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Abstract—Quantum algorithms have the potential to out-
perform classical algorithms for certain problems. However,
implementing quantum algorithms in a reusable manner and in-
tegrating them into applications poses new challenges. To ensure
reusability and integrability, quantum algorithm implementations
must handle different problem sizes, be able to be processed by
different quantum computers, and should also be able to be used
and integrated by non-quantum experts. In classical software
engineering a variety of best practices and design principles to
achieve reusability of classical software components are well-
known and documented as patterns. However, quantum software
engineering currently lacks best practices for creating reusable
implementations of quantum algorithms. To close this gap, this
paper presents five patterns that describe proven solutions for
modularization, integration, and translation of quantum algo-
rithm implementations, further extending the existing quantum
computing pattern language.

Index Terms—Quantum Computing; Pattern Language; Quan-
tum Software Engineering; Quantum Computing Patterns.

I. INTRODUCTION

Quantum algorithms have the potential to outperform their
classical counterparts by exploiting quantum mechanical phe-
nomena such as entanglement. Most quantum algorithms are
hybrid, comprising classical and quantum computations. This
includes not only variational quantum algorithms (VQAs) [1],
e.g., the Variational Quantum Eigensolver (VQE) and Quan-
tum Approximate Optimization Algorithm (QAOA) [2], but
also Shor’s algorithm for prime factorization [3][4] and Grover
search [5], which require classical pre- and post-processing
steps and are therefore also hybrid [6].

Implementing a quantum algorithm is a complex task requir-
ing expertise in the field of quantum computing and software
engineering. Implementations consist of code that represents
quantum circuits, and code defining the classical logic of the
quantum algorithm. These algorithm implementations can then
be integrated in hybrid quantum-classical applications [7] to
solve specific problems. Thus, the reusability of implementa-
tions of quantum algorithms and their integration into appli-
cations, where their hybrid nature on the level of algorithms
and applications poses additional challenges [8], are of great
importance to quantum software engineering [9].

Reusability in the context of quantum algorithm imple-
mentations comprises multiple aspects: One aspect is the
reusability of an implementation in different applications. The
programming language used for the implementation has a large
influence on its reusability, e.g., quantum algorithms imple-
mented in a Python-based quantum programming language can
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easily be integrated directly into applications also implemented
in Python. Another aspect is the reusability for different
problem instances. Reusable implementations of quantum al-
gorithms, e.g., to solve the maximum cut problem [10], should
be able to process graphs of different sizes, which may affect
the number of qubits required. Moreover, reusable algorithm
implementations should be executable on different hardware,
i.e., quantum computers of different vendors.

To achieve a high degree of reusability, classical software
engineering provides many well-documented and well-known
best practices for structuring the code of classical applications,
such as modularization to achieve separation of concerns.
To the best of our knowledge, similar best practices for
implementing quantum algorithms and integrating them into
applications are neither well-established nor well-documented
in the emerging field of quantum software engineering.

An established method to document best practices for
solving recurring problems are patterns [11]. They provide a
structured way to capture design and architectural knowledge
in a human-readable format. Patterns have been originally
introduced by Alexander [12] in the domain of building
architectures. Today they are widely used in different domains
including software engineering, e.g., for the design of object-
oriented applications [13], the integration of enterprise appli-
cations [14], or cloud computing [15]. Typically, patterns of a
certain domain are organized in a pattern language. Patterns
within a pattern language are interconnected, to facilitate the
combination of related patterns and ease the understanding of
similar problems and their solutions.

In the quantum computing domain, Leymann [16] intro-
duced a pattern language, which has since been extended
several times [2][17][18][19][20][21]. The pattern language
contains patterns of different categories, e.g., patterns related
to quantum operations or specific quantum algorithm classes.
However, patterns documenting best practices to improve the
reusability of quantum algorithm implementations are not yet
part of the language. To close this gap, we extend the quantum
computing pattern language by five new patterns that cover
different aspects of reusability of such implementations.

The structure of this paper is as follows: Section II provides
fundamentals on quantum software engineering and introduces
the used pattern format and authoring process. Next, Sec-
tion III explains the new patterns in detail, followed by a short
discussion in Section IV. Then, related work is presented in
Section V and Section VI provides a conclusion.
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II. BACKGROUND

This section introduces fundamentals of quantum software
engineering. Additionally, the concept of patterns, the pattern
format used in this paper, and the pattern authoring process
are described in more detail.

A. Quantum Software Engineering

Quantum software engineering is an emerging field that
aims to apply software engineering principles to the devel-
opment of applications using quantum algorithm implemen-
tations [22]. In particular, the reusability of such implemen-
tations is a main goal of quantum software engineering [9].
One aspect of reusability is the ability to integrate quantum al-
gorithm implementations into different applications. Typically,
quantum algorithm implementations are integrated into hybrid
quantum-classical applications [7], or hybrid applications for
short, to solve problems that can only be solved efficiently
using a quantum computer, while classical computers are used
for general purpose computation and data storage.

Most quantum algorithms are hybrid algorithms, including
variational algorithms as well as all algorithms that require
classical computing for pre- and post-processing [6]. Thus, a
quantum algorithm implementation is divided into a quantum
part and a classical part. Although both classical and quantum
parts can be implemented in similar text-based programming
languages, developing quantum parts requires expert knowl-
edge of quantum computing and its mathematical foundations
in addition to software engineering knowledge.

Quantum computers use unique instruction sets. To make
use of synergies with the existing patterns this paper focuses
on gate-based quantum computing. For the gate-based quan-
tum computing model, quantum gates represent the operations
performed on qubits and together with the measurements to
retrieve the results of the quantum computation, they form the
quantum circuit that can be processed by a quantum computer.
However, quantum computers of different vendors support
different gates natively, which can lead to vendor lock-in when
implementing quantum algorithms.

The inputs of a quantum algorithm, e.g., the problem in-
stance, must be encoded into the quantum circuit. Therefore,
reusable quantum algorithm implementations require a dy-
namic generation of quantum circuits based on the given input.

B. Pattern Format and Authoring Method

Patterns provide proven solutions for recurring problems in
a structured, human-readable manner. Alexander et al. [12]
originally introduced the concept of patterns in the domain of
building architectures. This concept has then been adopted by
the information technology domain. For documenting patterns
in this domain, Coplien [11] provides guidelines for writing
software patterns. In this work, the already established pat-
tern format of the quantum computing pattern language that
follows these guidelines for documenting patterns is used.

Each pattern has a descriptive name and a mnemonic icon.
A short question briefly introduces the problem solved by
the pattern. Next, the context in which the problem occurs
and the forces acting in that context are described in detail.
Forces are aspects of the problem context that require special
focus. Understanding these forces is crucial as solutions often
cannot resolve the forces but rather balance the forces with
varying tradeoffs [11]. Then, the solution is presented along
with a solution sketch, followed by a paragraph describing
the result of applying that solution. The solution is presented
in an abstract, technology-independent manner so that it can
be applied in a broad context. Finally, real world occurrences
of the pattern are listed in known uses and relationships to
patterns solving similar problems or that are recommended to
be used in combination are provided in related patterns.

To identify patterns for quantum software engineering solv-
ing recurring problems, we empirically inspected quantum
algorithm implementations of well-established libraries like
Qiskit [23] and Amazon Braket [24]. Additionally, we an-
alyzed algorithm descriptions from scientific literature and
quantum computing tutorials. Moreover, we evaluated the
potential applications of established best practices of classical
software engineering in the context of quantum computing.
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Figure 1. Overview of the quantum computing pattern language [16] including the new patterns.
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III. PATTERNS FOR QUANTUM SOFTWARE DEVELOPMENT

As a first step to capture best practices for quantum software
development and execution, five new patterns are introduced
in this section that extends the existing quantum computing
pattern language [2][16][17][18][19][20][21]. Figure 1 shows
an overview of the categories of the quantum computing
pattern language, including the new Development and the
extended Execution category. The existing patterns mostly
focus on the program flow, which uses unitary transformations
to manipulate quantum states, e.g., to create specific data
encodings for an algorithm, and measurements to read out
the results of a quantum computation. The new patterns focus
on modularization, reusability, and the integration of quantum
algorithm implementations into hybrid applications.

The two patterns QUANTUM MODULE and QUANTUM
MODULE TEMPLATE focus on encapsulating the implemen-
tation of the quantum part of a quantum algorithm as reusable
modules. QUANTUM MODULES can generate quantum cir-
cuits with a known structure and behavior, while QUAN-
TUM MODULE TEMPLATES allow the integration of arbitrary
behavior into the generated quantum circuit. In contrast, a
HYBRID MODULE is used to package a complete quantum
algorithm implementation containing the quantum as well as
the classical parts, such as the continued fraction expansion
of Shor’s algorithm [3], of the quantum algorithm. Its main
use case is distribution and deployment of a quantum algo-
rithm implementation for integration into hybrid applications.
The implementation of a HYBRID MODULE can again be
modularized, e.g., using QUANTUM MODULES or QUAN-
TUM MODULE TEMPLATES. A CLASSICAL-QUANTUM IN-
TERFACE facilitates the use of quantum algorithms by non-
quantum computing experts. Last, a QUANTUM CIRCUIT
TRANSLATOR enables the execution of quantum circuits on
quantum computers of different vendors by translating the
circuits into a compatible format. In the following subsections
these patterns are presented in detail.

A. Quantum Module

Problem: How can the implementation of
the quantum part of a quantum algorithm
be packaged for reuse independent of con-
crete input values?

=
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Context: Each quantum algorithm is a hybrid algorithm,
i.e., parts of the algorithm require quantum computers and
other parts require classical computers for their execution.
For the execution of the quantum part, a quantum circuit
implementing the required operations is needed. However,
quantum circuits are problem-specific and, thus, depend on
various inputs, e.g., the problem instance or initial values for
parameterized quantum gates, which are then optimized by
a classical optimizer. Therefore, the implementation of the
quantum part of a quantum algorithm must be input-agnostic
in order to be reusable.
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Forces: Quantum circuits to be processed by a quantum
computer must already contain all appropriately encoded input
values. A static implementation of a quantum circuit that does
not allow the quantum circuit to be changed based on some in-
put values cannot be reused to solve different problems. Thus,
a reusable implementation of the quantum part of a quantum
algorithm needs to be able to adapt the quantum circuit to
different input values. The input values that need to be encoded
in a quantum circuit are, first, the problem to be solved, e.g., an
implementation of Shor’s algorithm [3] would require as input
the number to be factored into primes, and second, parameters
used for optimization or machine learning, e.g., for QAOA [2].

Moreover, implementing the quantum part of a quantum
algorithm requires in depth knowledge of quantum computing
and the underlying mathematical concepts. Thus, quantum
computing experts are required in the development teams.
However, other parts of the algorithm that only require clas-
sical computation, e.g., classical optimizers, may not require
quantum computing knowledge at all and can be implemented
by different teams without a quantum computing expert.
Solution: Separate the implementation of the quantum part
of the quantum algorithm into one or more QUANTUM
MODULES. These modules contain the code that generates
quantum circuits based on input values provided to the module.
Quantum modules can also be used to reduce the number of
code duplicates by implementing common parts of a quantum
circuit as a reusable quantum module.

The solution sketch in Figure 2 depicts that a QUANTUM
MODULE receives input values and uses generative code to
construct quantum circuits depending on these input values.
This ensures the reusability of the QUANTUM MODULE, as
the implementation can create quantum circuits for different
problem sizes as well as parameters.

E—[] | = I [ |

Inputs

= Quantum

Circuit
__Inputs b

Quantum
Module

Figure 2. Solution sketch: QUANTUM MODULE.

Result: A quantum algorithm implementation is partitioned
into (i) QUANTUM MODULES containing the implementations
of the quantum part, and (ii) additional classical code required
for the control flow and other classical computations of the
quantum algorithm. The quantum modules are independent of
the concrete input values, which increases their reusability for
different quantum algorithm implementations.

The separation of code that generates quantum circuits
into quantum modules can thus also be reflected in the
organizational structure of the development teams. Only
the teams working on the quantum modules need quantum
computing experts, while other teams mainly need experts in
classical software engineering.
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Known Uses: QUANTUM MODULES can already be found
in several libraries for building quantum circuits. In Amazon
Braket [24], the Grover algorithm [5] is offered as a module
with functions to build the oracle and execute the Grover
search. Another example of a QUANTUM MODULE for cre-
ating oracles is the PhaseOracle in Qiskit [23]. Generic parts
used in multiple quantum algorithms, such as the quantum
fourier transformation used in Shor’s algorithm [3] are avail-
able in Amazon Braket [24] and Qiskit [23]. The quantum
phase estimation, which is also part of Shor’s algorithm can be
constructed in Qiskit [23] with the PhaseEstimation module.
Related Patterns: A QUANTUM MODULE generating specific
quantum circuits for a quantum algorithm can be used inside
a HYBRID MODULE that contains the implementation of the
overall quantum algorithm with its quantum and classical
parts. Quantum circuits generated by a QUANTUM MODULE
can be integrated into a QUANTUM MODULE TEMPLATE to
create a complete quantum circuit, if the QUANTUM MODULE
only generates a part of a quantum circuit. The boundary
of a QUANTUM MODULE is directly corresponding to the
QUANTUM-CLASSIC SPLIT [16]. The QUANTUM-CLASSIC
SPLIT pattern states, that there is necessarily a separation —
a split — between code executed on classical computers and
code executed on quantum computers. Thus, the QUANTUM
MODULE pattern is related to this pattern.

B. Quantum Module Template

Problem: How can the implementation of
the quantum part of a quantum algorithm
be packaged for reuse when some of the
behavior is determined later?
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Context: Some quantum algorithms can be implemented in a
reusable manner, but their behavior may be partially modified
depending on the problem to which the algorithm is applied.
For example, the Grover search algorithm [5] contains an
unspecified oracle. The information required for defining the
concrete behavior of this oracle may not be available until a
later point in time. Similar cases are algorithms like QAOA [2],
which do not specify a concrete ansatz to use. Thus, imple-
mentations of the quantum part of such algorithms, where the
unspecified behavior can be integrated later, are required.
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Forces: Quantum algorithms may intentionally leave parts of
the behavior of the quantum part unspecified until a later
point in time. For example, the Grover search [5] uses an
unspecified placeholder gate, as the specific function that
marks the correct values cannot be known before it has been
decided what to search for. In the case of QAOA, the choice of
a suitable ansatz depends on information that is only available
at runtime. However, for the algorithms to be executed, the
missing behavior must be integrated before the execution of
the quantum circuits on a quantum computer. Note, that similar
situations can arise if the development of a quantum algorithm
is split between different teams.

Integrating quantum behavior into an existing circuit re-

quires a specification of the requirements an implementation
has to fulfill to be integrated and function correctly. This
includes the specification of the input qubits available, possible
ancilla qubits, on which qubits and in what form the output
is expected, and any other requirements or restrictions, e.g.,
on the creation of entanglement between quantum bits. Some
of the restrictions, e.g., the number of available ancilla qubits,
may additionally depend on the quantum computer used for
execution, as a quantum computer with more qubits can
allocate more ancilla qubits if the number of qubits used in
the circuit is otherwise constant.
Solution: Implement the generic behavior of the quantum part
of a quantum algorithm in a QUANTUM MODULE TEMPLATE.
This module accepts inputs, that define the unspecified be-
havior to be integrated into the final quantum circuit. The
behavior can either be specified as a quantum circuit or as
a QUANTUM MODULE that generates the required quantum
circuit. This circuit then gets integrated by the QUANTUM
MODULE TEMPLATE into the main quantum circuit that
represents the generic behavior.

To ensure that the behavior input, in form of a quantum
circuit, can be integrated to correctly perform the operations
it contains, the QUANTUM MODULE TEMPLATE must include
specifications in the documentation that can be used to build a
compatible quantum circuit, as outlined in the pattern forces.
This specification is mainly a contract that needs to be fulfilled
by the quantum circuit serving as input for the template.
Similar contracts, e.g., plugin contracts [25], are also used
in classical software engineering.
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Figure 3. Solution sketch: QUANTUM MODULE TEMPLATE.
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Figure 3 sketches the essential building blocks of a QUAN-
TUM MODULE TEMPLATE. The template requires two kinds
of inputs: (i) the input values representing the problem to be
solved as well as parameters affecting the circuit generation,
as used in the QUANTUM MODULE, and (ii) behavior inputs
partially specifying the behavior of the algorithm, provided
in the form of a quantum circuit or a QUANTUM MODULE.
Much like the QUANTUM MODULE, the QUANTUM MODULE
TEMPLATE uses the input values to generate a quantum
circuit, which is still incomplete as it does not include the
behavior from the behavior inputs yet. If the behavior inputs
are provided in the form of a quantum module, this module is
used to generate a quantum circuit from the inputs. Finally, the
quantum circuit is integrated into the incomplete main circuit.
However, implementations of the template are not limited to
the exemplary steps shown here.

Result: The generic behavior of the quantum part of a
quantum algorithm is implemented as QUANTUM MODULE
TEMPLATE that requires behavior inputs to generate an exe-
cutable complete quantum circuit. The behavior inputs specify
the parts of the algorithm’s behavior that cannot be known in
advance. Thereby, their influence on the resulting quantum
circuit can be significantly higher than with a QUANTUM
MODULE. The behavior inputs must be compatible with the
required input definitions of the template.

The integration of the behavior inputs can be done at design
time if the behavior is provided as QUANTUM MODULE, since
the QUANTUM MODULE generates the circuit based on the
input values. Templates can be nested inside other templates
to compose quantum circuits from QUANTUM MODULES
implementing higher level circuit functions. This facilitates the
replacement of a part of a quantum circuit if that part should
be generated by a new QUANTUM MODULE implementing an
improved algorithm, e.g., a more efficient state preparation.

Known Uses: Various quantum algorithms, e.g., the algorithm
of Deutsch [26] or the Grover search [5], use an unspecified
unitary gate as placeholder. Implementations of the generic
behavior of these algorithms are available in Amazon
Braket [24] and Qiskit [23]. These algorithms need oracle
circuits to replace the placeholder gate, which are described in
the ORACLE pattern [16]. The oracle replacement is described
in [27] in an Oracle Expansion Task for workflows using the
Quantum Modeling Extension. Generic parts of QAOA [2],
such as state preparation and the mixer operator are imple-
mented in Amazon Braket [24] and Qiskit [23] and can be used
by providing a quantum circuit encoding the cost function.

Related Patterns: A QUANTUM MODULE TEMPLATE is a
special kind of QUANTUM MODULE that additionally accepts
behavior inputs, which are integrated into the generated quan-
tum circuit. QUANTUM MODULE TEMPLATES can be used to
integrate, e.g., ORACLES [16] and STATE PREPARATION [16]
circuits into an executable quantum circuit allowing circuits
to be built from smaller modules.
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C. Hybrid Module

Problem: How can the implementation of a
quantum algorithm requiring both classical
and quantum computations be packaged so
that it can be integrated into applications?
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Context: Quantum algorithms often require classical computa-
tion for pre- and post-processing of the quantum computation
results [6]. This means that almost all quantum algorithms are
hybrid. Thus, any implementation of a quantum algorithm has
to contain both the quantum and the classical parts for the
algorithm to be functional.

Forces: Quantum algorithms typically require a classical com-
puter for some parts of their computation. This means that they
can have multiple quantum and classical parts. For example,
VQAs, such as VQE and QAOA, alternate between quantum
and classical computations [1][2]. Both, the quantum and the
classical part, are required for the algorithm to work correctly.
This also includes the control flow of the algorithm, which is
included in the classical part of the algorithm.

Integrating a quantum algorithm into an application requires

the implementation of the entire algorithm. A dedicated inter-
face is required to enable the integration into applications.
Deploying the algorithm to a hybrid runtime, which can exe-
cute both the quantum and the classical part of the algorithm,
even requires both parts to be deployed together.
Solution: Package the entire quantum algorithm, i.e., both the
quantum parts and the classical parts, as a HYBRID MODULE.
This module can be composed of smaller modules, e.g.,
QUANTUM MODULES. It also contains the control flow logic
to orchestrate the quantum and classical computation. The
HYBRID MODULE should provide an interface that facilitates
its integration into applications. This interface should mainly
accept the required problem-specific input values, i.e., the
problem that should be processed by the algorithm. Moreover,
the interface of a HYBRID MODULE can also allow behavior
inputs to the classical as well as quantum computation, similar
to the QUANTUM MODULE TEMPLATES.

An exemplary sketch of a HYBRID MODULE is shown in
Figure 4. It includes the control flow logic and implemen-
tations of classical and quantum parts with a loop between
quantum and classical computation. The implementation of
such a hybrid module can consist of multiple smaller modules,
e.g., the three classical and one quantum computation steps
shown can each be implemented in a separate module.
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Figure 4. Solution sketch: HYBRID MODULE.
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Result: The entire quantum algorithm implementation is pack-
aged as a HYBRID MODULE. It contains both the quantum
and the classical parts, as well as the control flow logic.
HYBRID MODULES can be used to deploy the algorithm as
a standalone service, e.g., in a hybrid runtime environment
that can execute both the classical and the quantum part [28].
Furthermore, a HYBRID MODULE can be distributed as a
library that implements the quantum algorithm and can be
integrated into classical applications. It provides an interface
for the application to use. To facilitate the integration of a Hy-
BRID MODULE by problem-domain experts, a CLASSICAL-
QUANTUM INTERFACE can be used as the modules’ interface.
Known Uses: One concrete example are implementations of
Shor’s algorithm [3] which computes the prime factors of
the input number. The period-finding calculated on the quan-
tum computer and the classical post-processing performing
the continued fraction expansion is packaged as a HYBRID
MODULE in Amazon Braket [24], Qiskit [23] and Q# [29].
Other examples of HYBRID MODULES are implementa-
tions of VQAs [1], e.g., QAOA and VQE implementations
for the Qiskit Runtime contain the full quantum algorithm
implementation [23]. Beisel et al. [30] showcase a service
ecosystem enabling a workflow-based composition of HYBRID
MODULES for VQAs.
Related Patterns: The quantum part of the algorithm imple-
mentation inside a HYBRID MODULE can be organized into
QUANTUM MODULES and QUANTUM MODULE TEMPLATES.
To facilitate their integration into applications by problem-
domain experts without quantum computing knowledge, the
HYBRID MODULE can expose a problem domain-specific
CLASSICAL-QUANTUM INTERFACE.

D. Classical-Quantum Interface

Problem: How can a quantum algorithm
implementation be used by developers with-
out quantum computing knowledge?

Context: Using a quantum algorithm implementation often
requires in depth quantum computing knowledge. For
example, the Grover search algorithm requires that the
user provides a quantum circuit for the missing oracle [5].
Other algorithms, like QAOA, require choosing an ansatz,
which also requires quantum computing knowledge [1][2].
However, software developers who want to integrate a
quantum algorithm implementation into an application have a
deep understanding of the problem domain rather than deep
knowledge of quantum computing.

Forces: To integrate a quantum algorithm implementation
into an application, a compatible interface is required. A
HYBRID MODULE already provides an interface enabling its
integration into applications, however, using this interface may
still require considerable quantum computing knowledge. For
example, it may require the problem instance to be provided
in the form of a behavior input to the quantum part of an
algorithm, or it may have parameters that otherwise influence
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the quantum part, e.g., by enabling certain error mitigation
methods. The effects of the changes, e.g., on resource require-
ments or runtime, are difficult to estimate without knowledge
of quantum computers. Thus, to facilitate the integration of
quantum algorithms by problem-domain experts without quan-
tum computing knowledge, such an interface is not sufficient.
Solution: Use a CLASSICAL-QUANTUM INTERFACE that
hides the quantum implementation details. Inputs can be
provided to the interface in formats specific to the problem
domain. These problem domain-specific inputs are internally
converted into inputs in the formats required by the imple-
mentation of the quantum part.

The documentation of interface inputs that affect the quan-
tum part requires special consideration, since understanding
their impact on algorithm execution is important informa-
tion when integrating the quantum algorithm implementation.
Thus, the impact of these inputs on the algorithm should be
documented in a comprehensible and easily understandable
manner by the interface developer. For example, a parameter
that increases the accuracy of the result, but also increases the
number of gates in the generated circuits, which can result
in increased errors with current quantum computers, could
be documented as follows: “Increasing this parameter can
increase the accuracy of the result. However, it also increases
the probability of computation errors accumulating, which can
negate any improvement in accuracy.

Figure 5 shows the interaction of a classical program with
a quantum algorithm implemented as a HYBRID MODULE
through a CLASSICAL-QUANTUM INTERFACE. It transforms
the problem domain-specific input of the classical program
into the inputs required by the quantum algorithm. This inter-
face can also be integrated directly into the HYBRID MODULE.
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Figure 5. Solution sketch: CLASSICAL-QUANTUM INTERFACE.

Result: The quantum algorithm implementation can be uti-
lized using a CLASSICAL-QUANTUM INTERFACE. Problem
domain experts can make use of this quantum algorithm im-
plementation through the CLASSICAL-QUANTUM INTERFACE
created for their domain. The knowledge required to utilize
the algorithm implementation is presented in the interface
documentation, and the format of input parameters is familiar
to problem-domain experts.

Known Uses: Domain-specific libraries for quantum com-
puting are among the first having implemented this pattern.
Examples for already implemented CLASSICAL-QUANTUM
INTERFACES can be found in the chemistry domain in Qiskit,
Amazon Braket, and Q# [31][32][33]. They offer transforma-
tion modules that map the electronic structure of molecules
to qubits. Furthermore, Qiskit [23] provides a finance module
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enabling portfolio optimization by implementing a transformer
that takes a generic optimization problem as input and outputs
a cost operator that can be used in a quantum algorithm.
As many classical problems can be formulated as such an
optimization problem, this can be used as a CLASSICAL-
QUANTUM INTERFACE for different problem domains.
Related Patterns: The CLASSICAL-QUANTUM INTERFACE
enables the integration of quantum algorithm implementations
into applications. It can be used as an interface for a
quantum algorithm implemented as a HYBRID MODULE.
This interface provides a bridge between the different
programming paradigms separated by the QUANTUM-
CLASSIC SPLIT [16]. It is a special kind of FACADE [13] for
quantum algorithms that not only hides the complexity of the
algorithm, but also translates between the quantum computing
domain and the problem domain.

E. Quantum Circuit Translator

Problem: How can a quantum circuit be @ @
executed by different quantum computers }4
with different instruction sets? A B

Context: Quantum circuits can be implemented in different
programming languages and with different quantum gates.
However, quantum computers typically only support specific
circuit formats and instruction sets, which hinders interoper-
ability and leads to vendor lock-in [34]. Thus, executing a
quantum circuit on different quantum computers often requires
a translation of the quantum circuit.

Forces: There are a multitude of quantum programming
languages available for implementing quantum algorithms [7].
A quantum circuit may be implemented in a programming
language that is incompatible with the targeted quantum com-
puter. The circuit needs to be re-implemented in a compatible
quantum programming language and instruction set. However,
a manual re-implementation is error-prone, time-consuming,
and requires expertise in quantum computing, and, hence,
is not feasible for real-world problem sizes. Therefore, an
automatic translation, transforming unsupported gates into
gates natively supported by the quantum computer, is required.
Solution: Use a translator to convert the quantum circuit
into the target language and transpile the circuit to the target
instruction set, i.e., replace unsupported gates with equivalent
gates from the target instruction set.

The solution sketch in Figure 6 shows the application of a
QUANTUM CIRCUIT TRANSLATOR that translates a quantum
circuit between two programming languages and instruction
sets. The SWAP gate connecting the outer qubit wires in the
left quantum circuit has been decomposed into three C-NOT
gates in the right target quantum circuit.

Result: A QUANTUM CIRCUIT TRANSLATOR is able to au-
tomatically translate a quantum circuit into a target format,
enabling components with different circuit formats and in-
struction sets to use the same circuit. A QUANTUM CIRCUIT
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Figure 6. Solution sketch: QUANTUM CIRCUIT TRANSLATOR.

TRANSLATOR increases the reusability of QUANTUM MOD-
ULES, as it enables their use with different quantum computers.
Howeyver, the translated circuits do not need to be executed
directly, but can instead be used as inputs for a QUAN-
TUM MODULE TEMPLATE. Therefore, a QUANTUM CIRCUIT
TRANSLATOR enables the composition of quantum algorithms
based on modules implemented in different programming
languages. Thus, a QUANTUM CIRCUIT TRANSLATOR can be
used to increase the interoperability of QUANTUM MODULES.
Known Uses: A widely used format for defining quantum
circuits is OpenQASM [35], an open quantum assembly
language. It can be imported and exported by many
quantum software development kits (SDKs) such as Amazon
Braket [24], Qiskit [23] and Cirq [36]. For estimating whether
a quantum circuit can be executed, the NISQ Analyzer [34]
needs the transpiled circuit for the respective quantum device.
It includes multiple circuit translators. For the Python SDK
Pennylane [37] there is a plugin enabling the support for
IBM quantum computers without additional libraries. Explicit
translation is supported by pytket [38] from and to Cirq [36].
Qconvert [39] can convert from pyQuil or OpenQASM to
several other formats by using their web tool.

Related Patterns: The QUANTUM CIRCUIT TRANSLATOR
pattern is related to the MESSAGE TRANSLATOR pattern
from the enterprise integration pattern language [14]. With
a CANONICAL DATA MODEL [14] quantum circuits of any
language can be translated into any other language using at
most two translators for each language. A circuit translator can
be used to translate circuits generated by a QUANTUM MOD-
ULE implemented in one programming language before using
them with a QUANTUM MODULE TEMPLATE implemented in
a different programming language.

IV. DISCUSSION

The validity of a software engineering pattern strongly
depends on the number of real-world uses of that pattern [11].
Each of the newly introduced patterns has a number of known
real-world uses documented in the known uses section.

Except for quantum computing libraries aiming for a larger
user base such as Qiskit, most quantum software development
is currently ad-hoc, e.g., for a one-time experimental algorithm
implementation without applying best practices from classical
software engineering. The prevalence of ad-hoc development
can be partly explained by the fact that only today’s largest
quantum computers have surpassed the amount of qubits that
can be simulated on a classical computer [28]. Additionally,
these qubits are still noisy, which further limits their potential
applications [6]. Therefore, most quantum algorithms cannot
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show their quantum advantage for relevant problem sizes on
today’s quantum computers. Thus, current implementations of
quantum algorithms are often single-use, e.g., for a proof-
of-concept, as the limited hardware available today can only
process small problems. Therefore, the majority of examples
of the QUANTUM MODULE and HYBRID MODULE patterns
have been found in the larger quantum computing libraries.
As stated above, implementing quantum algorithms requires a
deep understanding of quantum computing, its mathematical
foundations, and software engineering, which is a rare com-
bination of skills. Thus, many implementations are created by
physicists without a software engineering background.
Quantum algorithms are expected to be an essential part
of many applications in various domains once they can solve
problems of relevant size. Since applications integrating quan-
tum algorithms do not depend on the algorithms’ implemen-
tation details, the HYBRID MODULE pattern that can hide all
this complexity inside the module will be useful here.
Splitting the implementation of an algorithm into multiple
modules is an established technique used to reduce the com-
plexity of an implementation. To refine this established de-
sign principle with quantum computing-specific requirements,
we introduced the module patterns to the growing quantum
software engineering discipline. The two patterns, QUANTUM
MODULE and QUANTUM MODULE TEMPLATE, can be used
to modularize quantum algorithm implementations. Modular-
ization can be used on multiple levels. For example, QUAN-
TUM MODULES can be used to build a HYBRID MODULE.
To ensure the interoperability of modules, they must expose
an interface that can be used by other modules. A well-defined
interface improves reusability and hides complexity, such that
quantum algorithm implementations can be used without deep
quantum computing knowledge. The CLASSICAL-QUANTUM
INTERFACE pattern is crucial for creating algorithm imple-
mentations that ease the integration into existing applications.
The last pattern, the QUANTUM CIRCUIT TRANSLATOR,
is mainly used for executing quantum circuits on different
quantum computers. It is required as hardware vendors have
not agreed upon a standard format for representing quantum
circuits. OpenQASM [35] is at the moment the most promising
candidate for such a format. However, even if all existing quan-
tum computers can interpret OpenQASM, we will most likely
still have many quantum programming languages with dif-
ferent properties. A QUANTUM CIRCUIT TRANSLATOR that
translates quantum circuits between two such languages can
also be used during the development of quantum algorithms.
With such a translator it becomes possible to use QUANTUM
MODULES implemented in other programming languages.

V. RELATED WORK

The patterns introduced in this work extend the exist-
ing quantum computing pattern language originally intro-
duced by Leymann [16] which is continuously growing
[2][17][18][19][20][21]. There are also other publications
defining terms and summarizing concepts in the quantum
computing domain [40][41]. However, these concepts are not
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documented as patterns in the sense of the definition provided
by Alexander et al. [12] to guide developers in implementing
quantum algorithms. Furthermore, Huang et al. [42] describe
methods for validating quantum programs using anti-patterns.

Similar approaches documented for the field of quantum
computing are also established in other areas of information
technology. The QUANTUM CIRCUIT TRANSLATOR is based
on the same concept as the MESSAGE TRANSLATOR presented
in the enterprise integration patterns by Hohpe and Woolf [14].
It enables the communication between systems using different
message formats. Other related enterprise integration patterns,
such as the CANONICAL DATA MODEL and the NORMAL-
IZER, can also be adapted to the quantum computing domain.

Leymann and Barzen [43] present the Pattern Atlas, a pub-
licly available [44] tool to facilitate the visualization of con-
nections between patterns within a pattern language as well
as between different pattern languages. Moreover, it enables
the creation of Pattern Views [45], i.e., a collection combining
individual patterns and connections from different languages.

Sénches et al. [46] define the term quantum module and
its properties to describe how to modularize the design of
quantum circuits. The QUANTUM MODULE pattern defined in
our work differs significantly, as it includes classical code to
generate quantum circuits. However, the properties they identi-
fied for their quantum module definition must also be fulfilled
by any behavior inputs to QUANTUM MODULE TEMPLATES.

Piattini et al. [9] outline the importance of quantum software
engineering. They provide principles of quantum software
engineering, e.g., that quantum software has a hybrid nature
and suggest that reusable parts of quantum applications should
be identified for creating libraries and to provide reference
examples. The patterns presented in this work can be a part
of the answer towards creating reusable quantum algorithm
implementations. Beisel et al. [30] modularize recurring tasks
of VQAs in various microservices and integrate them using
workflows. Thereby, they follow established engineering con-
cepts to provide VQAs as reusable, automatically executable
workflows. Hence, their approach is an exemplary implemen-
tation of a HYBRID MODULE.

Georg et al. [21] describe the execution of quantum ap-
plications. The PRE-DEPLOYED EXECUTION and the PRI-
ORITIZED EXECUTION pattern can be applied to execute a
quantum application created by using the HYBRID MODULE
pattern, which packages the algorithm together with classical
dependencies inside a single module.

The quantum software lifecycle proposed by Weder et
al. [22] describes the development process of quantum
applications in ten phases. The patterns in this work
document best practices for the implementation phases with
more detailed instructions, e.g., for the Hardware-independent
Implementation phase by providing a QUANTUM MODULE
which has a generative classical part for building the
quantum circuit, or for the Quantum Circuit Enrichment
phase by using the QUANTUM MODULE and QUANTUM
MODULE TEMPLATE to better split the responsibility for the
implementation of oracles and state preparation.
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VI. CONCLUSION AND FUTURE WORK

Due to the novelty of quantum computing, there are so far
few, if any, established principles for quantum software devel-
opment. Implementing a quantum algorithm requires expert
knowledge in quantum computing and software engineering,
which makes it a multidisciplinary task. Currently, quantum
applications are often implemented ad hoc by physicists with-
out in-depth software engineering knowledge. Thus, this work
extends the quantum computing pattern language by five new
patterns to support quantum software engineers in their work
by making relevant knowledge easily accessible and digestible.
The four patterns in the development category, aiding devel-
opers in creating modularized and reusable implementations
of quantum algorithms, incorporate knowledge from classical
software engineering adapted to the quantum computing do-
main. The fifth pattern, QUANTUM CIRCUIT TRANSLATOR,
is part of the execution category and enables quantum circuits
to be executed on quantum computers of different vendors. Its
main use case is related to the execution of quantum circuits,
but it can also be used during development.

In the future, we will make the patterns available through
the Pattern Atlas [43] repository integrated into the PlanQK
platform [47]. This repository already contains all previously
published patterns. By introducing the patterns to the public,
we can receive valuable feedback in order to further refine the
existing patterns. It allows a continuous re-evaluation of the
patterns, including an analysis of the usability of the patterns.
Especially in such a new and rapidly growing domain as
quantum software engineering, any pattern language can be
expected to evolve with the domain as new best practices
emerge over time. Additionally, we plan to build a quantum
computing solution language [48] that can provide concrete
solutions to the problems presented in the pattern language.
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