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Abstract—To date, no implemented solution in manufacturing,
i.e., in automotive industry, exists to support production planning
with insights from production. A structured feedback loop from
operations to planning is required to further improve production
planning. This contribution discusses the limitations of an existing
concept for an inference procedure from operations to new
planning tasks using the findings from previous implementation
studies. Using the constraints found in these studies, six principles
for inference procedures are derived. Thus, the existing concept
is renewed and a structured and specific approach in providing
an inference procedure for planning activities of similar man-
ufacturing systems is proposed. This approach is split into the
different sub-tasks of data acquisition, fault detection, knowledge
representation, and knowledge inference. Each sub-task has
its unique state-of-the-art solutions, challenges, and limitations
which have to be examined during further implementations.
Most notably, the concept requires a definition of a normal
model to derive fault events and error patterns, an embedding
of the fault events in an ontology to create a knowledge base,
and the definition of a metric to measure similarity between the
current configuration in operation and new configurations of the
production planning.

Index Terms—Production Planning, Fault Detection, Knowl-
edge Engineering, Data Mining, Case-Based Reasoning

I. INTRODUCTION

The automation of production has a long tradition in the
automotive industry. This industry has therefore been leading
in the field of automation. Since the first initiatives of Henry
Ford in the early 20th century, the assembly stages have
especially been in the focus of automation [1]. Assembly
processes require different levels of flexibility and in turn have
led to different automation levels. The final assembly in auto-
motive industry is still characterized by a high proportion of
manual processes, while the Body-In-White (BIW) assembly is
nowadays considered fully automated. The major step towards
automation of production has been achieved as part of the third
industrial revolution and is based on the use of computers,
robotics, and electronics.

However, the ongoing fourth industrial revolution, which in
Germany is considered as Industry 4.0, is based on increasing
system connectivity and therefore the use of Cyber-Physical
Systems (CPS) [2]. Cyber-Physical Production Systems are
defined as "systems that integrate computation and physical
processes [...]". The use of CPS continuously generates large
amounts of sensor data. In automotive factories several ter-
abytes of raw data are collected on a daily basis. However, the
German high-tech strategy Industry 4.0 (I4.0) comprises more
than the application of CPS. I4.0 targets the data continuity
and autonomous orchestration of processes along the whole
product-creation process [3].

In this contribution, we focus on a concept which assists
the early phases of production planning in which the con-
figuration of new assembly systems takes place. Therefore,
real production data of operations is supposed to be a basis
of the assistance system and requires the data continuity from
the early phases of production configuration to the operational
production. We conducted interviews with production planners
in multiple European automotive Original Equipment Manu-
facturers (OEM), suppliers, and research institutes which have
shown that there is no digital feedback loop from production
back to the production planning.

In general, the computer-assisted assembly system config-
uration has for long been a discipline which has not been
sufficiently regarded by research and industry [4]. Recently,
research projects have been tackling the automation or at
least the assistance of the early planning phases. Hagemann
and Stark [5] provide an algorithmic approach in which the
configuration is processed fully automated. The approach uses
combinatorial optimization algorithms and determines the best
production system configuration with the aim of minimizing
investment costs. Other authors, such as Michalos et al. [6]
and Michels et al. [7], published automated approaches for the
design of assembly lines. However, to the best of the authors’
knowledge, there are as of today no implemented solutions
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which aim at assisting the production planner based on the
usage of real production data.

The following paragraphs describe a novel concept tackling
this research gap. This novel concept introduces four sequen-
tial steps in the inference procedure: data acquisition, fault
detection, knowledge representation, and knowledge inference.
Through this approach, a comprehensive analysis and feedback
of faults from operations to production planning is enabled.
The focus of our contribution is on the automotive industry,
but the concept is discussed in a universal manner, enabling
the use in manufacturing in general.

In section II, a preceding concept for an inference procedure
is presented, and its limitations found by our conducted
implementation studies are discussed and analyzed. Thereupon
in section III, the determined limitations are used to derive rel-
evant principles, which must be taken into account when devel-
oping or implementing future concepts of inference procedures
for fault detection. Subsequently, these principles are further
aggregated to derive a mathematical problem description. Con-
cluding in section IV, applying the problem description and
principles, a novel concept for inference procedures using the
four sequential steps is introduced. Furthermore, the state-of-
the-art solutions and methods for each step of the introduced
concept are discussed by conducting a comprehensive review
of the methods in the current literature.

II. DERIVATIONS FROM THE PRECEDING CONCEPT

This contribution enhances the first concept by Gelwer et
al. [8] and attempts to improve the approach by addressing
limitations along the stages of the concept.

A. Description of Preceding Concept

The concept by Gelwer et al. [8] is a specific model to target
a real manufacturing application at Mercedes-Benz Group AG
(former Mercedes-Benz AG). The concepts sketch is given in
Figure 1. The approach by Gelwer et al. [8] is summarized by
following three stages:

(i) Identification of faults in the manufacturing production
system during operations, the knowledge creation.

(ii) Set-up of a knowledge base.
(iii) Feedback of faults by identifying similar manufacturing

systems in planning, an inference process applied in
production planning procedures.

Stage (i) uses two approaches to identify faults. Firstly,
an anomaly detection is conducted using data from Inter-
net of Things (IoT) devices provided by a Manufacturing
Service Bus (MSB), see Minguez [10], i.e., real-time data
from devices, processes, and conditions. Secondly, Natural
Language Processing (NLP) is applied for analyzing the error
documentation. Input of the NLP can be plain text for a
classification of errors, e.g., documented in an Enterprise
Resource Planning (ERP) system or other third party sources.
Described faults within shift logs should then be classified
using standardized error codes. If both error detection and clas-
sification approaches work successfully, the results correspond,
since documented errors by maintenance workers should also

Fig. 1. Concept for data consistency checks between operation and production
planning enabling an improved knowledge of past errors in planning by
Gelwer et al. [8].

be visible in the data, and vice versa the detected anomalies
should appear in the necessary documentation of the shift log.

Stage (ii) is the set-up of the knowledge base by linking
the corresponding technical description of the occurred faults
and the affected processes within the error codes. These linked
error codes are mapped with the hierarchical quantity structure
of the manufacturing system after start of production and
also in the stages of production planning, i.e., within the
used library on the single component level. Further contextual
information about the errors are stored, i.e., used technologies
and parts numbers. The error and the additional contextual
information are documented within the knowledge base.

Using the knowledge model, stage (iii) conducts an infer-
ence procedure in the case of a production planning process of
a new manufacturing system. The new defined quantity struc-
ture in production planning is compared to the documented
faults occurred in similar quantity structures after start of pro-
duction within the library of stage (ii). Using the documented
error code within the context of the quantity structure enables
enriched information about possible problems or faults with
the suggested component of the new planned manufacturing
system. The proposed comparison using documented anoma-
lies and faults of the past should be applied to the part and
component level.

The concept by Gelwer et al. [8] was tested after its
publication and further evaluated within the organizational
structure of the Mercedes-Benz Group AG. By this practical
application multiple limitations were detected, resulting in the
necessity of a renewal of the approach. The limitations are
ordered by corresponding stages not by importance.

B. Limitations of the Knowledge Creation

In stage (i), it is concluded that no so-called jack-of-all-
trades algorithm or method for a consistent anomaly detection
exists. This is not surprising since the free-lunch theorem
implies that, considering all possible data, different anomalies,
and targets of the detection process itself, no single algorithm
is expected to solve all tasks [11]. This problem is directly rel-
evant for the Mercedes-Benz Group AG and assumed for most
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organizations within manufacturing and automotive industry,
as a wide variety of data types are available and in use. Using
the proposed framework by Foorthuis [12], out of the 9 types
with 63 subtypes of anomalies, 38 different subtypes from
all 9 types of anomalies are expected within the data of the
Mercedes-Benz Group AG. Although theoretically feasible,
within an efficient organization or a framework of a business
case individual implementations of all solutions per subtype
are difficult to achieve. During the tests performed, the used
algorithms, i.e., Isolation Forest, Multi-Layer-Perception, and
K-Means, heavily relied on well-labeled data, test datasets, or
required an extensive amount of prior investigation for setting
up valid parameters. Thus, more generic approaches need to
be defined, lessening the requirements for anomaly detection.

While the amount of data accessible is large enough, the
error states are only occasionally and not consistently labeled.
Furthermore, errors are quite rare. We estimate more than
an additional decade of runtime using same configurations,
as comparability is necessary, for creating sufficient error
instances at the facilities of Mercedes-Benz Group AG. Many
data of so called normal states [13] of the manufacturing
system model exist, but real incidents of errors are rarely found
in the available dataset or are often not documented enough
in a consistent manner to draw structured conclusions.

Furthermore, the requirement to use real-time streaming
data should be dropped since the proposed usage of real-time
streaming data is technically complicated to implement [14].
More importantly, for a planning procedure with prior analysis
of past data, real-time information processing is not necessary
since no acute, short-term, and quick call for action is given.

The problem of stage (i) is exacerbated in the area of NLP.
Only a limited amount of shift log entries exist, and from
these only a limited number are related to specific errors. It is
assumed that a higher training dataset size is highly beneficial
for increasing the accuracy of NLP [15]. Furthermore, the
documentation of manufacturing workers filling the shift books
often lacks the required details in delimitation of the different
types of faults or error codes. The insufficient documentation
can be attributed to implicit knowledge of the workers, which
is not known to the NLP algorithm. One current shortcoming
of NLP and the development of artificial intelligence in general
is the inclusion of implicit knowledge and human ’common
sense’ [16]. Therefore, shift logs could be used to determine if
an error occurred but not what error occurred. Also, this still
requires a larger amount of shift logs since the current entries
are still too few to perform analysis.

To summarize, in stage (i) the classification of errors is a
challenge of the concept and is not solvable with the current
state-of-the-art tools proposed by Gelwer et al. [8].

C. Limitations of the Knowledge Base

While the linkage of the error code to the process is an
important step in setting up and understanding the context of
error messages, it is often not sufficient for later inferences.
This procedure might correctly identify critical combinations
of components and processes within the planning process,

which lead to the described error states, but offers no sufficient
information about the cause of the error that occurred and
does not enable countermeasures except to dispense with the
combination of component and process. Since faults are often
foreshadowed by certain patterns and comparable faults can
occur in different processes, linking these patterns might help
to identify the specific error more precisely. This linkage
enables a comparison it with similar faults, a comparison of
solutions for these similar faults, and in conclusion enables
targeted countermeasures. Therefore, the context of usage
might also be an important factor in comparing the error with
other occurring faults and their corresponding solutions. This
enables a more detailed measure of criticality of the error and
guides a decision on how to handle the error, if cost efficient,
instead of avoiding it.

In addition, if the patterns are transferred and reused in
stage (i), this additional context becomes an important part of
the error classification and important to document within the
error messages. Underlying faults, i.e., currently researched
unwanted cold welding processes in holding pins, might be
detectable by an overall pattern in the data not only by single
faults and error messages. The feedback and usage of fault
patterns is a useful addition to the knowledge base.

A helpful approach in stage (ii) is to identify affected com-
ponents within their position in start of production as well as in
the production planning libraries. The differentiation between
start of production and planning might often be important
since position, usage, and linked processes are changing during
the production planning process in a manner that renders the
reasoning behind the choice unclear. Nevertheless, using only
the structural context of a resource within the quantity struc-
ture offers little information about the component and its use.
Important contextual information is not documented within
the quantity structure during production planning and start
of production. A component might cause comparable errors
within different quantity structures and contextual information
about technologies, parts, usage, processes, and products might
offer more explanatory value in describing errors.

D. Limitations of the Inference Process

This missing context within the quantity structure is even
more important in setting up a similarity check in the inference
process. The quantity structure itself, even if tracked within
start of production and production planning, is not enough to
detect similar set-ups. Very different quantity structures share
comparable faults, and solving the faults in these different
quantity structures might offer very important insights and
enable solutions. While the quantity structure is certainly
a part of the similarity measure, it must be enriched with
more context. Similar quantity structures might behave very
differently, and vice versa different quantity structures might
be more comparable regarding documentation and detection of
faults. Therefore, a fleshed-out ontology is needed to provide
additional information about types, linkages, relations, and
the interaction of product, process, and resources planned and
deployed in this structure.
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Furthermore, it is unclear how the similarity measure is
set up since the quantity structure alone offers too little
information. Even if the quantity structure is quite similar,
it is difficult and unclear how to transform this similarity into
a quantified measurement. Therefore, the proposed ontology
must also offer the possibility to apply a quantifiable similarity
measure. Based on the quantified measure, more similar set-
ups and their respective faults should be given more weight
when the planner is informed of potential errors by the infer-
ence process. Faults, risks, and solutions should be weighted
by similarity. Therefore, the similarity, based on a metric
quantifying the distance between the past and new planned
configuration, becomes a measure on how likely a similar fault,
which occurred prior in the compared past configuration, will
occur in the new configuration. The predicted error-proneness
of the new configuration is assumed to be correlated to the
distance measure between the new and past configuration and
the prior measured error-proneness of the past configuration.
This metric needs to be developed and embedded within the
proposed ontology.

III. DERIVED REQUIREMENTS AND PROBLEM DEFINITION

Considering the discussed limitations, relevant principles for
future concepts can be derived and a mathematical problem
formulation can be set up.

A. Requirements for Future Concepts

The relevant findings from the discussion of the preceding
concept can be expressed by the following six principles:

1) Since faults are rare in the data, an approach using labeled
faults requires more labeled training data for a valid
classification of errors than currently available. As an
alternative, a normal model needs to be defined, and all
data deviating from the normal model should be classified
as generic faults. The use of only supervised approaches
is not recommended.

2) Since shift logs contain no information about the exact
errors but can be used to identify if any error occurred,
they enable spotting of time frames of interest for finding
error patterns. Not all data are analyzed but data occurring
during days with entries in the shift logs are.

3) Using the deviations from the normal data, these findings
can then be compared regarding their unique patterns
and segmented for building a new fault classification
structure. The classified patterns are then the classification
criteria for all anomalies.

4) As these fault patterns might be highly individual for each
configuration, the configurations need to be described in
a more meaningful way. A simple description within the
quantity structure of production planning is not sufficient.
Each configuration must be enriched with contextual data
which then enables a deeper contextual anomaly detection
and a real causality analysis.

5) Furthermore, because configurations are solely dependent
on their quantity structure, an additional ontology must

be created to make configurations more specific and
comparable beyond the quantity structure.

6) Using this ontology, a metric must be developed, capable
of comparing the similarity of configurations indepen-
dently of their hierarchical position within the quantity
structure of production planning and start of production.

If the proposed principles are considered, a risk assessment
of a new planned configuration can be conducted by a com-
parison with the past configurations. By applying a similarity
score based on a metric using ontologies and combining this
information with the risk of a fault event, the risk of the
observed new configuration in the production planning process
is derived. This problem description and the resulting approach
is related to case-based reasoning [9].

B. Mathematical Problem Formulation

To address the requirements discussed, we build a funda-
mental logic on how to feed errors back.

First, each resource is assumed to have a certain and known
configuration θk out of a finite set of all possible configurations
for these resource types. The configuration depends strongly
on the Products, Processes, and Resource (PPR) model.

θk ∈ Θ = {θ1, ..., θK} (1)

Each resource and its specific configuration k have a finite
set of possible faults or error states. Each error state j is
defined as follows:

ej ∈ Ek = {e1, ..., eJ} (2)

For each error j in configuration k there exists a certain
probability rj,k that the error occurs.

rj,k = P (ej | θk) (3)

The risk of any error occurring in configuration k is then
given as following expression:

rk =
∑

ej∈Ek

P (ej | θk) (4)

If each risk does not contribute equally to the perceived
economic risk, a weight wj of each error can be applied.

If additionally a second configuration k∗ exists, there exists
an amount of errors which are both present in the configuration
k and k∗.

Ek∩k∗ ∈ Ek ∩ Ek∗ 6= ∅ (5)

The risk of any error occurring in configuration k is analo-
gously given by following expression:

rk∗ =
∑

ej∈Ek∩k∗

P (ej | θk∗) +
∑

ej /∈Ek∩k∗

P (ej | θk∗) (6)

If configuration k∗ is not within operation and currently just
a configuration during production planning, no estimation of
P (ej | θk∗) can be conducted. But if configuration k∗ and k
are similar enough, it is assumed that the set of errors within
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configuration k∗ but not within configuration k is very small.
The occurrence of completely new errors is unlikely.∑

ej /∈Ek∩k∗

P (ej | θk∗) ≈ 0 (7)

To conduct a valid inference procedure, a metric defining a
distance measure ∆(θk, θk∗) is necessary to compare k and k∗.
This metric should then give an approximation of the possible
error states using the configuration k as base.

rk∗ ≈
∑

ej∈Ek∩k∗

P (ej | θk∗) ≈
∑

ej∈Ek

P (ej | ∆(θk, θk∗), θk) (8)

For each error, a relation between configuration k and k∗

dependent on the distance measure between them is assumed.

P (ej | ∆(θk, θk∗), θk) ∼ P (ej | θk) ◦∆(θk, θk∗) (9)

If this relation is measurable by, e.g., a correlation analysis,
the inference is then a useful risk measure for the error-
proneness of configuration k∗. Therefore, in order to conduct
a risk assessment of a new configuration k∗, the following
challenges need to be addressed:

1) The risk assessment of base configuration k is necessary.
2) There needs to be a valid definition of a metric

∆(θk, θk∗).
3) Using the metric and risk assessment of k, a risk assess-

ment of k∗ must be derived.

IV. PROPOSED CONCEPT OF INFERENCE PROCEDURE

Based on the existing concept and the derived principles
and mathematical problem formulation, a new concept is
developed and presented in this section. This concept is then
discussed along its proposed steps.

A. Concept Overview

First, the concept overview and core ideas are presented.
Since the proposed concept needs to include additional infor-
mation about ontologies, a relevant comparable fault diagnos-
tics method is proposed by Zhou et al. [17]. The structural
set-up of the proposed concept by Zhou et al. [17] is included
into the proposal by Gelwer et al. [8] and adapted to meet
all defined principles. Our proposed concept for an inference
process is sketched in Figure 2.

The concept is split into four constructive steps and three
input models:

The (1) data acquisition describes the process of collecting,
processing, storing, and providing the data in order to conduct
a fault detection.

The (2) fault detection accesses the normal model to use
it as base for a detection if any kind of event happened and
to describe the event patterns. The normal model utilizes the
insights of principle 1) since more normal data are available
and a normal model can be set up using training datasets.
Also, this utilizes principle 2) by first detecting if any event
happened before classifying or describing the event.

Fig. 2. Proposed concept for an inference process based on knowledge
representation. The model is enabled by four constructive steps and three
inputs: An ontology of the configurations, a similarity metric, and a normal
model of the data.

In the (3) knowledge representation, the pattern and error
events are then embedded in the ontology of the configura-
tion, in which the event took place, and used for an event
classification. A notable ontology in a similar use case is
defined by Ming et al. [18] using, adapted to the discussed
use case, components’ taxonomy, properties, and relationships
regarding features, operation, and quantity structure. This kind
of ontology fulfills principle 5). If the event is classified by
comparing the error pattern with similar events, as requested
by principle 3), the knowledge base represents specific types of
error events. These events are documented by well-defined pat-
terns and are occurring within delimited areas and applications
according to the ontology, as principle 4) suggests. For each
error, the probability of occurrence rj,k can be determined by
predictive pattern mining of the specific error event.

The (4) knowledge inference is then conducted when a
new configuration is planned. The new planned configuration
is compared to the configuration in the knowledge base by
applying the defined metric as per principle 6). This similarity
is the expression of the term ∆(θk, θk∗) and is then used in the
error correlation. The correlation process itself is represented
by equation (9). This correlation is then used to calculate a
risk assessment rk∗ .

The constructive steps and their challenges, current state-of-
the-art solutions, requirements, and derived research questions
are discussed in more detail in the following subsections.

B. Data Acquisition

The data acquisition is similar to the proposal by Gelwer et
al. [8] and also proposes the usage of a MSB as described by
Minguez [10]. The MSB uses a multitude of interfaces, which
need an implementation within the overall IT infrastructure
of a manufacturing company. The MSB acts therefore as
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a universal communication layer enabling the integration of
all data from the shop floor for our proposed method [19].
The MSB solves the challenge of integrating a multitude of
IoT data [1] and can be, as proposed by Gelwer et al. [8],
transferred by Message Queuing Telemetry Transport (MQTT)
protocols in JavaScript Object Notation (JSON) using process
parameters and information from the Programmable Logic
Controller (PLC) combined with informations from the ERP.

An additional part of the data acquisition is the provision of
shift logs as possibility to detect error events. The application
of an NLP is then necessary to detect if error events happened
and mark these dates within the data for the error event
detection research. The marked dates are primarily important
within the error event detection of the fault detection step.

C. Fault Detection

While it is assumed that in most cases a supervised anomaly
detection might offer more insights due to the incorporation of
application-specific knowledge, the rare occurrence of faults
within the application in production planning makes it difficult
to create robust and generalized methods in this case [13].

Therefore, the fault detection process becomes for super-
vised methods a case of one-class variation since mostly
normal data are available. A possible method would be the
application of a one-class Support Vector Machine (SVM) as
described by Schölkopf et al. [20]. Alternatively, unsupervised
approaches can be used but risk the falsely positive detection
of noise in the data as faults [13].

One challenge is the false inclusion of anomalies, despite
being rare, into the normal data. An anomaly could easily be
misclassified as normal. These rare instances could result in
a more sensitive one-class SVM. A robust method for fault
detection using one-class SVM is given by Yin et al. [21].

Another possible method to apply in these cases are Kernel
Principal Component Analysis (PCA) for novelty detection.
Kernel PCAs map the mostly normal instances containing
training dataset into a feature space. The squared distance to
the corresponding principal subspace is then a measure for
anomalous data [22].

Different from an approach using one-class SVM or Kernel
PCA methods, would be the full modeling of the normal
machinery behavior to deduct anomalies by comparing the
delta between prediction and measurement. These methods are
more complex since they require a set-up of a complete normal
model of the planned system but are very robust and rely
on simpler distance-based comparisons between predictions
and measurements. The quality assessment of such models is
not the novelty detection method but the quality of the model
itself. These models are achieved by a comprehensive Digital
Twin defined as a simulation using physical models [23].

A possible model, which does not require a full Digital
Twin, is an autoregressive time series AR(p) of an order p
comparing the measurements with distance-based metrics, i.e.,
the Mahalanobis distance [24].

For rare instances of anomalies, the model might not be
necessary to set up, but the state signal itself is the base of

comparison, i.e., by comparing different windows of a signal.
The cross correlation entropy between two windows can be
measured and windows containing anomalies will result in a
larger entropy of cross-correlation [25].

Further research is necessary to determine the best model
or approach for the fault event detection since no clear rec-
ommendation for one specific approach is currently possible.

For a pattern identification of fault events, the rarity of faults
must be taken into account. The pattern identification task be-
comes a problem of infrequent patterns. Therefore, descriptive
tasks should be used to identify comprehensible patterns which
are later labeled in the knowledge representation step.

Since it is expected that faults occur in very specific
scenarios and are foreshadowed by co-occurrences prior or
after the fault event, these co-occurrences can be used to
describe the pattern and delimit it from other faults. Therefore,
methods of descriptive association rule mining might be most
useful in the pattern identification [26].

D. Knowledge Representation

Important input for the set up of the knowledge representa-
tion is the prior set-up of an ontology.

An ontology is defined as the model representing the seman-
tics of the domain model. A knowledge graph is the result if
data instances are acquired, integrated into an ontology, and
additionally a reasoning is applied to derive new knowledge
[27]. This differentiates an ontology and the resulting knowl-
edge graph. The ontology itself offers little specific insight on
the domain, but the domain becomes relevant when applied
in the knowledge graph [28]. Therefore, the ontology is the
input model and the application and contextual embedding
of the detected faults integrated into the ontology becomes a
knowledge graph which acts as the knowledge base for the
following inference procedure.

The main challenge of a valid knowledge representation is
the definition of a useful ontology, since for the presented
application two obstacles are limiting the usage of currently
available semantic model-based ontologies in Industry 4.0
applications as described by Yahya et al. [28]:

1) Production models do not fully follow the linked data
principles and require a new vocabulary instead of the
re-usage of current used vocabularies.

2) The scope of currently used ontologies is too application-
specific and not applicable in all areas of the production.

A notable contribution in defining a possibly relevant ontol-
ogy for contextual Industry 4.0. systems is given by Giustozzi
et al. [29]. Besides the already defined necessary relationships
(see subsection A), the ontology by Giustozzi et al. [29]
uses dedicated resource, situation, process, time, location, and
sensor ontologies.

Most relevant for production planning in the automotive
industry are the domains of Product, Process, and Resources,
bundled in the PPR concept [30]. A detailed exemplary set-up
of the ontology of the PPR concept is given by Agyapong-
Kodua et al. [31]. An applicable ontology for the proposed
concept must therefore combine the aspects of the PPR
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concept as well as the aspects of ontologies for a contex-
tual anomaly detection. Most beneficial would be a smooth
integration into the existing PPR ontology models which are
currently in use by manufactures and automotive.

The usage of more refined ontologies is enabled by the
progressive efforts of companies in the holistic implementation
of a Digital Twin, defined as a comprehensive physical but also
functional description of components, products, and systems
which enables insights in later lifecycle phases [32]. This
also requires a Digital Twin definition as the sum of logically
related data represented by semantic data models [33]. While
the call for a more refined ontology seems to be a difficult
requirement at first glance, it might be solved parenthetically
due to the set-up of Digital Twins.

In the contextual embedding step of the detected faults,
only the linked and semantic description of the faults are
capable of setting up contextual error identifications, thus
enabling a contextual error classification. By classifying the
errors in the knowledge representation step, this enables a
contextual anomaly detection using the error patterns and the
domain knowledge. A notable exemplary method for sensor
data is given by Hayes and Capretz [34] using cluster analysis
to define sensor profiles and enabling a contextual analysis
within the profiles. This application could be relevant for
the discussed measurements of streaming sensor data in the
data acquisition step. Also, the contextual anomaly detection
might enable the previously unsuccessful NLP of shift logs
for error classification. An exemplary application is described
by Mahapatra et al. [35].

After the fault is described within the ontology and the fault
patterns are delimited, the fault j is uniquely classified and
combined with the corresponding pattern description which is
the error event classification step. After classification, the past
data are searched for the fault patterns. The found instances
of faults of the same type within the specific configuration k
are then counted. This pattern mining enables a calculation of
the error-proneness probability rj,k.

This task can be conducted by applying different predictive
pattern mining algorithms [26]. Which algorithm for the
prediction and classification of faults performs most usefully
in the described use case must be further researched.

The error-proneness probability and error pattern embedded
in the ontological description of the configuration build up the
knowledge base.

E. Knowledge Inference

Since the concept is set within the idea of the digital
factory, the product development and the production planning
are parallelized. Therefore, the concept should also support a
rough planning as the first step of the production planning
process. Furthermore, in the applied planning within man-
ufacturing companies, focus of the rough planning is often
more on resources than processes since resources are main
part of the cost calculation [36]. Within the rough planning a
quantity structure and a 3D layout based on the used library
containing the single components and parts of the production

system is set up. Only in the detailed planning the supplier is
involved, optimizing the quantity structure up until the start
of production [37]. The higher the degree of maturity, the
more information and usefulness a rough production planning
provides [38].

Therefore, the similarity measure can only be as good as the
rough production planning. Since more information is added
during planning, more ontology types are also added and then
enable better similarity measures. Conversely, this also means
that the ontology must be imposed to planners, suppliers,
and operation since a documented ontology in the production
planning and start of production state benefits the significance
of the analysis.

If the ontology is documented diligently, the main challenge
is the set-up of a useful metric. Already in the definition of the
metric a contrary objective arises: the metric must be set up
in a way to properly describe the error-proneness of planned
configurations k∗ based on current configurations k, but the
error-proneness of the planned configurations is itself derived
from the distance measure of the metric. This conflict of goals
makes an objective definition difficult. It is assumed that the
metric to be defined is more likely a fuzzy similarity assign-
ment, i.e., a probability that the configurations are similar,
than a hard assignment listing the most similar configurations.
This is the case, since similarity is often context-specific and
different from equality measured in degrees [9]. Even then,
a fuzzy assignment still needs to be quantified and must be
tenable even under a generous error interval in real-world
applications considering domain knowledge of the planners.
The set-up of a metric is one of the current challenges and
open research questions of the concept.

If a valid metric is defined, the correlation analysis follow-
ing equation (9) is conducted to calculate a risk assignment of
the new configuration k∗ in production planning. Commonly-
used tools in case-based reasoning include, e.g., regressions,
bayesian learning, and Artificial Neural Networks, which
might also be applicable in the presented use case [9].

V. CONCLUSION

Though purposefully improving the former concept pro-
posed by Gelwer et al. [8] through the six principles estab-
lished, our new proposed concept still has open challenges
and needs further efforts to address these issues, namely the
set-up of a valid ontology within the manufacturing system
description and the derivation of a useful metric to determine
similarity between configurations. Further challenges are the
selection of a useful fault detection method and the set-up of
a use case oriented pattern mining.

Nevertheless, within this contribution we were able to
determine requirements of inference procedures and make a
targeted proposal for future research in this area. In particular,
the six defined principles and the proposed mathematical
correlation definition between the error-proneness of planned
configurations k∗ based on current configurations k contribute
to the current efforts towards building an inference procedure.
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Furthermore, our proposed concept acknowledges the short-
comings of the former concept and proposes an advanced
structure. Our proposal uses the stages of data acquisition,
fault detection, knowledge representation, and knowledge in-
ference. These stages are enabled by the definition of a normal
model as a basis for fault detection, an ontology for a valid
representation, and a similarity metric in order to be able to
carry out target-oriented comparisons.

The authors plan to examine the proposed concept in more
detail and implement use-case oriented applications of the
concept in production planning in future studies.
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