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Abstract—Deep learning methods have excellent accu-
racy achievements in image classification but largely re-
mains a black box method. Image classification is the core
of many machine vision tasks, including object detection.
Better understanding of how the classification decision is
made will improve the understanding of such tasks as
object detection. In this work, we train a deep learning
network to classify between two classes. We compute the
so-called SHapley Additive exPlanations (SHAP) values for
the feature layers using input images against a population
of other training images for the classification layer. The
SHAP value is a special case of the Shapley value which
explains the factors in a machine learning decision by
measuring the output change due to change in each
factor. The SHAP value is the Shapley value satisfying
local accuracy, missingness, and consistency properties.
Experimental results show the different responses from the
lowest to the highest feature extraction layers.

Index Terms—Deep Learning, Explainable Artificial In-
telligence, Shapley Values, Image Classification.

I. INTRODUCTION

Image classification was the task that sparked the
research interest in deep learning for the past ten years.
In image classification, an image is classified to one
of several classes. Instead of using custom crafted fea-
ture vectors, a deep learning approach uses different,
increasingly complex convolutional networks to extract
images features as input to a classification layer. Image
classification forms the core of more complex artificial
intelligence systems such as object detection. As such,
a better understanding of the image classification task
might lead to better understanding of such tasks as object
detection. Within three years of the publication of the
AlexNet [1], deep learning systems were already shown
to perform better than humans in image classification.
Despite such advances, deep learning systems remain
black boxes and little is known as to how they make
decisions.

A number of recent works have been reported in
developing methods that address how to explain complex
machine learning systems. A recent survey [2] high-
lighted domain-dependent and context-specific methods
for dealing with the interpretation of artificial intelli-

gence systems, including the boundaries and gaps of
recent advances. One approach is to remove a feature and
then assessing the output change. The complications in
computing are due to the large number of permutations
involved in the remaining features that must be averaged
to determine the Shapley values. In [3] the Shapley
values were optimized to include the local accuracy,
missingness, and consistency properties to form the so-
called SHapley Additive exPlanations (SHAP) values.
A different approach [4] is the synthesis of Local In-
terpretable Model-agnostic Explanations (LIME). Other
methods that focus on the image space [5] often lead to
solutions that overlap with image saliency research [6].

In our work, we are interested in determining the
contributions of the features in the large hidden layers.
We compute the SHAP values to understand the contri-
butions of individual features not at the image level but
at the hidden, feature levels. One reason for doing so is
to validate that all features in a deep learning network
make contributions to decisions.

In Section II, we describe the use of Shapley values
to explain the contributions of individual features in
a deep learning network. In Section III, we describe
our experiments and the results. Finally, we draw our
conclusion in Section IV.

II. METHODOLOGY

We assess the contributions of feature values in a deep
learning network that has been trained to perform image
classification. We describe our approach in assessing the
contributions of the feature extraction stage of a deep
learning network in Section II-A. We compute the SHAP
values, which is a special case of the Shapley values.
In Section II-B we present an overview of the Shapley
values that we use for calculating the contributions.

A. Deep Learning Features

A convolutional neural network broadly speaking has
an input layer, convolutional layers, max or average
pooling layers, fully connected layers, and an output
layer. The convolutional and max pooling layers are
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typically in the feature extraction stage while the fully
connected layers and an output layer are in the classifica-
tion stage. A convolutional layer takes as input a block
of feature values F l(i, j,k) where l is the layer index,
i = 0, · · · ,Ml −1, j = 0, · · · ,Nl −1, and k = 0, · · · ,Kl −1,
so that the block of feature values is of size Ml ×Nl ×Kl ;
typically Ml =Nl . The input feature block is transformed
by a bank of convolutional kernels and associated non-
linearity to produce an output block F l+1(i, j,k) of size
Ml+1 ×Nl+1 ×Kl+1 where Ml+1,Nl+1 are controlled by
the strides of the convolution step and Kl+1 is controlled
by the number of convolutional kernels used.

In machine learning, we use a training data set to
determine the convolutional kernel coefficient values in
a deep learning network. After training, when we apply
an image as input, the feature values are calculated at
all levels and an output decision is made. A question
is: what is the contribution of a particular feature value
in the decision? Our approach to answering this is to
compute the SHAP value for the feature values F l(i, j,k)
i = 0, · · · ,Ml −1, j = 0, · · · ,Nl −1, k = 0, · · · ,Kl −1, and
l for the layers in the feature extraction stage.

B. Shapley and SHAP Values

Consider a simple example where there are four inputs
x0, x1, x2, and x3 to a system f that provides an output
y = f (x0,x1,x2,x3). Suppose we would like to assess the
contribution of x0. An intuitive way to do so is to turn
off x0 and consider the change—either an increase or
a decrease—to the output value. Let y0 = f (0,x1,x2,x3)
and δ0 = y− y0. We can repeat this process to find δi
for i = 1,2,3. The value δi would be an indicator of the
contribution of xi to the output y. When a training set
is available, we feed the entire data set and average the
output, so that δ0 = y0−y, where y0 and y are the outputs
with x0 turned off and on, respectively, averaged over the
data set. This intuitive example, however, does not con-
sider the other cases, such as when other combinations
of features are turned off.

A more comprehensive approach as illustrated by our
example is as follows. Let the set of all features be F ;
in our example F = {x0,x1,x2,x3}. If we exclude an
input, say x0, from F , to study the contribution of x0 to
the output, then we need to consider all combinations
of the remaining features in F\{x0}. The set of all
such combinations is the power set of F\{x0}, 2F\{x0} =
{φ,{x1},{x2},{x3},{x1,x2},{x1,x3},{x2,x3},{x1,x2,x3}}.
Let S ∈ 2F\{x0} so that S is a subset of features excluding
x0. Let fS be the output f trained using the subset of
features S. The difference fS∪{x0}− fS is a measure of
how much the output changes with the inclusion of
x0 relative to S, a subset of the features. We can then
compute a weighted sum of the change in output over
all possible subsets of F\{x0}. The weights are set such

that they sum to 1 and that all weights associated with
subsets with the same cardinality are equal. Let C(n,k)
denote the number of combinations in choosing k from
n items. There are C(|F |, |S ∪ {x0}|) = C(|F |, |S|+ 1)
combinations of choosing subsets S∪{x0} from F . Each
such combination has |S|+ 1 terms so that the total
number of terms in the sum is (|S|+ 1)C(|F |, |S|+ 1).
The change in output is then weighted by the reciprocal
of the number of terms

1
(|S|+1)C(|F |, |S|+1)

.

The weight expands to

(|S|+1)!(|F |− |S|−1)!
(|S|+1)|F |!

=
|S|!(|F |− |S|−1)!

|F |!
,

so that the weighted average is given by

∑
S⊂F\{x0}

|S|!(|F |− |S|−1)!
|F |!

( fS∪{x0}− fS).

We note that to calculate the Shapley value for one of
the |F | features, we need to build 2|F | different models.

The SHAP value is a special case of the Shapley value
satisfying local accuracy, missingness, and consistency
properties. It uses a number of so-called “Explainers”
to possibly approximate the values for determining the
contributions by feature values.

III. EXPERIMENTAL RESULTS

We ran experiments to validate our methodology of
determining the contributions of feature layers in a two-
class deep learning image classifier. We describe our
data set in Section III-A. We picked a standard image
classifier, viz. the VGG 19 network, as described in
Section III-B. We describe how we compute the SHAP
values in Section III-C and show the results in Section
III-D.

A. Data Set

We used the data set from the Kaggle cat-vs-dog
competition [7]. The goal is to distinguish between a cat
vs. a dog in the given input image. The images were of
different aspect ratios, different sizes, and most images
include background. Examples are shown in Figure 1.
We used a balanced training set of 2,000 cats and
2,000 dogs to train the classifier layer. We used data
augmentation that includes rotation and scaling.

B. The Classifier

We trained a VGG 19-based network [8] with the
top classification layer replaced by a two-class classifier
(Table I). Though the VGG network architecture is
well-known, we include the summary here to refer to
the layer levels in Section III. The classification layer
takes the 512×7×7 tensor of the features and feeds
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them to a layer of 64 hidden units and then to two
output units, corresponding to the two classes. We used
the ReLU nonlinearity in all neurons, except for the
output units. We used transfer learning so that the lower,
feature extraction layers with 20,024,384 weights were
trained with the ImageNet data set. The top classification
layers with 1,605,826 weights were trained with the
application-specific data set of cats and dogs. We used
dropout in training. The training accuracy was around
95% while the state-of-the-art was above 98%. Our goal
here was not in achieving the ultimate in accuracy but
to obtain a “good enough” architecture for analysis of
the contributions of each of the feature layers.

TABLE I: SUMMARY OF THE VGG 19 NETWORK FOR
CLASSIFICATION.

Layer Type Output
Number Shape

1 InputLayer [(None, 224, 224, 3)]
2 Conv2D (None, 224, 224, 64)
3 Conv2D (None, 224, 224, 64)
4 MaxPooling2D (None, 112, 112, 64)
5 Conv2D (None, 112, 112, 128)
6 Conv2D (None, 112, 112, 128)
7 MaxPooling2D (None, 56, 56, 128)
8 Conv2D (None, 56, 56, 256)
9 Conv2D (None, 56, 56, 256)
10 Conv2D (None, 56, 56, 256)
11 Conv2D (None, 56, 56, 256)
12 MaxPooling2D (None, 28, 28, 256)
13 Conv2D (None, 28, 28, 512)
14 Conv2D (None, 28, 28, 512)
15 Conv2D (None, 28, 28, 512)
16 Conv2D (None, 28, 28, 512)
17 MaxPooling2D (None, 14, 14, 512)
18 Conv2D (None, 14, 14, 512)
19 Conv2D (None, 14, 14, 512)
20 Conv2D (None, 14, 14, 512)
21 Conv2D (None, 14, 14, 512)
22 MaxPooling2D (None, 7, 7, 512)
23 Flatten (None, 25088)
24 Dense (None, 64)
25 Dropout (None, 64)
26 Dense (None, 2)

C. SHAP Calculation

We used the publicly available SHAP package [9] in
the Python environment. The SHAP package needs a
sub-population to average over. We randomly selected
25 cat images and 25 dog images from the training set.
We iteratively computed the SHAP values of the feature
layer tensors from Layer 1 to Layer 22, which made
up the feature extraction layers of the trained network.
Each feature layer was a tensor with different spatial
resolutions and depths that depended on the block. We
visualized the SHAP values by scaling both the values
and the spatial resolution to the input image. It was not
practical to display the many different individual feature
maps in a tensor; we summed the values across channels
in a tensor to form a composite feature map.

D. Results

We used four input images for classification as shown
in Figure 1. All four images were correctly classified
by the deep learning classifier. Each image was fed as

Fig. 1: Input pictures for classification “cat3238” (top left);
“cat3333” (top right); “dog3333” (lower left); “dog3399”
(lower right).

input to the SHAP values calculation individually; i.e.,
they were not processed as a batch. Hence when, e.g.,
“cat3238” was used as the input, the other 3 images were
not processed by the network. We loaded the network
from its trained state for every round of SHAP values
calculation.

We show the Shapley values for the feature map
tensors at each layer when the input was “cat3333”. In
the following, the negative values are mapped to blue
while the positive values are mapped to red. We overlay
the SHAP values on a grayscale version of the input
image.

In Figure 2, we show the feature maps when the spatial
resolution were 224×224. In layers 2 and 3 we can see
outlines of dogs in parts of the image that had very little
color variation. Next we show the feature maps when
the spatial resolution were 112×112 in Figure 3. The
outlines of dogs can be seen in layers 4 and 5 as well.

(a) Layer 1 (b) Layer 2 (c) Layer 3

Fig. 2: SHAP values for layers 1, 2, and 3 when the input was
“cat3333”.

The feature maps when the spatial resolution were
56×56 in Figure 4. At this resolution, the high values
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(a) Layer 4 (b) Layer 5 (c) Layer 6

Fig. 3: SHAP values for layers 4, 5, and 6 when the input was
“cat3333”.

were better localized to the cat in the input image, even
though there were still responses to the area (left of
the cat in the image) with low color variations. The
feature maps when the spatial resolution were 28×28
and 14×14 in figures 5 and 6, respectively. We show the
feature map at the top of the feature extraction layers
when the spatial resolution was 7×7, in Figure 7. We
can see that at the lower spatial resolution, the “shape”
information is less evident and the focus was more on
the face of the cat in the input image.

(a) Layer 7 (b) Layer 8 (c) Layer 9

(d) Layer 10 (e) Layer 11

Fig. 4: SHAP values for layers 7 to 11 when the input was
“cat3333”.

We repeated the calculations for the other 3 input
images but do not show the full sets of results here
in the interest of brevity. We wanted to explore the
phenomenon of having “imagined” faces in the lower
layers. In figures 8, 9, and 10, we show the responses at
layers 2, 3, 5, and 6 for the other three input images. In
all figures, we saw some outlines of other faces, some
stronger (Figure 8) and some less (Figure 10).

Given that we used transfer learning, we next com-
pared the input images to images that were in the
ImageNet data set that was used to train the feature
extraction layers. We replaced the 50 cat and dog images
by 50 images randomly selected from the ImageNet
database in the SHAP value computations. In Figure 11,

(a) Layer 12 (b) Layer 13 (c) Layer 14

(d) Layer 15 (e) Layer 16

Fig. 5: SHAP values for layers 12 to 16 when the input was
“cat3333”.

(a) Layer 17 (b) Layer 18 (c) Layer 19

(d) Layer 20 (e) Layer 21

Fig. 6: SHAP values for layers 17 to 21 when the input was
“cat3333”.

Fig. 7: SHAP values for Layer 22 when the input was
“cat3333”.

we show the SHAP values at layers 2, 3, 5, and 6. While
we saw some responses again in the background area
with little color variation, we did not see the same face
outline that we saw in Figure 2. or 3. In Figure 12,
we show the SHAP values at the layers right before the
spatial resolution was reduced in half.

We can see that by comparing the input image to the
ImageNet images in computing the SHAP values, the
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(a) Layer 2 (b) Layer 3 (c) Layer 5

(d) Layer 6

Fig. 8: SHAP values for layers layers 2, 3, 5, and 6 when the
input was “cat3238”.

(a) Layer 2 (b) Layer 3 (c) Layer 5

(d) Layer 6

Fig. 9: SHAP values for layers layers 2, 3, 5, and 6 when the
input was “dog3333”.

(a) Layer 2 (b) Layer 3 (c) Layer 5

(d) Layer 6

Fig. 10: SHAP values for layers 2, 3, 5, and 6 when the input
was “dog3399”.

high values correspond more to the outline of the input
image. The evidence is that the outline artifacts seen,
e.g., in Figure 2 or 3 were influenced by the classification
layers.

(a) Layer 2 (b) Layer 3 (c) Layer 5

(d) Layer 6

Fig. 11: SHAP values calculated using ImageNet images for
comparison for layers 2, 3, 5, and 6 when the input was
“cat3333”.

(a) Layer 11 (b) Layer 16 (c) Layer 21

(d) Layer 22

Fig. 12: SHAP values calculated using ImageNet images for
comparison for layers 11, 16, 21 , and 22 when the input was
“cat3333”.

IV. CONCLUSION AND FUTURE WORK

We computed the SHAP values of the layered feature
tensors in a deep learning network trained to distinguish
between two classes. The SHAP values are a special
case of the Shapley value that explains the factors in
a machine learning decision by measuring the output
change due to change in each factor. The SHAP value is
the Shapley value satisfying local accuracy, missingness,
and consistency properties. Our results showed that the
lower layers exhibited shapes that fit other faces, some of
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them not even from the same class. It appeared that the
network worked on assembling the outlines of a shape
much earlier in the layered architecture than expected,
as early as Layer 2 which was immediately connected
to the input layer.

There are a number of interesting directions of future
work. In the present work, we examined cases in which
the network made the correct classification decision.
Given that the network accuracy is 95%, there are cases
when the network misclassifies. Ongoing work using the
same network architecture and the same data set includes
running similar analyses for misclassified samples. We
would also like to calculate the SHAP values for the top
classification layer. When the network makes a decision,
we would like to investigate creating a tree of high SHAP
values to attempt to explain the decision. Along other
directions, we would like to generalize our findings to
different data sets and network architectures.
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