PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

Systematic Rejuvenation of a Budgeting Application over 10 years: A Case Study

Chetak Kandaswamy, Jan Verelst

Department of Management Information Systems
Faculty of Business and Economics
University of Antwerp, Belgium
Email: jan.verelst@Quantwerpen.be

Abstract—Normalized Systems (NS) theory has recently been
proposed as a means of increasing software agility. NS theory
posits that software evolvability, or the ease with which software
can be changed, can be achieved by adhering to a set of theorems
that result in a specific and evolvable software architecture,
based on the use of NS-specific code generators called expanders.
While the theoretical contributions of NS theory have been
well-documented in previous research, there are few reports
on real-life cases where NS theory has been employed. This
paper documents a development project that demonstrates the
feasibility of the NS approach for building evolvable software and
highlights the benefits of a real-life NS development project over
a period of more than 10 years, in which the system was built and
afterwards regenerated using the NS code generators. The results
confirm the feasibility of systematically regenerating information
systems in Java over time with limited resources, eliminating or
drastically reducing the need for rebuilds from scratch, in order
to deal with structure degradation of information systems, more
specifically for information systems of limited size and complexity,
which are commonplace in today’s digital economy.

Keywords-Normalized Systems; Evolvability; Agility; Software
Rejuvenation

I. INTRODUCTION

In recent years, there has been a growing body of research
on agile software development. While this research has yielded
valuable insights into improving agile development processes,
there has been comparatively less focus on enhancing the
agility of the software itself. Important Agile frameworks,
such as the Scaled Agile Framework (SAFe), define Agile
Architecture as a set of values and principles that support the
active evolution of the design and architecture of a system
while implementing new capabilities. This definition points
more in the direction of a process than it does in assuring
that the system itself will be agile. In that respect, Agile
Architecting is a better term to refer to an agile way of
doing architecture, and Agile Architecture could point to the
intentionality of creating an evolving system.

Normalized Systems (NS) theory has recently been pro-
posed as a means of increasing software agility. NS posits that
software evolvability, or the ease with which software can be
changed, can be achieved by adhering to a set of theorems
that result in a specific and evolvable software architecture.
This architecture offers systems theoretical stable responses to
changing business and/or technical requirements. NS theory
has been refined and extended over the years and has been
implemented in several software projects. While the theoretical

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

contributions of NS theory have been well-documented in
previous research, there are few reports on real-life cases
where NS theory has been employed.

This paper documents a development project that demon-
strates the feasibility of the NS approach for building a
Budgeting application and maintaining it over a period of 10
years.

The paper is structured as follows. In Section II, we review
the concepts behind NS theory and software rejuvenation.
Section III will provide information about the Budgeting
application and an overview of the different changes applied
to the application over a period of 10 years. In Section IV, we
will discuss the Budgeting application from the perspective
of the owner of the application, the Province of Antwerp, and
report their reflections on the past 10 years. Section V presents
our conclusions.

II. FUNDAMENTALS OF NS THEORY

Software architectures should be able to evolve as busi-
ness and technical requirements change over time. In NS
theory, evolvability is measured by a lack of Combinatorial
Effects (CE) in software architectures. Combinatorial Effects
constitute a specific kind of ripple effects: when the impact
of a change, measured in the number of impacted modules,
depends not only on the type of change but also on the size
of the software system, a Combinatorial Effect occurs. NS
theory assumes that software undergoes unlimited evolution
(i.e., that both new and changed requirements will make a
software system increase in size over time), which makes
Combinatorial Effects very harmful to software evolvability.
Indeed, if changes to a system depend on the size of the
growing system, these changes become harder to handle (i.e.,
requiring more work and therefore lowering the evolvability
of the system).

NS theory is built on principles from systems theory (sta-
bility) and statistical thermodynamics (entropy). In systems
theory, a system is stable if it has bounded input leading
to bounded output (BIBO). NS theory applies this idea to
software design as a bounded change in functionality should
only cause a bounded change in the software. In systems
theory, stability is measured at infinity. NS theory considers
systems that grow infinitely large over time and will go
through infinitely many changes. According to NS theory,
a system is stable towards changes, if it does not have CE,

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

meaning that the effect of a change only depends on the type
of change and not on the system size.

NS theory suggests four theorems and five elements as the
basis for creating evolvable software through pattern expansion
of the elements. The theorems have been proven formally, and
provide a set of design guidelines that must be followed strictly
in order to avoid Combinatorial Effects. The NS elements
offer a set of predefined higher-level structures, patterns, or
“building blocks”, that provide functionality while conforming
to all NS theorems. Therefore, they constitute a blueprint for
implementing the core functionalities of realistic information
systems.

A. NS Theorems

NS theory proposes four theorems that describe the nec-
essary conditions for software to be free of Combinatorial
Effects:

o Separation of Concerns

o Data Version Transparency

¢ Action Version Transparency
o Separation of States

Violation of any of these 4 theorems will lead to Combinatorial
Effects and thus less evolvable software under change.

B. NS Elements

Consistently adhering to the four NS theorems seems very
challenging for developers because of several reasons. First,
following the NS theorems leads to a fine-grained software
structure as concerns and states are separated, which does
introduce some development overhead that may slow down the
development process. Second, the theorems must be followed
all the time, which is problematic in a context where human
programmers work under varying project conditions, including
(occasionally) limited time and budgets. Third, the accidental
introduction of Combinatorial Effects results in an exponential
increase of rework that needs to be done at a later time.

Five elements were therefore proposed which make the
realization of NS applications more feasible, as they can
be instantiated by code generators called expanders. These
elements are carefully engineered patterns that comply with
the four NS theorems and that can be used as essential building
blocks for a wide variety of applications. The elements are
named according to the elementary functionality they offer:
data element, action element, workflow element, connector
element, and trigger element.

o Data Element: the structured composition of software
constructs to encapsulate data into a module (including
get- and set methods, persistency, exhibiting version
transparency,etc.).

o Action Element: the structured composition of software
constructs to encapsulate an action into a module.

o Workflow Element: the structured composition of soft-
ware constructs describing the sequence in which a set
of action elements should be performed to fulfill a flow,
into a module.

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

o Connector Element: the structured composition of soft-
ware constructs into a module allowing external systems
to interact with the NS system without calling compo-
nents in a stateless way.

o Trigger Element: the structured composition of software
constructs into a module that controls the states of the
system and checks whether any action element should be
triggered accordingly, e.g., based on time conditions.

The element not only provides core functionality (such as
persistency of data, execution of an action, etc.) but also
addresses the cross-cutting concerns that each of these core
functionalities require to function properly. As cross-cutting
concerns cut through every element, they require careful
separation from other concerns in order not to introduce
Combinatorial Effects.

C. Element Expansion

An application is mainly composed of a set of data, ac-
tion, workflow, connector, and trigger elements that realize
its requirements. An NS expander instantiates the software
elements into source code for the specific application. The
expanded code will provide functionalities specified in the
application definition and constitutes a fine-grained modular
structure that follows the NS theorems (see Figure 1) and is
therefore free from combinatorial effects. This generated part
of an application is also called the skeleton of the application.

Next, remaining functionality, such as the business logic for
the application, is manually programmed or customized inside
the expanded modules, at pre-defined locations. This func-
tionality is called a customization or crafting. The presence
of combinatorial effects in this manually programmed part of
the application, depends on the adherence of the individual
programmer to the NS theorems. However, a strength of this
approach is that the only location where Combinatorial Effects
can be introduced, is in the customized code.

00206 20636
NN 206 26 06
0306006 206
U0 0 206 €

Build
XML Model

mmmm —

NS application =
n instances of elements

Figure 1. Requirements expressed in an XML description file, used as input
for element expansion

D. Harvesting and Software Rejuvenation

The expanded skeleton has some pre-defined places where
customizations can be made. To keep these customizations
from being lost when the application is re-expanded at a

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

later time, these customizations are gathered and put back
when the application is re-expanded. This process of gathering
and putting back the customizations is called harvesting and
injection.

The application can be re-expanded for different reasons.
For example, the code templates of the elements are improved
(bug fixes, performance improvements, new versions of sup-
porting technologies, or changes in the technology, such as a
new persistence framework, etc.).

The purpose of software rejuvenation is to carry out the
harvesting and injection process routinely to ensure that the
improvements of the 5 element code templates are incorpo-
rated into the skeleton of the application.

In our experience, in a Java environment, expansion pro-
duces more than 80% of the code of a production-ready
application. The expanded code can be called boiler-plate-
code, but it is more complex than what is usually meant
by that term because it deals with cross-cutting concerns
such as persistency, remote access, logging and security at
an advanced level. The manual production of such code often
is time consuming. Using NS expansion, this time can now
be spent on, e.g., the constant improvement of the element
code templates, the development of new code templates that
make the elements compatible with new technologies, and on
meticulous coding of the business logic. The changes in the
elements can be applied to all expanded applications, giving
the concept of code reuse a new meaning. A modification
on a code template by one developer can be used by all
developers on all their applications, with minimal impact,
thanks to the rejuvenation process. Figure 2 summarizes the
NS development process.

NS application Model describes the structure of application

|

NS Development
| Extract the customizations of the code from previous software stack

~- === =
Ns

Adapt the existing application model, add data element, business logic d)
| Rejuvenation

| Expand the model to generate code

Inject the Harvested customizations from previous expansion on the new
| software stack

| Customize the code (Craftings) o better accommodate your use-cases

Extract the customizations of the code from previous software stack

Figure 2. The NS development process

III. THE USE CASE: PROVINCE OF ANTWERP
BUDGETING APPLICATION

In this section, we first describe the Budgeting Application
at a functional level, and then describe the evolution and
rejuvenation process that took place over the course of about
10 years. This case study is based on interviews with the
Head of IT Projects of the Province of Antwerp as well
as the programmers who were involved in development and
maintenance.

A. The Application

As a case study for software rejuvenation, we selected a
Budgeting application of a local Belgian government. The ap-

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

plication was built because the existing financial ERP package
was difficult to adapt to the specifics of Belgian government
budgeting regulations. The application was first built using
NS technology in 2012 and is currently still in use. The
functional requirements of the application are budget creation
and management, expense tracking and control, managing
different revenue streams, forecasting and planning, reporting
and analysis, compliance and audit trail, integration with
financial systems, data security, and privacy.

This Budgeting application has played a crucial role in
enhancing transparency, accountability, and efficiency in the
budgeting process. It has enabled the government to monitor
and manage its financial resources effectively, ensure compli-
ance with fiscal policies, and make data-driven decisions to
allocate resources efficiently. This application has integrated
well with the existing financial systems used by government
entities, such as accounting software or Enterprise Resource
Planning (ERP) systems. This integration has ensured data
consistency and has reduced manual data entry.

The functional requirements are easily explained using
the Entity Relationship Diagram (ERD) shown in Figure 3.
The diagram shows the Budget as the central data element
instance of the application. The Budget element is defined
by a combination of the following 11 data elements: Article,
Budget type, Budget change, Budget year, Cell, Domain,
Product, Recording, Service, Supplier, and Team. The unique
combination of these 11 parameters is the key to the budget
in its most basic manifestation.

The current budget is an aggregation of many sub-budgets
over time along with the combination of the above parameters
in real-time for data integrity reasons. The calculated current
budget is not stored in the database to avoid error propagation
which may lead to faulty data. The most granular budget is
calculated based on the following data elements: Article, Bud-
get type, Budget change, Budget year, Department, Domain,
and Product instances as visualized on the left of the figure.
The specific budget belongs to a single department, activity,
etc. The activity is grouped with the Economic groups, which
in turn makes the Budget estimate.

B. Application evolution and rejuvenation

Over the past 10 years, the Budgeting application has been
subject to many changes. Although the business logic of the
application, mainly driven by legislation, required only one
major update over this period, the number of changes in user
functionalities were more frequent. Both changes in legislation
and user functionalities required new code customizations.
Also, there have been many changes to the element code
templates. They have been updated based on feedback from
customers (bug reports, performance issues, etc.) and the
changing technological landscape (new operating system ver-
sions, database updates, programming language evolutions,
application server changes and even the switch in deployment
methods from onsite to cloud).

Figure 4 summarizes the software rejuvenation of the
Budgeting application over the past 10 years. The efforts

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

Activity plan

/_,‘ Policy

Lo—&-l Policy domain |
| |
1

Economic gropup

|

]

I
i

!
Budget
——od | [bo—4] Recording Detail_|
\ |

.
.

ry Team P"—’-“l Cel]
[[
[L
e
|

[acu
[1
L

Budget change Recording

o ¥
I — o [ooy

Invoice Line ‘

\ |
J
1

I — Work order _ho—s| Work order line_|
I — - —
Jp—oed

Product | 5
[l
' I
——

| Purchase file Lp—cx{ Purchase Qrder].——-c..{ Supplier Lo—-—ql Consultant ‘
[| |
1 [

] | 1 L

Figure 3. ERD model of the Budgeting application

required to perform technology updates using rejuvenation add
up to a total of 5 days over 10 years. Between 2012 and
2019, the technologies used by the application have endured,
which contributes to the relatively limited effort required. The
rejuvenation mainly included updates of the element code
templates, benefiting from the continuous evolution of element
code template improvements done by other developers. In
2019, a significant update at the technology side happened:
a change in the programming language version, application
server, and frontend technology. The total effort was 2 man-
days to accomodate these changes. In 2023, the changes in
technology were even more profound as the programming lan-
guage version, frontend, database, application server, and de-
ployment method (container instead of server-based) changed.
The effort was only 1 man-day. In summary, the skeleton of
the Budgeting application was rejuvenated several times over
the past 10 years, each time requiring an effort in terms of
one to several man-days, which can be considered a limited
investment to incorporate all the benefits of a rejuvenation
described above.

The total time invested in changes to customizations or
craftings adds up to 50 man-days from application conception
(2012) to the current state (2023). The effort of implementing
new customizations (new legislation in 2014) and user func-
tionalities (2014, 2015 and 2019) can be considered similar
to whatever development method and/or technology was used
in the industry at that time, which is unsurprising as this
essentially manually written code in an NS application.

In summary, over a period of 10 years, the total effort of
change has been 28 man-days, of which 23 have been purely
functional changes and 5 due to rejuvenation. These figures
confirm and even outperform estimations that were made about
the development effort of this very same application in 2014
(see Figure 5) [4].

Copyright (c) IARIA, 2024. ISBN: 978-1-68558-161-9

IV. VOICE OF THE CUSTOMER

This section is based on interviews with the Head of IT
Projects and Solutions at the Province of Antwerp.

1) On the advantages of Rejuvenation using NS framework:
“The main advantage for us was the speed that can be gained
with the rejuvenation of the application. Because the process
of expansion and re-injection is fully automated and fast, a
new version can be put in place and the actual functionality
can be tested instead of also having to validate and test the
boiler-plate code.”

2) On developing with or without NS: “We have no real
data concerning the effective difference between development
with or without NS. In my opinion, if we did not use NS,
the first change of the application in 2014 (new budgeting
legislation), would have resulted in building a new application,
instead of just rejuvenating the existing one. Such a rebuild
would have probably taken 50 man-days. While with rejuve-
nation, we only had a few days of functional testing to do.”.

3) On Maintenance cost: The maintenance of 6 different
applications at the Province of Antwerp built using the NS
methods (including the Budgeting application) required only
4 man-days of maintenance operations both in 2021 and in
2022 (across all 6 applications).

4) On NS vs. Low Code: As the proprietary budgeting
tool was to be used by only 20 users, low-code and no-code
platforms could also have been considered as development
platforms, as they allow users to create applications using
a minimal amount of coding. At the time of development
(2012), such platforms were not considered by the Province
of Antwerp. Revisiting the NS vs. low-code decision at this
point in time, can be done based on a number of criteria. First,
it is important to note that stakeholders from the Province of
Antwerp required specific customizations for the Budgeting
application, potentially causing low-code platforms to be chal-
lenged in terms of customization, scalability, and flexibility.
Second, if an organization builds applications heavily reliant
on the low-code platform’s proprietary features or architecture,
migrating to a different platform or transitioning away from
the platform can be difficult and time-consuming.

5) On NS vs. Shadow IT: The Budgeting application is
not a challenging and complex application, and one might be
tempted to turn to the usage of a MS Excel or MS Access-
based application, completely created and maintained by the
business, instead of IT. The Province of Antwerp did not go
down this path as they already had some years of experience in
doing their budgeting work in MS Excel and noticed important
drawbacks such as the fragility of the solution, dependence on
a few people who master the implementation of the business
logic in MS Excel and high maintenance cost.

V. CONCLUSION

In this paper, we discussed how the NS theory can be
applied to rejuvenating a Budgeting application, which es-
sentially is a small CRUDS application, which was built
using the NS expanders. Over this period, this application has
undergone multiple functional and non-functional, technical

PATTERNS 2024 : The Sixteenth International Conference on Pervasive Patterns and Applications

I V1 I V2 V3 V4
Ny
First version with new Change in budget law No change No change No change
budget laws
(" A s ™ s N ') s)
Firsts App * Decimal Corrections + Purchase order + search functions No change
"""""""""""""""""""" T New 1 Datewidget T TReswexport T T I
interface + Query function + secure remote login
+ Check records * Adding the budgets
for the working years
J - v . / / . S
' ' g) ' R 4 N\ ~)
_______ Backend: Java EE S No change No changa Backend: Java 8 EE Backend: Java 17 EE
Frontend: Knockowt 22 | R T 7| Frontendt Knodkaiit S T Frontend: Knockout 15
Database: SQL server 2012 Database: SQL server 2012 Database: Postgres 15
Deployment:Win Server 12 Deployment:Win Server 12 Deployment: Docker
App Server: JOnAS 5.1.4 App Server: TomEE
L L L) \App Server: TomEE y

©) 2012 J@

6} 2015

O

\ v

l 1 Man-day l

2 Man-days*
*To build new XML model

First version with new 1 Man-day
budget laws = 0 days

——
First version with new 7 Man-days
budget laws = 27 man-days

[8 Man-days] [8 Man-days

1 Man-day*
*Not deployed

No craftings = 0 days

il

Figure 4. Summary of Software Rejuvenation for 10 Years

NS extensions (90% of development time)

r L 1
NS application development - 11 I
Crerspplcation devlopment _

35

0 5 10 15 20 25 30 40 45 50

= Implementation time for application-specific requirements (in man-days)
Incorporating NS extensions in NS elements for future application building (in man-days)

m Development time for optaining the skeleton code (in man-days)

Figure 5. Comparison of estimated development time [4]

changes. The technical changes were limited in the sense that
updates from technologies were required, but no major shifts
to other technologies. Nonetheless, in a time where many
applications are rebuilt after 5-10 years, it is interesting to
see that it is feasible to see that rejuvenation is feasible over
a period of 10 years, with the skeleton of the application
being updated to the most recent version of the underlying
technologies. This suggests that the increased use of code
generators holds significant promise for the future.

[1]

[2]

[3]

[4]

Copyright (c) IARIA, 2024.

REFERENCES

H. Mannaert, J. Verelst, and P. De Bruyn, “Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design”, Koppa Publishing, ISBN 978-90-77160-09-1, 2016.
H. Mannaert, J. Verelst, and K. Ven, “The transformation of requirements
into software primitives: Studying evolvability based on systems theo-
retic stability”, Science of Computer Programming, Volume 76, Issue
12, pp. 1210-1222, 2011.

P. Huysmans, G. Oorts, P. De Bruyn, H. Mannaert, and J. Verelst, “Po-
sitioning the normalized systems theory in a design theory framework”,
Lecture notes in business information processing, Springer, ISSN 1865-
1348-142, pp. 43-63, 2013.

G. Oorts, et al., “Building Evolvable Software Using Normalized
Systems Theory: A Case Study”, Proceedings of the annual Hawaii
international conference on system sciences, ISBN 978-1-4799-2504-9,
pp. 4760-4769, 2014.

ISBN: 978-1-68558-161-9

