for Change
	New setup
	NS Expansion approach
	CE3 VMS Data Model
	The Transformer Cross-Cutting Concern
	Rejuvenation and Transformation

	Discussion
	The choice for NS Expansion
	Migration Approach
	Phased migration

	Conclusion
	References

