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Abstract—During the extraction, transportation and processing
of oil, associated petroleum gas is formed, which is usually
disposed in flares. Monitoring these flares is an important
environmental challenge. Objective instrumental methods for
detecting gas flares and assessing the volumes of gas burnt on
them are based on multi-spectral remote sensing of the nighttime
Earth. To refine the list, a manual check is used, which includes
a visual examination of the locations of the alleged gas flares on
high-resolution daytime images. Automating this check reduces
the cost of monitoring flares. The paper proposes a method
for verifying the list of high-temperature anomalies, based on
the classification of images of objects in daytime images. The
classification is carried out using machine learning methods.

Keywords—night lights; light pollution; viirs; image
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I. INTRODUCTION

During the extraction, transportation and processing of oil,
associated petroleum gas is formed, which is usually disposed
in flares. Monitoring these flares is an important environ-
mental challenge (see materials of the World Bank’s Global
Gas Flaring Reduction Partnership). Objective instrumental
methods for detecting gas flares and assessing the volumes
of gas burnt on them are based on multi-spectral remote
sensing of the nighttime Earth. The sensor Visible Infrared
Imaging Radiometer Suite (VIIRS) is used by satellites (Suomi
National Polar-orbiting Partnership (Suomi NPP) and NOAA-
20 weather satellite) at nighttime to collect imagery and radio-
metric measurements of the land, atmosphere and oceans in
the visible and infrared bands of the electromagnetic spectrum.
These data make it possible to find high-temperature anomalies
on the Earth’s surface, and by the spectrum of radiation
to distinguish gas flares from, for example, forest fires and
greenhouses. The most famous algorithm for finding gas flares
from Earth remote sensing data is the VIIRS Nightfire (VNF)
algorithm [1], [2], [3].

The refinement of this algorithm for use on the territory
of Russia is described in our paper [4]. However, the list of
gas flares obtained using the VNF method is not completely
correct. Among the main factors that make the presence of
errors inevitable, we mention the low temporal resolution of
satellite data (satellites do not often fly over objects, objects
can be covered by clouds), and interference in observations
that are difficult to eliminate (snow cover, polar nights).
Additional work is required to compile a “final list” of gas
flares from a “preliminary list” of gas flares. In the “final list”

it is also desirable to classify the flares by type of enterprise
(upstream, transportation, downstream processing).

In our paper [4], methods of manual correction of the list
of gas flares for the territory of Russia are described based
on the use of various additional sources and databases. For
example, the presence of an object in the authoritative list
CEDIGAS (The International Association For Natural Gas),
is a confirmation of the eligibility of including the object in
the ”final list”. If the coordinates of an object are not included
in the boundaries of licensed areas for oil production, then
in the conditions of Russia this object can be confidently
excluded from objects of the upstream type. However, such
manual corrections are laborious and time-consuming, and
flare monitoring needs to be done on a continuous basis with
a high temporal resolution. Automation of verification, even
partial, reduces the cost of monitoring flares. If we consider
the monitoring of gas flares in areas of armed conflict, where
illegal oil production and processing may take place, then the
automation of gas flare testing becomes uncontested.

In this paper, we propose a method for checking the list
of high-temperature anomalies obtained on the basis of NTL
data, based on the classification of images of objects in
daytime images. The classification is carried out using machine
learning methods.

The paper is organized as follows. In Section II, we describe
the satellite data used in the paper. Our approach to the
correction of gas flares list is outlined in Section III. In Section
IV, we present the image transformation process, including
image coding, image descriptor extraction, etc. In Section
V, we present some preliminary results. Finally, Section VI
concludes the paper.

II. SATELLITE IMAGE DATA

The original flare list used in this work is part of the list
of associated petroleum gas flares in Russia obtained in the
course of our work described in [4]. For each prospective
gas flare, a high-resolution daytime image was selected that
covered the location of the supposed flare. Some of these data
are labeled - that is, it is known whether or not there is a
gas flare a given point. In addition, during the training phase,
we added a manually selected set of daytime images that do
not contain gas flares, but there are production facilities that
may visually resemble oil and gas production and processing
facilities.
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The VNF algorithm utilizes near-infrared and short-wave
infrared data at night, gathered by the VIIRS on board satel-
lites NPP and NOAA-20 [3]. In [4] we used a version of the
VNF algorithm adapted to the conditions of Russia. The total
number of gas flares detected in [4] is about two and a half
thousand.

We used also daytime satellite imagery from the webserver
TerraServer to compile a “final list” of gas flares based on
a “tentative list” of gas flares. The resolution of the daytime
images is about 1m per pixel.

III. CHECKING AND CORRECTION OF GAS
FLARES LIST

First of all, we note that a wide variety of third-party
external sources can also be used when considering whether a
snapshot contains a gas flare. For example, in many countries
the licensing of oil areas for oil production (for example, in the
USA, Saudi Arabia, Russia, etc.) works quite effectively(and
reliably. The lists of such areas (i.e., their coordinates) are
publicly available and can be used for the evaluation if a
particular area is actually the oil area.

Here, we consider a different approach based on the daytime
satellite image classification. We are using machine learning
techniques here to adjust the ”final list” of gas flares based
on some ”tentative list” of gas flares. The input data for
us are the geographic coordinates of the alleged gas flares,
which are used to extract recent daily satellite data, and
then these images are analyzed by our automatic classifier
(called, ClassGasFlare), which determines the type of gas
flare from the image (by specialization enterprises: production,
transportation, upstream processing, downstream processing)
or lack of flares in the picture.

Since manual correction of this data is quite laborious
and time-consuming, automating the check of the list can
significantly reduce this work and helps to close the entire
verification technological cycle: from automatic acquisition of
images from the data cloud to their classification according
to the type of gas flare or the absence of gas flares. In those
cases when the automatic classifier has a ”difficult” case, then
only these ”difficult” cases can be left for manual additional
verification, which significantly reduces the volume of manual
work.

We train our classifier on a sufficiently large volume of
historical images, where they are labeled as (flare-dobycha,
flare-transport, flare-upstream, flare-downstream, flare-no) de-
pending on the type of oil production or simply as (flare-yes,
flare-no) to classify the presence or absence of oil production.
Thus, formally, in terms of machine learning, we get the
picture classification problem. In a first approximation, this
is true, but there are some important aspects that significantly
complicate this task. For example, aspects such as:

∙ images can cover partially our objects (where the gas flare
is located),

∙ images can be ”naturally spoiled” (for example, by clouds
that cover part of the surface in the image),

∙ images may have additional features such as snow cover,
which also distorts the original.

All these factors significantly affect the quality of the clas-
sification and should be taken into account when developing
a classifier.

IV. DATA FOR THE CLASSIFIERS TRAINING

This section describes the data and machine learning classi-
fiers used for the training and evaluation of the satellite image
classification. The image transformation techniques are also
discussed in this section.

A. Training data sets

We use satellite imagery (from the TerraServer web site) for
the period 2010-2017 (GasFlareData dataset). The resolution
of images from this dataset is within 1 m per pixel. The images
include both different types of gas flares and images where
there are no gas flares. As a rule, pictures are presented for
different moments in time (usually 3-10 variants), both in color
and in black and white. Images also often contain ”clouds”
and ”snow cover” as natural disturbances in our classification
task. There are also in small numbers simply spoiled pictures.
Figures 1, 2 and 3 show examples of images from the used
dataset.

Figure 1: Examples of ”clean” upstream flare images.

Moreover, it would be more correct to consider our task as
a task for the presence of certain types of scenes (scene detec-
tion), which in itself, as a rule, is much more complicated than
the usual classification. We only note that we do not consider
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Figure 2: Examples of ”clean” downstream flare images.

the approach from the point of view of scene detection in this
work.

B. Image extractors and descriptors: SIFT and SURF algo-
rithms

This section provides an overview of the various experi-
ments we use to evaluate the performance of the algorithm
for image classification. The set of raw data used in our ex-
periments is described here. The following describes methods
for transforming images and methods for obtaining feature
descriptors (including SIFT, SURF, etc.). Then, preliminary
results of our work on evaluating the accuracy of the algorithm
for classifying images with flares are presented.

Both of these methods have an important feature: they are
relatively insensitive to both scaling and rotation of images.
This is very important for our task, since our images can
be with different scaling and resolution, and are oriented in
different ways. The scale-invariant feature transform (SIFT)
[5] [6] was the first algorithm with similar properties, and the
speeded up robust features (SURF) algorithm [7] improves it
overall: SURF is faster and more robust than SIFT. The result
of SIFT and SURF is a certain finite-dimensional vector of
descriptors, and the order of the elements itself is not important
in this vector of descriptors, i.e., this means that in fact it is a
set. An image descriptor vector is a kind of histogram of the
visual elements it contains.

After using SIFT or SURF algorithms, one can use the
corresponding descriptors of pictures instead of the pictures

Figure 3: ”Unclean” examples of flare images: downstream
flare, covered with clouds (on the left) and upstream flare,

covered with snow (on the right).

themselves, both at the stage of training and at the stage of
using the classifier.

C. Image Data Set Augmentation

The quality and quantity of datasets is very important as this
affects the accuracy of machine learning algorithms, as well
as it is related to overfitting and underfitting problems. We
increase the size of the training data by using augmentation
techniques, e.g., cropping, rotating, shifting and scaling of
original images. As SIFT and SURF are invariant with respect
to rotating, shifting and scaling we do not use them with SIFT
and SURF algorithms but we use cropping technique. On other
hand, for deep learning models, in particular, for we use all of
them: including rotating, shifting, scaling as well as cropping
extensively. Overall, the image augmentation helps to improve
the prediction accuracy of the model. In our experiments after
applying the augmentation technique, the data set (about 11000
images) is increased approximately by factor 2 (about 22000
images).

D. Classifier training process

The encoded image feature vectors from each category
of images are used in the classifier training process for the
SVM and Random Forrest algorithms to create a predictive
function of the model. Figure 4 demonstrates the steps of the
image preparation used in our image classification approach.
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It is based on a more generic framework for image data
transformation discussed in [10].

Figure 4: Stages of processing for gas flare images.

V. EXPERIMENTS WITH THE FLARE IMAGE
CLASSIFICATION

In this section, we describe the experiments we use to
evaluate the quality of classifiers for classifying gas flare
images.

We are interested in the average accuracy measurement and
the ”the confusion matrix” for various experiments. For this
we use different categories of images and their groups from
the GasFlareData data set.

Note that the results below are preliminary, and the classi-
fiers themselves are far from optimal. This is especially true
for the results on the application of the deep learning (CNN
classifier).

Experiment 1. Measuring classification accuracy from data
(”all” or ”clean”) into categories (upstream and downstream)
using SURF extractor for SVM [8], Random Forrest [9]
and without using SURF in the case of the CNN classifier.
Here a classifier (SVM, Random Forrest and CNN) is used
to create a prediction model based on two image classes,
including (1) ”presence of a gas flare” and (2) ”no gas flare”.
Each category of data sets (upstream and downstream) is
considered separately here. In the training process, we use
70% of the entire set of images from each category for the
training purposes. The rest of each image set (i.e., 30% of
all images ) are used during the forecast evaluation stage.
Our measurements show that the achieved average forecast
accuracy is about 75% (see TABLE I).

Experiment 2. Measuring classification accuracy from data
(”all” or ”clean”) combined categories (upstream + down-
stream) using SURF extractor for SVM, Random Forrest and
without using SURF for CNN. Here the SVM, Random Forrest
and CNN classifier are used to generate a prediction model
based on three image classes: ((1) ”downstreanm gas flare
presence”, (2) ”upstreanm gas flare presence” or (3) ”gas
flare absence”). During training we use 70% of the whole
set of images (downstream + upstream) for data (”all” or

TABLE I. THE AVERAGE ACCURACY RESULTS FOR THE TWO 
CLASSES

Data SVM Random
Forrest

CNN

Upstream ”Clean” 0.81 0.79 0.75

Downstream ”Clean” 0.78 0.78 0.74

Upstream ”all” 0.79 0.76 0.75

Downstream ”all” 0.77 0.76 0.74

TABLE II. THE AVERAGE ACCURACY RESULTS FOR THE 
THREE CLASSES

Data SVM Random
Forrest

CNN

Upstream, ”clean” +
Downstream, ”clean”

0.72 0.71 0.70

Upstream, ”all + Down-
stream, ”all”

0.70 0.70 0.68

”clean”). The rest of the images (i.e., 30% of all images) are
included in the test data set and are used during the forecast
evaluation stage. Preliminary experiments also demonstrate
that the achieved average forecast accuracy for the three
classes is about 70% (see TABLE II).

VI. CONCLUSION AND FUTURE WORK

In this paper, a method for checking and correcting the
list of high-temperature anomalies obtained on the basis of
nighttime light data is proposed. The image classification of
daytime satellite images is used for this purpose. It is carried
out using machine learning methods.

Various machine learning methods and algorithms to clas-
sify the gas flare images from the GasFlareData set is applied.
The up-to-date solutions that generally demonstrate the most
acceptable classification quality in a wide variety of applica-
tions are used. The process of preparing images for classifi-
cation, including special image encoding operations such as
the well-known SIFT and SURF algorithms, is presented. For
different variants of datasets: ”clean” (including only those
that do not contain clouds or snow) and ”all” (including
those that do not contain clouds and/or snow), the flare image
classification is performed.

In experiments, the preliminary comparison of the classifica-
tion quality for different machine learning methods (including
SVM, random forest, Convolutional Neural Networks (CNN))
both with and without image encoding operations is carried
out. Both the variants of the input data (”clean” or ”all”) are
evaluated. The following average forecast accuracy is achieved
in the experiments: about 75% for the two classes and about
70% for the three classes.

Future work concerns the improvement of the classification
accuracy of the machine learning models used in the paper.
We also plan to apply the other deep learning architectures to
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the problem of interest and compare them with the all other
classifiers.

ACKNOWLEDGMENT

We thank Mikhail Zhizhin at the Colorado School of Mines,
Golden, USA and Alexey Poyda at the National Research
Centre ”Kurchatov Institute”, Moscow, Russia for fruitful
discussions and collaboration in collecting samples of satellite
images.

REFERENCES

[1] Earth Observation Group, Payne Institute, Colorado
School of Mines, Golden, USA [Online]. Available from:
https://payneinstitute.mines.edu/eog/viirs-nightfire-vnf/ [retrieved:
March, 2021].

[2] C.Elvidge, M. Zhizhin, F-C. Hsu and K. Baugh, “VIIRS nightfire:
Satellite pyrometry at night”. Remote Sensing, 5, no. 9, 2013, pp.4423-
4449.

[3] C. Elvidge, M. Zhizhin, K. Baugh, F-C. Hsu and T. Ghosh, “Methods
for Global Survey of Natural Gas Flaring from Visible Infrared Imaging
Radiometer Suite Data”. Energies, 9(1), 14, 2016, pp.1-15.

[4] A. Matveev, A. Andreev, M. Zhizhin and A. Troussov, “Satellite Moni-
toring of Associated Gas Flaring Torches in Russia” (In Russian). SSRN
Electronic Journal, DOI: 10.2139/ssrn.3362303, January 2019.

[5] D. G. Lowe, “Object recognition from local scale-invariant features”.
Proceedings of the International Conference on Computer Vision. 2.
1999, pp. 1150–1157.

[6] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Key-
points”. International Journal of Computer Vision. 60 (2), 2004,
pp.91–110.

[7] H. Bay, T. Tuytelaars and L. Van Gool, “Surf: Speeded up robust
features”. European conference on computer vision, 2006, pp.404-417.

[8] H. Drucker, C. Burges, L. Kaufman, A. J. Smola, and V. Vapnik, “Sup-
port Vector Regression Machines”, in Advances in Neural Information
Processing Systems 9, NIPS 1996, 1997, pp.155–161.

[9] L. Breiman, “Random Forests”. Machine Learning, 45, pp.5-32, 2001.
[10] S. Loussaief and A. Abdelkrim, “Machine Learning framework for

image classification”. Advances in Science, Technology and Engineering
Systems Journal, 3, 2018, pp.1-10.

49Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-850-1

PATTERNS 2021 : The Thirteenth International Conference on Pervasive Patterns and Applications




